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Abstract

Tremendous research efforts have been made to thrive deep
domain adaptation (DA) by seeking domain-invariant fea-
tures. Most existing deep DA models only focus on align-
ing feature representations of task-specific layers across do-
mains while integrating a totally shared convolutional archi-
tecture for source and target. However, we argue that such
strongly-shared convolutional layers might be harmful for
domain-specific feature learning when source and target data
distribution differs to a large extent. In this paper, we relax
a shared-convnets assumption made by previous DA meth-
ods and propose a Domain Conditioned Adaptation Network
(DCAN), which aims to excite distinct convolutional channels
with a domain conditioned channel attention mechanism. As
a result, the critical low-level domain-dependent knowledge
could be explored appropriately. As far as we know, this is
the first work to explore the domain-wise convolutional chan-
nel activation for deep DA networks. Moreover, to effectively
align high-level feature distributions across two domains, we
further deploy domain conditioned feature correction blocks
after task-specific layers, which will explicitly correct the
domain discrepancy. Extensive experiments on three cross-
domain benchmarks demonstrate the proposed approach out-
performs existing methods by a large margin, especially on
very tough cross-domain learning tasks.

Introduction

Domain adaptation (DA) (Pan and Yang 2010) has been wit-
nessed as a promising technique to transfer knowledge from
a well-labeled and related source domain to assist the target
learning (Baktashmotlagh et al. 2013; Donahue et al. 2014;
Sun and Saenko 2016; Zhuo et al. 2019). Previous DA meth-
ods generally aim to align domain distributions by either
reweighting instances (Chen, Weinberger, and Blitzer 2011)
or learning domain-invariant features (Ghifary et al. 2017).
Most recently, deep domain adaptation has been proposed
to exploit the powerful feature extraction ability of con-
volutional neural networks, where they mainly deploy two
kinds of strategies to align cross-domain features in the top
task-specific fully-connected layers, i.e., discrepancy losses
(Long et al. 2017; Zhang et al. 2019b; Peng et al. 2018;
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Figure 1: Attention visualization of the last convolutional
layer of different models on the task Ar→Rw of Office-
Home. Column (a) shows two randomly-chosen target im-
ages from classes “curtains” and “eraser”. Column (e) is
obtained by the network trained with target ground-truth la-
bels. (b), (c) and (d) represent attention maps of source-only
model, DCAN w/o and w/ the proposed domain conditioned
channel attention mechanism, respectively.

Chen et al. 2019) and adversarial losses (Tzeng et al. 2017;
Pei et al. 2018; Long et al. 2018; Zhang et al. 2019a). How-
ever, they all assume the convolutional layers are universal
across different domains in capturing general low-level fea-
tures based on the analysis of AlexNet (Yosinski et al. 2014).

Unfortunately, more challenging cross-domain tasks re-
quire much deeper neural networks to achieve promising
performance. In this scenario, sharing the totally same con-
volutional layers in domain adaptation would cause two is-
sues. First, for tough visual cross-domain tasks, there exists
a large discrepancy between the visual patterns for the two
domains, i.e., Amazon images with clean background and
daily life images with complex background. In this case, it is
improper to still assume all the filters in each convolutional
layer are similarly activated across different domains. When
source and target totally share the same convolutional lay-
ers, they would fail to capture domain-informative features
in low-level stage. Second, only deploying domain discrep-
ancy penalty terms or adversarial losses on the top layers
may be less effective, since the gradients of the loss modifi-
cations at the task-specific layers will be decayed via back-
propagation scheme. As a result, the shared convolutional
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layers across domains may lose domain-specific knowledge
at the start of the very deep convolutional networks.

To verify our judgments, we visualize the attention maps
of the last convolutional layer across different models in
Figure 1. Obviously, in column (e), the convolutional lay-
ers can accurately capture the most discriminative regions
(i.e., curtains and erasers) when trained with target ground-
truth labels. However, as shown in column (c), similar to
most DA methods, only conducting distribution alignment
on the top layers cannot ensure the target model focusing
on the desirable regions, while erroneously highlighting the
irrelevant objects (i.e., couch and laptop) since the shared-
convnets are still affected by the source domain. By contrast,
our approach in column (d) performs more similar to (e).
This result intuitively manifests that exploring an effective
domain-wise convolutional representation learning mecha-
nism is crucial in capturing most important regions for better
addressing DA problems.

In this paper, we propose a novel Domain Conditioned
Adaptation Network (DCAN) for unsupervised visual do-
main adaptation by exploring domain conditioned channel
attention to seek domain-specific knowledge in convolu-
tional layers. Our main idea is to transfer knowledge in two
components: domain conditioned channel attention module
and task-specific feature correction module. With the intro-
duced domain conditioned channel attention mechanism, we
allow large deviation existing in feature representations of
different domains. This improves the representation power
and flexibility of the network. Additionally, to enable adapt-
ing source discriminative knowledge to target at high-level
stage, we plug feature correction block to explicitly learn the
domain difference with reference to the target distribution.
To sum up, we highlight the three-fold contributions:
• First, domain conditioned channel attention module con-

tains two different routes for source and target domains
with partially shared parameters. To be specific, channel-
wise attention will be jointly learned to activate different
channels to adapt source and target data respectively. This
flexible module would facilitate extracting more enriched
domain-specific knowledge in low-level stage.

• Second, we introduce a domain conditioned feature cor-
rection block to further explicitly reduce high-level fea-
ture distribution discrepancy across domains. Moreover,
we design a source-correction regularizer to enhance the
effectiveness and stability of this module.

• Finally, we provide a comprehensive evaluation of DCAN
on three popular cross-domain benchmarks and achieve
several state-of-the-art results, especially on the to date
largest cross-domain benchmark DomainNet. This indi-
cates DCAN can effectively deal with challenging DA
problems from small to large scales.

Related Work

Conventional deep DA methods adopt deep neural networks,
e.g., AlexNet and ResNet, as the backbone network to seek
domain-invariant features in task-specific layer through var-
ious statistical moment matching techniques, such as Max-
imum Mean Discrepancy (MMD) (Gretton et al. 2007;

Tzeng et al. 2014). To name a few, Long et al. explore multi-
kernel MMD (MK-MMD) metric to minimize marginal dis-
tributions of two domains in (Long et al. 2015). RTN adapts
fused feature by minimizing MMD to jointly learn adaptive
classifiers and transferable features (Long et al. 2016). Fur-
ther, Margin Disparity Discrepancy (MDD) is proposed in
(Zhang et al. 2019b) with rigorous generalization bounds.
JDDA in (Chen et al. 2019) aims to match the covariance of
source and target with discriminative information preserved.
However, all these works enforce source and target data to
share one common backbone convolutional network, which
usually underestimates the domain mismatch in low-level
convolutional stage. Besides, to explore the domain partic-
ular knowledge from the network architecture design per-
spective, domain-specific batch normalization (DSBN) lay-
ers are proposed in (Chang et al. 2019), which allows source
and target data pass through separate batch normalization
layers. (Roy et al. 2019) designs domain-specific whitening
transform (DWT) layers after the convolutional layers for
the purpose of matching two domains.

An alternative branch of DA is inspired by the Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. 2014),
which explores non-discriminative representations by con-
fusing the domain discriminator in a two-player minimax
game. In (Ganin and Lempitsky 2015), a domain adversarial
neural network (DANN) is introduced to learn task-specific
domain-invariant features. Based on DANN, aiming to alle-
viate the mode collapse problem, MADA (Pei et al. 2018)
trains multiple class-wise domain discriminators according
to the number of classes. (Long et al. 2018) presents con-
ditional domain adversarial network (CDAN) which con-
ditions the models on the classifier predictive knowledge.
By leveraging the formulation in GANs, ADDA proposed
in (Tzeng et al. 2017) incorporates discriminative model-
ing, untied weight sharing, and a GAN loss into one frame-
work for unsupervised DA. GTA (Sankaranarayanan et al.
2018) transfers target distribution information to the learned
embedding utilizing a generator-discriminator pair. To learn
more domain-informative knowledge from lower blocks,
(Zhang et al. 2018) presents an incremental collaborative
and adversarial network (iCAN). MCD (Saito et al. 2018) in-
troduces a new adversarial paradigm by maximizing the dis-
crepancy between two target classifiers’ outputs. Domain-
symmetric Networks (SymNets) in (Zhang et al. 2019a) con-
struct an additional classifier that shares with source and tar-
get classifiers for DA.

Recently, attention mechanism has achieved remarkable
performance in various computer vision tasks (Vaswani et
al. 2017). For DA problems, (Zhuo et al. 2017) proposes
an attention transfer process for convolutional domain adap-
tation with aligning attention maps for two domains. Fur-
ther, (Kang et al. 2018) proposes a deep adversarial atten-
tion alignment (DAAA) approach to transfer knowledge in
all the convolutional layers by attention matching. Consider-
ing transferable local and global attentions, TADA in (Wang
et al. 2019) aims to highlight transferable regions or im-
ages across domains. However, these approaches all focus
on space attention knowledge.

Differently, we aim to design a more effective transferable
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deep model by exploring the adaptation in convolutional lay-
ers. To be specific, the domain conditioned channel atten-
tion mechanism in convolutional layers would benefit the
representation learning of inter-domain features as well as
domain-specific ones, making it more flexible and powerful
in modeling complex data from different domains.

Domain Conditioned Adaptation Network

Preliminary and Motivation

In unsupervised DA, labeled source domain is expressed as
S = {(xsi, ysi)}ns

i=1 of ns samples, where xs, ys denote a
source sample and its corresponding label. Similarly, unla-
beled target domain is defined as T = {xtj}nt

j=1 of nt sam-
ples. Source and target domains have the same Cn classes,
but there exists a domain shift between their feature distribu-
tions: Ps(x) �= Pt(x). The goal of DA is to learn a classifier
that generalizes well on target domain by exploring labeled
source data and unlabeled target data in the training stage.

Most existing researches in deep DA are devoted to reduc-
ing domain differences only in task-specific layers, assum-
ing the strongly-shared backbone convolutional layers could
capture general low-level features across domains. How-
ever, we believe these domain alignment methods can only
reduce, but not essentially remove the cross-domain dis-
crepancy when domain discrepancy is tremendously large,
which is more practical and challenging in real-world appli-
cations. Thus, a reasonable consideration is that, both inter-
domain features and domain-specific ones should be simul-
taneously learned in convolutional low-level stage to effec-
tively model complex data from different domains. Further-
more, the cross-domain high-level features should also be
explored to facilitate discriminative knowledge transfer. To
this end, we propose a novel Domain Conditioned Adapta-
tion Network (DCAN), as illustrated in Figure 2, to effec-
tively extract domain-specific features with domain condi-
tioned channel attention modules. Meanwhile, the domain
mismatch is explicitly minimized with feature correction
blocks plugging after the task-specific layers, which are the
higher layers of the network.

Domain Conditioned Convolutional Learning

To effectively capture domain-specific information in low-
level stage, we propose a domain conditioned channel at-
tention mechanism, which is capable of modeling the inde-
pendencies between the convolutional channels for source
and target respectively. As a result, each domain could per-
form feature recalibration to extract more domain-specific
feature descriptions in convolutional layers. This mechanism
will indeed facilitate cross-domain feature alignment in task-
specific layers. Moreover, it is straightforward to implement
the domain conditioned channel attention module in each
residual block of ResNet (He et al. 2016), which is the back-
bone network of our proposed framework.

Since there exists a certain correlation between source and
target, the deep network itself can extract features with gen-
eralization abilities. From this respect, source and target data
should share most of the network parameters. At the same
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Figure 2: Illustration of our proposed Domain Conditioned
Adaptation Network (DCAN).

time, the source and target domains are distributed differ-
ently, so the backbone network with supervised source in-
formation can extract features that are only sensitive to the
source domain samples, which may even bring in negative
effect on the feature extraction process of target domain.
Hence, we explore the domain conditioned channel attention
mechanism, a weakly-shared parameter structure for auto-
matic domain-specific channel selection.

As shown in Figure 2, we aim to learn a convolutional
transformation Fconv : Xs → ˜Xs,Xt → ˜Xt, where
the source and target input feature tensors are defined as
Xs = [X1

s, ...,X
C
s ],Xt = [X1

t , ...,X
C
t ] ∈ R

H×W×C

and the transformed convolutional features are defined as
˜Xs, ˜Xt ∈ R

H×W×C , which consists of C channels with
spatial dimensions H ×W . The transformation implements
an activation of convolutional layers with domain condi-
tioned channel attention, capturing more domain-specific
features of images while reducing the influence of useless
information.

To be specific, we first utilize global average pooling on
each channel to obtain global spatial information of data, by
defining it as g ∈ 1× 1×C. Intuitively, such expressive in-
formation contains global contextual features for each chan-
nel, and generates channel-wise statistics. In order to learn a
non-linear interaction across channels and capture channel-
wise dependencies for each domain, we assume g passes
through different dimensionality-reduction layers with ratio
r 1 into a shape of 1×1×C

r , where the upper flow is for target
representation ft and the lower flow is for source representa-
tion fs. The benefit of using separate layers for two domains
is to assist each domain data in modeling channel dependen-
cies domain-wisely, and learn domain-specific convolutional
features automatically. Following with a ReLU operation,
fs and ft will all pass through the same dimensionality-
increasing layer and rescaling function respectively, which
resizes the input from 1× 1× C

r to 1× 1× C as:

vs = σ
(
W(ReLU(fs))

)
, vt = σ

(
W(ReLU(ft))

)
, (1)

1We fix r = 16 in this paper as (Hu, Shen, and Sun 2018).
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where W ∈ R
C×C

r , ReLU(·) and σ(·) refer to the ReLU
and Sigmoid functions, respectively. vs and vt are the char-
acteristic channel attention vectors with respect to source
and target. To achieve the purpose of domain-wise feature
selection, the channel attentions will be multiplied to the
original feature representations Xs and Xt channel-wisely:

X̃s = vs �Xs = [v1s ·X1
s, ..., v

C
s ·XC

s ],

X̃t = vt �Xt = [v1t ·X1
t , ..., v

C
t ·XC

t ].
(2)

The domain conditioned channel attention module makes
target domain can not only inherit the powerful feature
extraction ability from the source network, but also inde-
pendently learn the importance of each feature channel,
which will benefit the recalibration of target domain convo-
lutional features. Meanwhile, the presented domain condi-
tioned channel attention modules only need a small amount
of additional parameters and calculations, thus it can be eas-
ily applied to most existing deep DA models.

Task-specific Feature Alignment via Domain
Conditioned Feature Correction

Recent literature reveals the transferability of features will
decrease dramatically along the network (Yosinski et al.
2014; Zhang et al. 2019b), which motivates most state-of-
the-art deep DA methods to focus on mitigating the distribu-
tion mismatch of high-level features. In this paper, we adapt
all the layers corresponding to task-specific features layer-
wisely. However, different from previous works, we attempt
to explicitly model the feature discrepancy across domains
and precisely correct it via the proposed domain conditioned
feature correction modules. To be specific, we perform fea-
ture adaptation by plugging feature correction block after
each task-specific layer.

More specifically, we suppose there are L task-specific
layers and perform feature adaptation by plugging feature
correction block after each one. As shown in Figure 2,
for the l-th (l = 1, ..., L) feature correction module, we
denote the l-th task-specific layer outputs of source data
and target data as Hl(xs) and Hl(xt), respectively. We
enforce target data to pass through not only the original
network but also the proposed correction block, consisting
of FC, ReLU and FC layers. It is worth noting that, we
expect the added correction block ΔHl(xt) to automati-
cally capture the discrepancy between Hl(xs) and Hl(xt).
Then, the modified target representation can be formalized
as ̂Hl(xt) = Hl(xt) + ΔHl(xt). Aiming to make ̂Hl(xt)
similar to Hl(xs), we conduct domain alignment between
̂Hl(xt) and Hl(xs) based on the classic MMD criterion
(Long et al. 2015). The empirical estimation of the discrep-
ancy can be formulated as:

Ll
M =

∥∥∥∥ 1

ns

ns∑
i=1

φ
(
Hl(xsi)

)− 1

nt

nt∑
j=1

φ
(
Ĥl(xtj)

)∥∥∥∥
2

Hκ

, (3)

where Hκ is the reproducing kernel Hilbert space (RKHS)
with a characteristic kernel κ, and φ is the corresponding
feature map. By minimizing (3), we can reduce the distri-
bution difference across domains of the task-specific lay-

ers, thereby avoiding feature transferability degradation. No-
tably, our feature correction block is also added after the
softmax layer, which will facilitate transferring category cor-
relation knowledge from source to target in a unified way.

However, this MMD criterion only reduces the domain-
wise mismatch such that it may transfer noisy and nonessen-
tial information by destroying the structures of source and
target. To further avoid the arbitrariness of blocks learn-
ing and over-transfer between source and target, we enforce
source data to pass through the feature correction blocks for
the regularization. Generally, the source domain represen-
tation should be unchanged after passing through the fea-
ture correction blocks, i.e., the distributions of Hl(xs) and
̂Hl(xs) should keep similar. But if we exactly align each
class in the source domain, it will result in ΔHl(xs) ≈ 0.
That means the correction blocks will learn nothing for
cross-domain feature correction. Thus, we address this prob-
lem with a novel regularization loss, which is a random sub-
set of source data to appropriately guide the correction pro-
cess and enhance the alignment ability of the feature cor-
rection blocks. More specifically, we attempt to minimize
the MMD metric between each class and a random subset in
the source domain. For class k, the regularization loss of the
l−th feature correction module is defined as:

Ll
reg =

Cn∑
k=1

∥∥∥∥ 1

nk
s

∑
xsi∈Sk

φ
(
Hl(xsi)

)− 1

|R|
∑

xsj∈R

φ
(
Ĥl(xsj)

)∥∥∥∥
2

Hκ

,

(4)
where R refers to a random subset in the source domain,

and |R| is the set size which is stochastic. We define the
probability of random sampling for each data is p

Cn
and p

is a control factor. To some extent, Ll
reg solves the over-

correction problems caused by the added feature correction
blocks with the guide of source data. Careful ablation studies
investigate the efficacy of key designs of Ll

M and Ll
reg .

1=1.0
1=0.85

Overall Formulation of DCAN

For unsupervised domain adaptation, we aim to jointly seek
a classifier after we couple source and target domains. Since
only source data are well-labeled, we can build a source clas-
sifier by minimizing the loss function as:

min
G

Ls =
1

ns

ns∑
i=1

E(G(xsi), ysi), (5)

where E(·, ·) is the cross-entropy loss function and G(·)
is the learned predictive model. However, such a loss only
learns a source sensitive representation mapping, and there-
fore the source classifier may not generalize well on target
domain due to the existing domain distribution bias. Note
that our target domain is unlabeled, it is reasonable to ex-
ploit the entropy minimization principle (Grandvalet and
Bengio 2005) as (Zhang et al. 2019a; Long et al. 2016) to
increase the discrimination of the learned models. If we de-
fine the k−th class-conditional probability of target data xt
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Table 1: Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet-50).

Methods ResNet JDDA DAN RTN DANN ADDA MADA GTA MCD iCAN DAAA CDAN DSBN TADA SymNets MDD DCAN

A→W 68.4 82.6 80.5 84.5 82.0 86.2 90.0 89.5 88.6 92.5 86.8 94.1 92.7 94.3 90.8 94.5 95.0
D→W 96.7 95.2 97.1 96.8 96.9 96.2 97.4 97.9 98.5 98.8 99.3 98.6 99.0 98.7 98.8 98.4 97.5
W→D 99.3 99.7 99.6 99.4 99.1 98.4 99.6 99.8 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0
A→D 68.9 79.8 78.6 77.5 79.7 77.8 87.8 87.7 92.2 90.1 88.8 92.9 92.2 91.6 93.9 93.5 92.6
D→A 62.5 57.4 63.6 66.2 68.2 69.5 70.3 72.8 69.5 72.1 74.3 71.0 71.7 72.9 74.6 74.6 77.2
W→A 60.7 66.7 62.8 64.8 67.4 68.9 66.4 71.4 69.7 69.9 73.9 69.3 74.4 73.0 72.5 72.2 74.9

Avg 76.1 80.2 80.4 81.6 82.2 82.9 85.2 86.5 86.5 87.2 87.2 87.7 88.3 88.4 88.4 88.9 89.5

Table 2: Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet-50).

Methods Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
DWT 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
TADA 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6

SymNets 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
MDD 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

predicted by G(·) as G(k)(xt), the target entropy loss can be
computed as:

min
G

Le = − 1

nt

nt∑
j=1

Cn∑
k=1

G(k)(xtj)logG
(k)(xtj). (6)

To this end, we integrate all the components and obtain
the following overall objective of DCAN as:

min
G

L = Ls + α

L∑
l=1

(Ll
M + Ll

reg) + βLe, (7)

where Ls, Le are the source classification and target en-
tropy losses. Ll

M and Ll
reg represent the task-specific fea-

ture alignment and regularization losses for the l−th domain
conditioned feature correction module. α and β are two pos-
itive trade-off parameters.

1=0.65

Experiment

Experimental Setup

Office-31 (Saenko et al. 2010) is a popular object dataset
with 4110 images and 31 classes under office settings. It
consists of three distinct domains: Amazon (A), Webcam
(W) and DSLR (D). As (Zhang et al. 2019b), we construct 6
cross-domain tasks: A→W, ..., D→W.
Office-Home (Venkateswara et al. 2017) is a challenging
benchmark with totally 15588 images, containing 65 classes
from 4 domains: Artistic images (Ar), Clip Art (Cl), Product
images (Pr) and Real-World images (Rw). And we build 12
adaptation tasks: Ar→Cl, ..., Rw→Pr.
DomainNet is the largest visual domain adaptation dataset
so far, and involves about 0.6 million images with 345 cat-
egories that evenly spread in 6 domains: Clipart (clp), In-
fograph (inf), Painting (pnt), Quickdraw (qdr), Real (rel),

Sketch (skt). We use all released 4 domains with total
471,414 images: inf (53,201), qdr (172,500), rel (175,327)
and skt (70,386) to build 12 adaptation tasks. Following
(Peng et al. 2018), each domain is split into training and
test sets. Only training sets of both domains are involved in
the training procedure, and the results of target test set are
reported.

We implement our approach using PyTorch, and use
ResNet (He et al. 2016) as backbone networks. In the experi-
ments, we use a small batch of 32 samples per domain, there-
fore we freeze the BN layers and only update the weights of
other layers through back-propagation. Besides, we set the
learning rate of the classifier layer to be 10 times that of the
other layers, while the domain conditioned feature correc-
tion blocks are 1/10 times because of its precision. We fol-
low the standard evaluation protocols for unsupervised do-
main adaptation, in which source data are all labeled while
target data are unlabeled. All the images are cropped to 224
× 224 and each domain transfer task is evaluated by aver-
aging three random experiments. We adopt stochastic gradi-
ent descent (SGD) with momentum of 0.9 and the learning
rate strategy as described in (Ganin and Lempitsky 2015).
Moreover, we use the importance weighted cross-validation
method as (Zhang et al. 2019b) to select hyper-parameters.
The values of coefficient α, β are fixed to 1.5 and 0.1, p is
0.8 chosed from {0.2, 0.4, 0.6, 0.8, 1}.

Comparison Results

Compared Approaches: To better illustrate the effective-
ness of our method, we take several state-of-the-art deep
domain adaptation methods as baselines, including DAN
(Long et al. 2015), DANN (Ganin and Lempitsky 2015),
RTN (Long et al. 2016), ADDA (Tzeng et al. 2017), JAN
(Long et al. 2017), MADA (Pei et al. 2018), SE (French,
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Table 3: Accuracy (%) on DomainNet for unsupervised domain adaptation. († Implement according to source code.)

Networks Methods inf→qdr inf→rel inf→skt qdr→inf qdr→rel qdr→skt rel→inf rel→qdr rel→skt skt→inf skt→qdr skt→rel Avg

ResNet 2.3 40.6 20.8 1.5 5.6 5.7 17.0 3.6 26.2 11.3 3.4 38.6 14.7
MCD† 1.6 35.2 19.7 2.1 7.9 7.1 17.8 1.5 25.2 12.6 4.1 34.5 14.1

ResNet-50 CDAN† 1.9 36.3 21.3 1.2 9.4 9.5 18.3 3.4 24.6 14.7 7.0 36.6 15.4
MDD† 3.6 40.0 19.2 2.0 9.2 7.7 16.8 4.5 27.7 14.0 7.4 42.0 16.2

DCAN 3.8 51.1 24.4 3.7 14.5 12.3 17.5 2.7 31.1 16.2 8.7 53.2 19.9

ResNet 3.6 44.0 27.9 0.9 4.1 8.3 22.2 6.4 38.8 15.4 10.9 47.0 19.1
ResNet-101 ADDA 3.2 26.9 14.6 2.6 9.9 11.9 14.5 12.1 25.7 8.9 14.9 37.6 15.2

MCD 1.5 36.7 18.0 3.0 11.5 10.2 19.6 2.2 29.3 13.7 3.8 34.8 15.4

DCAN 5.9 54.6 28.5 5.6 18.4 16.2 18.5 4.0 33.4 17.3 10.1 55.3 22.3

ResNet 4.7 45.5 29.6 1.8 6.3 9.4 24.4 6.2 39.9 18.2 12.5 47.4 20.5
ResNet-152 SE 1.2 13.1 6.9 3.9 16.4 11.5 12.9 3.7 26.3 7.8 7.7 28.9 11.7

DCAN 8.8 54.2 31.7 5.6 20.6 17.1 21.9 8.0 37.3 19.5 16.5 56.8 24.8

Mackiewicz, and Fisher 2017), MCD (Saito et al. 2018),
iCAN (Zhang et al. 2018), GTA (Sankaranarayanan et al.
2018), CDAN (Long et al. 2018), DAAA (Kang et al. 2018),
JDDA (Chen et al. 2019), DSBN (Chang et al. 2019), DWT
(Roy et al. 2019), TADA (Wang et al. 2019), SymNets
(Zhang et al. 2019a) and MDD (Zhang et al. 2019b). Note
that partial reported results are copied from their corre-
sponding papers if the experiment setup is the same.
Experiment Results on Office-31: We summarize the re-
sults in Table 1. It is desirable that our DCAN dramatically
overpasses all recent methods on hard tasks in which the
difference between the domains is significant and still at-
tains comparable results on easy tasks. More specifically,
the accuracies of DCAN are 2.6% and 0.5% higher than
MDD and DSBN, the second best methods, under these hard
tasks: D→A and W→A. Although DAAA and SymNets win
the first place in task D→W and A→D, respectively, the
slightly lower results of DCAN are because these two tasks
have over 90% accuracies. In other words, if two domains
are much similar, our domain-specific feature learning may
not further enhance the performance. Despite this, DCAN
still owns the best performance in average accuracy.
Experiment Results on Office-Home: As reported in Table
2, we can notice that DCAN obtains significant improve-
ments over previous methods, highly affirming the effec-
tiveness of the proposed domain conditioned channel atten-
tion mechanism and feature correction block do learn more
domain-invariant representations. Therefore, it can achieve
more convincing results on this challenging datset. Overall,
DCAN gets the highest average accuracy of 70.5% among
all the compared methods and in particular establishes new
state-of-the-art records for Office-Home dataset.
Experiment Results on DomainNet: In Table 3, we com-
pare DCAN with previous approaches based on different
backbone networks on DomainNet. On average, our DCAN
obtains an improvement of 5.2%, 3.2% and 4.3% over the
baselines using ResNet-50/101/152 respectively. It is note-
worthy that MCD based on ResNet-50 or ResNet-101 per-
forms worse than their source only models, which manifests
negative transfer (Pan and Yang 2010) phenomena occurs.

Table 4: Ablation Study

Methods A→W D→W W→D A→D D→A W→A Avg

ResNet-50 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DCAN (w/o L1

M + L1
reg) 90.1 96.5 100.0 86.5 63.6 69.6 84.4

DCAN (w/o L2
M + L2

reg) 93.2 97.4 100.0 94.4 71.5 70.0 87.8
DCAN (w/o L1

reg) 93.8 97.6 100.0 90.6 72.5 71.8 87.7
DCAN (w/o L2

reg) 93.8 97.1 100.0 91.8 75.4 73.4 88.6
DCAN (w/o Le) 92.1 97.1 100.0 91.0 75.1 75.3 88.4
DCAN (w/o CA) 93.3 97.9 100.0 91.8 72.2 69.9 87.5

DCAN 95.0 97.5 100.0 92.6 77.2 74.9 89.5

Similar trends can be found in ADDA and SE approaches.
We believe that the challenge of DomainNet is ascribed to
its large class size, which greatly increases the difficulty of
tasks. Although ResNet-101&152 based DCAN have more
degradation cases than ResNet-50 based DCAN, the accu-
racy increases gradually when deepening network. This in-
dicates deeper networks can mitigate domain mismatch bet-
ter. Besides, most degradations occur in tasks when source
is “rel”, as the complex information in source may mis-
guide target discriminative feature learning when conduct-
ing alignment forcefully. However, DCAN still performs
better in most cases, which substantiates our method is suit-
able to very large scale domain adaptation. Ultimately, we
draw a conclusion that DCAN can capture enriched infor-
mation to help learn more transferable features.

Empirical Analysis

Ablation Study: In this section, we conduct thorough analy-
sis to investigate the efficacy of key designs of our proposed
DCAN on the Office-31 dataset. First, based on ResNet-50,
we have two domain conditioned feature correction blocks:
one is after the pooling layer, and another is after the soft-
max layer. We respectively remove the task-specific feature
correction loss L1

M + L1
reg/L2

M + L2
reg and regularization

loss L1
reg/L2

reg for the two modules from overall objective
(7), which are denoted as “DCAN (w/o L1

M + L1
reg)/(w/o

L2
M + L2

reg)” and “DCAN (w/o L1
reg)/(w/o L2

reg)”. Also,
the exclusion of target entropy loss Le is denoted as “DCAN
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Figure 3: (Best viewed in color.) The t-SNE visualizations
of (a) ResNet, (b) DAN and (c) DCAN on task A→W of
Office-31, where blue points are source domain data and red
points are target domain data.

(w/o Le)”. Besides, to explore the effects of our proposed
domain conditioned channel attention mechanism, we adapt
the shared-convnets similar to most DA methods, which is
denoted as “DCAN (w/o CA)”.

The results are shown in Table 4, it is clear that full
method outperforms other variants and achieves large im-
provements. “DCAN (w/o L1

reg)/(w/o L2
reg)” is inferior to

DCAN with an average decrease of 1.4%, while performing
better than “DCAN (w/o L1

M + L1
reg)/(w/o L2

M + L2
reg)”,

verifying the effectiveness of regularization loss and feature
correction blocks in the feature alignment. DCAN enhances
the performance over “DCAN (w/o Le)” , testifying useful-
ness of entropy minimization principle for DA. It is can be
observed that the adaptation performance of “DCAN (w/o
CA)” suffers a degradation of 2.0%, manifesting the impor-
tance of the proposed channel attention mechanism to ex-
plore the critical low-level domain-dependent knowledge.
Feature Visualization: Figure 3 show the t-SNE (Maaten
and Hinton 2008) embedding of feature representations
learned by several methods, in which each category is rep-
resented as a cluster and domains have different colors. In
ResNet-50, the source and target domains are totally mis-
matched. In DAN, categories are not aligned very well be-
tween domains. However, DCAN shows greater ability of
making inter-class separated and intra-class clustered.
Domain Conditioned Channel Attention Analysis: Intu-
itively, the proposed domain conditioned channel attention
mechanism can facilitate learning domain-specific convo-
lutional features by increasing the sensitivity to informa-
tive channels and suppressing the useless ones. To provide
a clearer picture about the behaviour, we study the channel
attention values of source and target domains.

In ResNet-50, the convolutional layers gradually increase
the channel size of the input images from 3 to 2048. We
compute the average attention values for all the source and
target samples in the last domain conditioned channel atten-
tion module in each stage (immediately prior to downsam-
pling). We refer to each stage as stage 1, 2, 3 and 4 with the
channel numbers as 256, 512, 1024 and 2048, respectively.
Specifically, in each stage, we denote convolutional chan-
nel attention values of source and target as vs and vt. Then
for the m-th channel, the value of |vms − vmt | indicates the
excitation difference of the channel from source and target.

Figure 4(a) shows the heat-map of attention difference
between source and target in each stage. The darker the

stage4
stage3

stage2

stage1

1024 20480 512256

0.00 0.04 0.08 0.12 0.16 0.20

(a) Attention Value Difference

0 2048512256 1024 

Channel Index

Office-Home Task: 

Office  Task: A W

(b) Attention Difference Comparison

Figure 4: (a) The heat-map of attention value difference be-
tween source and target in a trained DCAN on task Ar→Cl
(Office-Home). The color of each vertical line represents the
degree of attention difference across domains; (b) Attention
difference comparison between task A→W (Office-31) and
task Ar→Cl (Office-Home) at stage4.

color, the larger the attention value difference across do-
mains. We observe that the attention difference of the first
three stages is obviously smaller than that of the stage 4,
since the color of the first three stages are much brighter.
Meanwhile, as the number of channels increases, the color
becomes darker. The above observations indicate that the
source and target networks extract more general low-level
features in the early stages of convolutional layers, while
they extract more domain-specific features in the later stages
of convolutional layers. This observation is similar to the
conclusion in (Yosinski et al. 2014), and could provide us
new insights to design more powerful deep convolutional
structure for DA. Therefore, completely sharing convolu-
tional layers across two domains might be improper, which
verifies our argument that we should build weakly-shared
convolutional structures.

Similar to the previous calculations, Figure 4(b) illustrates
the attention difference comparison between task A→W
of Office-31 and task Ar→Cl of Office-Home at stage4.
Clearly, the figure in the bottom is more darker than the
upper one, which indicates larger channel attention value
difference for the harder task Ar→Cl. This further proves
our statement that convolutional features should be more
domain-specific due to larger domain discrepancy.

Conclusion

In this paper, we presented a Domain Conditioned Adap-
tation Network (DCAN) to simultaneously learn domain-
specific features in convolutional stage and effectively mit-
igate the domain mismatch in task-specific layers. Our de-
signed domain conditioned channel attention module could
enrich domain-specific knowledge in low-level stage so as
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to facilitate subsequent feature migration. As for high-level
feature alignment, we explored feature correction blocks
to align marginal and output distributions across domains.
With uncomplicated loss function, each of the components
could be easily inserted into any layer of original network.
Experiment results demonstrated that DCAN achieved better
performance compared with other deep DA methods, espe-
cially when it came to very tough cross-domain tasks.
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