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Abstract

Visual Question Answering (VQA) raises a great challenge
for computer vision and natural language processing com-
munities. Most of the existing approaches consider video-
question pairs individually during training. However, we ob-
serve that there are usually multiple (either sequentially gen-
erated or not) questions for the target video in a VQA task,
and the questions themselves have abundant semantic rela-
tions. To explore these relations, we propose a new paradigm
for VQA termed Multi-Question Learning (MQL). Inspired
by the multi-task learning, MQL learns from multiple ques-
tions jointly together with their corresponding answers for a
target video sequence. The learned representations of video-
question pairs are then more general to be transferred for new
questions. We further propose an effective VQA framework
and design a training procedure for MQL, where the specifi-
cally designed attention network models the relation between
input video and corresponding questions, enabling multiple
video-question pairs to be co-trained. Experimental results on
public datasets show the favorable performance of the pro-
posed MQL-VQA framework compared to state-of-the-arts.

Introduction

Visual Question Answering (VQA), which is considered
as one of the highest goals of artificial intelligence, has
raised a great challenge for both computer vision and nat-
ural language processing communities. Specifically, VQA
is a task about automatically returning the relevant answer
to the given question with respect to the reference visual
content. Currently, for ease of evaluation, most of the re-
searches (including this paper) focus on selecting answers
from given multiple choices. Producing answers in natural
language from scratch is deemed a much more difficult task.

Most of the existing works considered the problem of
VQA as a multimodal understanding task, that is to combine
the visual cues based on image/video understanding with the
question based on natural language understanding and rea-
soning. With the development of attention mechanism, many
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Q1: What is in the living room? 
Q2: What is the color of the wall? 
Q3: What is the person in the video doing? 
Q4: Where is the pillow? 
Q5: Is the person in the video sitting or lying? 

Figure 1: An example of a video sequence with multiple
questions. There are abundant relations between the multi-
ple questions themselves, either explicitly e.g. between Q3
and Q5, or more implicitly e.g. between Q1 and Q4.

studies explored the attention-based fusion of image/video
representations learned from deep convolutional neural net-
work and question representations learned via the sequential
model (Anderson et al. 2018; Nguyen and Okatani 2018;
Yang et al. 2016; Yu et al. 2019; 2017b; Li et al. 2019;
Gao et al. 2019b), which made significant progress in the
last few years. For example, (Anderson et al. 2018) pro-
posed to combine bottom-up and top-down attention mech-
anism that enables attention to be estimated at the level of
objects and other salient image/video regions. Meanwhile,
some recent works also considered the modeling of answer
representations to enrich the multimodal understanding (Hu,
Chao, and Sha 2018; Bai et al. 2018). For instance, (Bai et
al. 2018) proposed a deep attention neural tensor network to
fuse the information of image-question-answer triplets. Al-
though the existing works have achieved promising perfor-
mance in VQA, it is still not clear whether they do actually
reason, or they reason in a human-comprehensible way (Bai
et al. 2018; Cadene et al. 2019).

One issue that was superficially ignored in prior arts is
about the multiple questions for one video sequence. Indeed,
we observe that there are more and more VQA datasets (Jang
et al. 2017; Zhu et al. 2016; Ranjay et al. 2016) containing
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multiple questions for a video sequence. This is also a com-
mon phenomenon in applications such as education for chil-
dren (Calhoun 1999) and multi-turn video question answer-
ing (Zhao et al. 2018). It is worth noting that the semantic
relational information among multiple video-question pairs
plays an important role for human performing actually rea-
soning in VQA tasks. Actually, multiple questions comple-
ment information and provide clues for each other. Taking
the question Q3 in Fig.1 as an example, existing VQA meth-
ods are subject to bias in Q3 itself to recognize the action of
the person in the video sequence, with the underlying mod-
els probably not truly understanding the relevance of tex-
tual and visual concepts. The visual and textual concepts in
Q1 and Q4 (e.g. “pillow”, “living room” and corresponding
potential answers) are strongly related to Q3 (e.g. “sleep-
ing”). Furthermore, being able to better exploit the textual
and visual concepts from the heavy tails of the question
and answer distributions (e.g. the concept “sleeping” in Q3)
would enable more accurate question answering. It is there-
fore of great importance to learn these heavy tails answers
with related questions and visual information jointly. Nev-
ertheless, almost all of the previous works considered and
learned from each video-question pair independently.

The success of multi-task learning (Caruana 1997) im-
plies that inductive transfer may improve generalization by
using the domain information contained in the training sig-
nal of related tasks as an inductive bias. Analogous to multi-
task learning, we propose a new modeling paradigm for
VQA tasks termed Multi-Question Learning (MQL) mech-
anism to address the challenges mentioned above. Our main
idea is to co-train multiple video-question pairs jointly to
generate a generic video-question representation, which can
produce better answers for the questions and can be trans-
ferred and utilized in new questions. The representation can
extract general and effective features from complex visual
and textual information source, which is learned across sev-
eral related semantic concepts of different questions.

It is worth noting that our MQL is different from the VQA
in a visual dialog scenario (Teney et al. 2018; Zhao et al.
2018), where for a new question, the previous questions and
answers can be utilized as context. Instead, in our setting, we
have multiple questions only without any answer, and we
consider the questions in no order. In addition, even when
there is only one question for testing, our trained MQL still
works and performs well, which indicates that the improve-
ments of trained MQL are not only from the information
gain comparing to Single Question Learning (SQL) but also
from the better understanding and reasoning capability stud-
ied by MQL mechanisms.

To fulfill the MQL, we propose an effective multi-head
attention-based deep neural network for video question an-
swering task. As noted video QA is a more difficult prob-
lem than image QA (Zhao et al. 2017). Our framework
integrates the techniques of convolutional neural network
(CNN), gated recurrent unit (GRU), attention mechanism,
and multi-question supervision. Specifically, video represen-
tations are modeled by CNN; GRU as recurrent neural net-
work (RNN) is used as the building block to learning de-
sired representations from multiple questions. A multi-head

attention network is designed on top of the GRU and CNN,
which learns attention-weighed representations within ques-
tions, video frames and related video regions. Then, all of
these attention-weighed representations are integrated as a
general representation, which is made more robust and re-
liable by sharing representations and learning within the
multi-question setting. Finally, the general representation is
co-trained with different question-answer pairs jointly.

To summary, the main contributions of this paper are as
follows:

• Different from the previous studies, we propose the Multi-
Question Learning (MQL) mechanism as a new formu-
lation of the VQA problem, which learns visual content
with corresponding questions jointly to increase the ca-
pacity of modeling latent relation among textual and vi-
sual information. Our proposed MQL mechanism pro-
vides a new paradigm for VQA tasks.

• We propose effective multi-head attention-based deep
learning framework for the video question answering task,
in which the video and corresponding questions are co-
trained jointly to capture the complex semantic relations
among visual and textual information source.

• We validate the proposed MQL mechanism and the Video
QA framework on two public datasets. Experimental re-
sults demonstrate that the proposed MQL mechanism and
the Video QA framework achieve superior performance
than the state-of-the-art Video QA methods significantly.
Furthermore, we also perform several in-depth analyses
to give insights into our proposed approach.

Related Work

In this section, we briefly review some related works about
visual question answering and multi-task learning.

Visual Question Answering. The visual question an-
swering task is to provide an accurate answer for the ques-
tion given in natural language about the given visual con-
tent (Antol et al. 2015). Most of the previous works formu-
lated the visual question answering task as a classification
problem and solved it with a deep neural network that imple-
ments the joint representation of image and question (Gao et
al. 2019a; Anderson et al. 2018; Nguyen and Okatani 2018;
Yang et al. 2016; Lu et al. 2016; Yu et al. 2019; 2017b;
Shih, Singh, and Hoiem 2016; Liang et al. 2018). With the
advancement of visual attention, (Shih, Singh, and Hoiem
2016) introduced the spatial attention that selects the rele-
vant image regions to the text-based questions. (Yang et al.
2016) developed the stacked attention network, and (Liang
et al. 2018) proposed the focal visual-text attention network
for image question answering, where both visual and text
sequence information is presented.

To better exploit the reasoning for visual question answer-
ing, some works tried to introduce the answer representation
into consideration (Hu, Chao, and Sha 2018; Bai et al. 2018;
Teney et al. 2018). The researches in (Hu, Chao, and Sha
2018; Teney et al. 2018) tried to project the joint image-
question representation into the answer embedding space
learned from a text corpus. Meanwhile, multimodal feature
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fusion is crucial for visual question answering, which has
been studied in many works (Fukui et al. 2016a; Gao et al.
2016). (Fukui et al. 2016a) showed that a more complicated
fusion method does improve the performance. However, the
reasoning of visual question answering may still be ineffec-
tive due to the complexity of visual and textual informa-
tion (Bai et al. 2018; Jabri, Joulin, and VanderMaaten 2016;
Nguyen and Okatani 2018).

Recently, with the development of datasets (Jang et al.
2017; Zhu et al. 2016; Ranjay et al. 2016) and applica-
tions (Zhao et al. 2018; Teney et al. 2018) with multi-
ple questions for a piece of visual content, a few works
tried to introduce the information of multiple questions into
the reasoning for visual question answering. (Zhao et al.
2018) proposed the hierarchical attention context network
for context-aware question understanding, which takes a se-
ries of questions and answers as sequential input to train and
predict for the target question. Different from these works,
in this paper we propose to co-train multiple video-question
pairs and to answer them simultaneously. Our considered
scenario is that multiple questions are to be answered for a
video sequence, instead of visual dialog or multi-turn visual
question answering.

Multi-Task Learning. The success of deep learning in
general depends on data representation, as different rep-
resentations can entangle and hid more or less different
properties of variation behind the data (Ni et al. 2018;
Caruana 1997). Deep network learned representations for a
single task can only capture information required by the task
and other information of the data may be discarded. In con-
trast, multi-task learning allows statistical strength sharing
and knowledge transfer, thus the representations can cap-
ture more underlying factors. This hypothesis has been con-
firmed by a number of previous works (Misra et al. 2016;
Collobert and Weston 2008; Hashimoto et al. 2016), demon-
strating the effectiveness of representation learning in sce-
narios of multi-task learning and transfer learning. However,
most of traditional methods of visual question answering
treat each video-question pair independently, lack of con-
sidering the information of and relations to other questions.
Therefore, we are keen to re-frame visual question answer-
ing as a multi-question learning problem.

Multi-Question Learning

Setup, Notations, and Main Idea

In this paper, we focus on the choice-based visual ques-
tion answering task, which is to select an answer a from
an answer set A for the given visual content v and the tar-
get question q. The answer set A is usually defined as all
possible answers in the related task (Anderson et al. 2018;
Benyounes et al. 2017), i.e. the same for all (v, q) pairs. We
also define the set C that contains all the correct answers
for (v, q). C is usually a singleton, but may also contain
multiple correct answers depending on the task. Classically,
the training dataset is denoted by a set of distinctive triplets
D = {(vn, qn, Cn ⊆ A)}, which is treated independently in
the training procedure. However, this traditional paradigm
cannot capture all the information encoded in the visual and

textual information to derive better models. This is mainly
attributed to two challenges.

First, by separating two different questions qi and qj for
the same visual content v, with the ordinal numbers i and j,
we lose the semantic kinship between the two. Specifically,
if there are two triplets (v, qi, ai ∈ Ci) and (v, qj , aj ∈ Cj)
having semantic relations between qi and qj , we would ex-
pect the reasoning of ai and aj to have some degrees of se-
mantic relations, too. In the traditional setup, two triplets are
considered independently such that the learning procedure
focuses on the part of the visual and textual information cor-
responding to the specific triplet, which does not preserve
and takes full advantage of related semantic relevance infor-
mation in the questions. This semantic relevance informa-
tion from different questions is beneficial and adds robust-
ness for the more general multimodal representation, which
can be transferred for answering and reasoning other ques-
tions.

Second, traditional methods that treat triplets D as for an
independent classification problem, are severely influenced
by the bias of answers of the training data. Class imbalance
has been a longstanding challenge for classification, thus it is
difficult to learn the visual and textual information for low-
frequency questions and answers (Chao, Hu, and Sha 2018).
In contrast, learning multiple questions jointly provides a
new possibility to narrow the bias of answers of the train-
ing data by the transferred information learned from other
questions.

Therefore, we propose a new paradigm for studying visual
question answering called Multi-Question Learning (MQL)
in this work. Specifically, we further consider the question
set Q, that is all questions for the specific visual content v.
For the specific visual content vn, we assume there is a set
of questions Qn, and the question number is Qn, then the
corresponding training dataset is re-defined as {(vn, qk ∈
Qn,Qn, Ck ⊆ A)}, which will be co-trained.

Problem Formulation of Multi-Question Learning

For the specific visual content vn with Qn questions qk ∈
Qn, we first define a joint embedding function fθ(vn,Qn)
to generate the general embedding representation rn. Then,
we learn multiple question-answer pairs simultaneously. For
each question, the other questions are viewed as regulariza-
tion. By sharing representations with MQL, we can enable
joint visual and textual representations to be general and reli-
able. We also define a function gφ(rn, qk) for the target ques-
tion to emphasize its uniqueness. The related functions are
parameterized by θ and φ, respectively. In the MQL mech-
anism, any multimodal representation network can be used,
such as multi-layer perceptron (MLP) and Stacked Atten-
tion Network (SAN) (Yang et al. 2016). In our work, we
also design effective multi-head attention-based network to
implement the function fθ and gφ.

Formally, given the data (vn, qk ∈ Qn,Qn, a ∈ Ck) cor-
responding to visual content vn and target question qk ∈
Qn, we define the following probabilistic model,

p(a|vn, qk,Qn) =
exp(gφ(rn, qk)

�Wa)∑
a′∈A exp(gφ(rn, qk)�Wa′ )

(1)
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Figure 2: The proposed video question answering framework with the Multi-Question Learning (MQL) mechanism. The frame-
work has three parts including Feature Engineering, Representation Learning, and Multi-Question Supervision.

where rn = fθ(vn,Qn) and Wa is the learned representa-
tion for the answer a ∈ A.

In practice, we need to predefine a constant denoted as
MQ to represent the number of the questions used for a sin-
gle visual content. There are three different cases regarding
the constant for each question. First, if Qn = MQ, there is
nothing to do. Second, if Qn < MQ, we augment Qn with
either all-zero vector or duplication. Third, if Qn > MQ,
then for each question qk, we construct a set Qk

n ⊂ Qn such
that the subset Qk

n has exactly MQ questions; here we select
the top MQ relevant questions to qk into the subset, accord-
ing to some pre-trained models such as BERT (Devlin et al.
2018). In our work, we set MQ = 5 by default. Note that
if we set MQ = 1, then the MQL degenerates to single-
question learning (SQL), i.e. the traditional visual question
answering setting.

Given Eq. (1), it is natural to learn the parameters to max-
imize the likelihood of the probabilistic model. As there
might be different numbers of questions for different vi-
sual content items, we introduce the weighted likelihood in
our work, which has also been exploited in several previous
works (Goyal et al. 2017; Hu, Chao, and Sha 2018). Specif-
ically, we have

L = −
N∑

n

|Qk
n|∑

k

∣∣Qk
n

∣∣
MQ

log p(a|vn, qk,Qk
n) (2)

whose intuition is the hypothesis that the vn with more re-
lated questions contributes more to the MQL mechanism.

During prediction, given the learned parameters men-
tioned above, we can apply the following decision rule

a∗ = argmax
a∈A

gφ(rn, qk)
�Wa (3)

to identify the answer to the question qk of visual content
vn, where rn = fθ(vn,Qk

n).

Video Question Answering Framework

The proposed MQL mechanism is generic for different vi-
sual question answering tasks as long as there are available
multi-question-per-content data for training. In this paper,
we focus on the Video QA task as it is considered the most
challenging problem among peers (Zhao et al. 2017). Moti-
vated by recent attention mechanisms in NLP (Devlin et al.
2018) and CV (Gao et al. 2019b), as illustrated in Fig. 2, we
design a multi-head attention-based neural network to bet-
ter modeling the correlations and interactions between the
multi-questions and videos, which is divided into three parts
for a better description. We first extract visual and textual
features in the Feature Engineering part. Then, the multi-
head attention-based question and video representations are
generated in the Representation Learning part. Finally, there
is a Multi-Question Supervision part for co-training different
questions.

Feature Engineering. From an input video sequence, we
first select 16 key-frames and resize each frame to the reso-
lution of 224 × 224. Then, there are two streams for visual
information. One is global information for each frame. In
this stream, the initial visual representation of each frame
is a 4096-dimensional vector that is extracted by the pre-
trained VGG model (Simonyan and Zisserman 2014). The
other is region information for each region inside a frame,
which is motivated by the claim that the global represen-
tation of the frame may fail to capture all necessary infor-
mation for answering region-specific questions (Li and Jia
2016). We generate 20 candidate regions per frame using the
method in (Li and Jia 2016). For each region, we also em-

11331



Output 
Probabilities

Softmax

FC/ReLU (d=1024)

FC/ReLU (d=1024)

The Video-Questions  
Representation 

(d=1024)

The Question 
Representation 

(d=1024)

U (d
h

FC

FC

Concat

Scaled Dot-Product Attention

Attention-
Value (A-V)

Attention- 
Key (A-K)

Attention- 
Query (A-Q)

Multi-Head Attention
Output Network of the Specific Question

FC FC

Figure 3: More details of the proposed Video QA framework
shown in Fig. 2. Left: the multi-head attention mechanism;
Right: the Multi-Question Supervision part.

ploy the pre-trained VGG to generate a 4096-dimensional
vector. For textual information, the GloVe model (Penning-
ton, Socher, and Manning 2014) is employed to extract the
semantic word embeddings for each question, and a single-
layer bidirectional GRU (Bi-GRU) with the hidden dimen-
sion of 512 is used on top of each question. All of these Bi-
GRUs are sharing parameters. After the extraction of initial
representations, we employ three full-connection layers to
change dimension to 1024 for each kind of features, respec-
tively. To distinguish the different types of features, three
kinds of segment embeddings are added to corresponding
features, known as EA, EB and EC , respectively. Since the
temporal information is believed more important for video,
we further design a position embedding layer like in recent
works (Devlin et al. 2018). Note that we allow questions to
be out of order, so all questions for a video sequence have
the same position embedding E0, and the frame and its re-
lated regions are assigned position embedding Ei for the i-th
key-frame. Finally, we have a 1024-dimensional feature for
each question, region, and key-frame.

Representation Learning. Motivated by the success of
multi-head attention mechanism in recent works (Devlin
et al. 2018; Vaswani et al. 2017), we design a multi-head
attention-based representation learning approach to cap-
ture the complex semantic relations among questions, re-
gions, and key-frames. There are M multi-head attention
blocks where M is a hyper-parameter and equals 6 in our
work. Each block refers to the structures in (Vaswani et al.
2017), contains two sub-layers. The first is a multi-head self-
attention, and the second is a simple input-wise fully con-
nected feed-forward. In this way, the model could exploit
a series of important semantic information for representing
and reasoning the questions and the video, including the re-
lations among questions, the temporal information among
key-frames, and the spatial information and the overall se-
mantic relations among questions and frames.

The left part of Fig. 3 illustrates the multi-head attention
mechanism. We first linearly project an input vector h times
(h-heads) with different, learned linear projections to dq , dk
and dv dimensions, respectively, known as attention-query
(A-Q), attention-key (A-K) and attention-value (A-V). In
our work, A-Q, A-K, and A-V are the same, and particu-
larly, they are the extracted feature vectors from the Feature

Dataset and Category QA Pairs Video Sequences
Train Test Total Train Test Total

TGIF-QA

Object 16755 5586 22341 15584 3209 18793
Number 8096 3148 11244 8033 1903 9936
Color 11939 3904 15843 10872 3190 14062

Location 2602 1053 3655 2600 917 3517
Total 84124 19795 103919 48198 8522 56720

CPT-QA

Object 7431 769 8200 7288 751 8039
Number 1435 160 1595 1159 159 1593
Color 7938 875 8813 1434 868 8749

Location 7276 795 8071 7242 788 8030
Action 7108 762 7870 7105 760 7865

Either-OR 6150 681 6831 5834 644 6478
Other 2542 358 2900 2115 279 2394

Total 39880 4400 44280 7976 880 8856

Table 1: Statistics of the two datasets, in which we divide
questions into several different categories, such as “Object”
and “Number.”

Engineering part or the previous multi-head attention block.
Next, we perform scaled dot-product attention for each head,
and we concatenate all scaled dot-product attention output
vectors along each head. A full-connection layer is then em-
ployed to get the output. In our work, we set h = 8 and
dq = dk = dv = 1024/h = 128. The feed-forward network
includes two full-connection layers, which is applied to each
input vector separately and identically.

After multi-head attention blocks, we concatenate all out-
put vectors and utilize two full-connection layers to generate
the final question/video representations. Note that the output
vectors of the first block corresponding to the input question
vector are employed to represent each question, respectively,
which will be used in the following Multi-Question Supervi-
sion part. Our motivation is that the output vectors of the first
multi-head attention block preserve and distinguish the in-
formation of each question to the largest extent. At the same
time, the relations within questions, regions, and frames can
be integrated to a certain extent.

Multi-Question Supervision. As mentioned above, we
believe that jointly train the multiple questions could make
the question/video representations more general and reli-
able. Thus we define a network for co-training, which is
to share parameters for each question and is illustrated in
the right part of Fig. 3. We concatenate the representations
of questions/video and the target question, in order to em-
phasize the uniqueness of the target question on the basis of
the shared semantic expression of multiple questions and the
video. Both of them are generated from the previous Repre-
sentation Learning part. Then, there are two full-connection
layers to generate the final feature vector for prediction.

Experiments

Datasets and Metrics

TGIF-QA dataset1. It is a large-scale public dataset intro-
duced by (Jang et al. 2017). Since we focus on the prob-
lem of selecting appropriate answers from a pool of candi-
date answers in this paper, we perform our experiments on
the “Frame QA” task described in TGIF-QA. In this dataset,

1https://github.com/YunseokJANG/tgif-qa
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Method Accuracy(%)
VIS+LSTM(avg) (Ren, Kiros, and Zemel 2015) 34.97
Yu et al. (Fukui et al. 2016b) 39.64
ST-TP(R+F) (Jang et al. 2017) 49.50
Co-memory (full) (Gao et al. 2018) 51.50
PSAC(R) (Li et al. 2019) 55.7
Ours (SQL) 57.03
Ours (M-S) 58.20
Ours (MQL) 59.83

Table 2: Results on the Frame QA task of TGIF-QA dataset.
“Ours (M-S)” stands for using MQL for training but testing
with single question.

each video sequence is accompanied with one or more ques-
tions, and each question is associated with only one answer.
We follow the training and test dataset of TGIF-QA.

CPT-QA dataset2. CPT-QA dataset is a recent Video
QA dataset released by Zhejiang Lab. For this dataset, the
providers pre-define several types of questions and invite
volunteers to ask and answer questions for video sequences.
For each video sequence there are up to five questions, and
for each question there are three persons providing “ground
truth” answers, thus, there can be up to three correct answers
for one question. Compared with the TGIF-QA dataset,
CPT-QA is smaller but has more variety in the category of
questions, as can be observed in Table 1. As this dataset is
prepared for a competition, we do not have the ground truth
of its test set. In our experiments, we divide its training set
into two parts: randomly selecting 90% video sequences for
training and using the rest for the test.

Metrics. We use the classification accuracy (ACC) as the
metric to evaluate the performance of different methods. For
the CPT-QA dataset, it is worth noting that the true positive
is defined as the predicted answer hits any one of the correct
answers for each question.

Compared Approaches

Our full approach is denoted by Ours (MQL). To identify
the general effect of MQL mechanism, we also test a single
question learning (SQL) version of our approach, i.e. we set
MQ = 1 in Eq. (2). Furthermore, we test the performance
of our model that is trained based on MQL mechanism but
deals with a single question in the test, which is denoted by
Ours (M-S). This is to cope with scenarios where only one
question is given for a video sequence in practice.

Since there are several state-of-the-art works reported
their results on the TGIF-QA dataset, we directly compare
our result with these results and mark the related work to
each method in Table 2. However, for the CPT-QA dataset,
there is no published result to our best knowledge. So we
design several baselines following (Zhao et al. 2017):

SAN (SQL) is the incremental algorithm based on
stacked attention networks (Yang et al. 2016). Follow-
ing (Zhao et al. 2017), we add the GRU network to fuse
the sequential representations of spatially attended frames
for Video QA.

2https://tianchi.aliyun.com/competition/entrance/231676/
information

Method Accuracy(%)
SAN (SQL) 53.14
SAN (MQL) 58.08
r-STAN (SQL) 55.62
r-STAN (MQL) 59.82
MLAN (SQL) 56.11
MLAN (MQL) 61.54
Ours (SQL) 58.26
Ours (M-S) 59.00
Ours (MQL) 62.85

Table 3: Results on the CPT-QA dataset.

MLAN (SQL) is modified from the MLAN algorithm (Yu
et al. 2017a), where we add the Bi-GRU network for obtain-
ing the representations of the video and the target question.

r-STAN (SQL) is a state-of-the-art Video QA
method (Zhao et al. 2017), which proposed a hierar-
chal spatio-temporal attentional encoder-decoder learning
method with multi-step reasoning process for Video QA.

SAN (MQL), MLAN (MQL) and r-STAN (MQL) are
the MQL versions of SAN, MLAN, and r-STAN, respec-
tively, which are compared with Ours (MQL) to reveal the
effects of different architectures for modeling the relation-
ship between the questions and videos in MQL. They per-
form a concatenation and add a full-connection layer on top
of the corresponding SQL version.

In summary, we design the comparisons between SQL
and MQL to demonstrate the advantages of MQL. Consider-
ing that the MQL setting provides more information than the
SQL setting during prediction, and it is intuitive that MQL
performs better than SQL. For fairer comparisons, we also
design and implement several MQL baselines, and compare
Ours (MQL) with the other MQL methods. Besides, we also
compare all SQL-based methods with Ours (M-S), which
only involves a single question during prediction.

All approaches employ common initial textual and vi-
sual features. Configurations of our method can be found
in Fig. 2 and related sections. All approaches are imple-
mented on the TensorFlow, utilizing 100 parameter servers
and 2000 workers, each of with runs with 15 CPU cores. The
batch size of Ours (MQL) is set to be 16. All the batches are
trained for 30 epochs. We use the Adam optimizer for all the
approaches. The initial learning rate is set to 1e-4.

Overall Results

Table 2 and 3 give a comprehensive evaluation for baselines
on TGIF-QA and CPT-QA datasets, respectively. Specifi-
cally, in all cases in Table 2 and 3, Ours (MQL) achieves the
best performance, which shows that the MQL mechanism
with an effective multimodal features fusion model can fur-
ther improve the performance of visual question answering.
Meanwhile, these experimental results also reveal a number
of interesting points:

• In Table 3, all the methods based on MQL mechanism
outperform the corresponding SQL version by a notice-
able margin, which suggests the MQL mechanism is crit-
ical for the performance of VQA tasks. We attribute the
reasons for two points. First, multiple questions contribute
to the better description and supplement for the target
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Figure 4: Left: the learning curves of different approaches.
Right: the performance with respect to different numbers of
co-trained questions (i.e. MQ in our MQL).

question. Second, co-training multiple questions jointly
makes the model better understanding the semantic rela-
tionships among questions and the visual content for rea-
soning, and leads to a more general multimodal represen-
tation. Furthermore, it indicates that, by better modeling
the correlations and interactions between the questions
and videos, Ours (MQL) is in favor of outperforming all
other MQL-based methods. We make more in-depth dis-
cussions of MQL in the next sections.

• Ours (SQL) outperforms the state-of-the-art approaches
in Table 2, and Ours (SQL) surpasses the other single
question learning baselines in Table 3. It indicates the
effectiveness of our proposed video question answering
framework, especially the network design. Most probably,
the multi-head attention mechanism has a strong ability
to correlate and integrate three different types of features,
i.e. question, region, and frame.

• The accuracy of Ours (M-S) drops a lot compared to that
of Ours (MQL). It emphasizes the importance to identify
the relations between multiple questions for answer pre-
diction. However, it still outperforms Ours (SQL), which
indicates that the model trained with MQL setting is good
enough to cope with different test settings: it is applicable
when there is only one question for the video sequence
during prediction.

Discussion and Analysis

For better understanding our proposed MQL mechanism and
video question answering framework, we perform further in-
depth discussion and analysis in this section.

We observed the convergence of training with different
approaches on the CPT-QA dataset, as shown in the left
part of Fig. 4. The learning curves of Ours (SQL) and SAN
(MQL) converge quickly after about 15 epochs, and the ac-
curacy on validation set of Ours (SQL) even begins to de-
cline after 15 epochs. In contrast, the learning curves of other
MQL based methods grow continually. This phenomenon
indicates that multi-question learning mechanism with an
effective multimodal fusion model could learn more seman-
tical information from the training data continually, which
exploits the training data better.

In our approach, the maximal number of questions for
each video sequence during training–MQ in Eq. (2) is an es-

Method Accuracy
Object Color Number Location Action Either-OR Other

SAN (SQL) 0.4859 0.5859 0.7379 0.6849 0.2029 0.7667 0.1487
SAN (MQL) 0.5051 0.6332 0.7711 0.7321 0.2414 0.8212 0.1789

r-STAN (SQL) 0.5098 0.6020 0.7524 0.6973 0.2156 0.8001 0.1712
r-STAN (MQL) 0.5386 0.6640 0.8006 0.7468 0.2564 0.8611 0.1953
MLAN (SQL) 0.5244 0.6151 0.8087 0.7149 0.2196 0.8096 0.1856
MLAN (MQL) 0.5537 0.6873 0.8422 0.7644 0.2604 0.8756 0.2093

Ours (SQL) 0.5329 0.6332 0.8310 0.7273 0.2223 0.8240 0.1937
Ours (MQL) 0.5722 0.7033 0.8865 0.7768 0.2770 0.8928 0.2150

Table 4: Results of accuracy per each category on the CPT-
QA dataset.

sential parameter. Since most of the video sequences in the
two datasets have up to 5 questions, we test different MQ

values from 1 to 5. Note that when MQ = 1 it is indeed sin-
gle question learning. The related accuracy results are dis-
played in the right part of Fig. 4, in which we can observe
that the performance increases continually as the number of
co-training questions increases. This result suggests the ad-
vantage of MQL. Note that the gain becomes marginal when
MQ is greater than 3. One reason is that most of the video
sequences in the training data contain no more than 3 ques-
tions. The other reason is due to the diversity of questions,
i.e. introducing more irrelevant questions is not helpful.

Table 4 summarizes the evaluation results of accuracy
for different types of questions on the CPT-QA dataset. All
MQL based models outperform their corresponding single
question learning versions on all kinds of questions. Fur-
thermore, comparing Ours (MQL) with Ours (SQL), we ob-
serve that for questions about “Actions,” such as “What is the
person in the video doing?” the relative improvement is the
highest among different types of questions, reaches as much
as 24.60%. This can be attributed to the characteristics of
these questions, to answer which we need the global infor-
mation of the video and multiple questions can help here. It
also implies that multi-task learning can be helpful for video
action recognition.

Conclusion

In this paper, we propose the multi-question learning mech-
anism as a new paradigm for the visual question answer-
ing tasks, analogous to multi-task learning. Multi-question
learning mechanism helps generate more robust and generic
multimodal representations for visual and textual informa-
tion, which can not only benefit for the target question, but
also be transferred for answering and reasoning other ques-
tions. We also propose a multi-head attention-based video
question answering framework to implement the multi-
question learning mechanism, which captures the complex
semantic relations among questions, spatially variant vi-
sual information, and temporal information. The empirical
evaluations on two large-scale public datasets demonstrate
that our proposed approach builds a new state-of-the-art for
video question answering.
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