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Abstract

In this paper, we propose an Appearance and Motion En-
hancement Model (AMEM) for video-based person re-
identification to enrich the two kinds of information con-
tained in the backbone network in a more interpretable way.
Concretely, human attribute recognition under the supervi-
sion of pseudo labels is exploited in an Appearance Enhance-
ment Module (AEM) to help enrich the appearance and se-
mantic information. A Motion Enhancement Module (MEM)
is designed to capture the identity-discriminative walking pat-
terns through predicting future frames. Despite a complex
model with several auxiliary modules during training, only
the backbone model plus two small branches are kept for
similarity evaluation which constitute a simple but effective
final model. Extensive experiments conducted on three pop-
ular video-based person ReID benchmarks demonstrate the
effectiveness of our proposed model and the state-of-the-art
performance compared with existing methods.

Introduction

Person Re-identification (ReID) aims at matching images of
a person in different non-overlapping cameras, which has
attracted increasing attention during recent years due to its
wide application in practical scenarios, such as criminal re-
trieval, video surveillance and so on. Many researches have
been conducted on this topic while it is still full of chal-
lenges including human pose variation, occlusions and dif-
ferent camera viewpoints.

Currently, the prominent progress of person ReID is
mainly gathered in the static image setting, which only ex-
ploits a static image and its spatial information to perform
the matching process. Despite easier to implement and less
complexity, image-based methods present many disadvan-
tages compared with video-based methods. On one hand,
the single image is sensitive to pose variation and occlu-
sions while the multiple images contained in one sequence
provide more samples against these problems. On the other
hand, using only one image cannot capture the motion pat-
tern of people walking, which is another important clue for
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identifying someone apart from the appearance. Besides,
video format data is more accessible in practical scenarios.
To this end, more and more researchers have shifted their at-
tention to the video-based setting, which is also the topic we
mainly focus on in this paper.

To take full advantage of the temporal cues provided by
video data, multiple common methods for video analysis
have been integrated into the ReID system, including RNN,
optical flow learning, and 3D CNN. Although these are pow-
erful tools for temporal feature extraction and action recog-
nition, they may be not well suited for person ReID task
when directly applied since all data contains only one action
category – walking, which is similar among different sam-
ples, and the subtle difference contained in walking styles
is hard to capture without specific design. Attention models
also play important roles in fusing multiple image features
into a sequence-level one, whereas neglecting most of the
temporal cues. Apart from this, considering the special prop-
erty of human walking pattern from which people can eas-
ily identify someone, gait recognition has aroused wide at-
tention over the years. However, most approaches take Gait
Energy Image (GEI) as input which makes strong assump-
tions on the initial walking tracklets, such as the uncluttered
background, aligned sequence, silhouette extraction and so
on. These are difficult to acquire especially from the surveil-
lance data in complex scenarios. To this end, we seek to de-
sign a novel model to simultaneously capture the temporal
cues and take into account the specialty of walking patterns
from different people.

Attribute learning for Person ReID task has been studied
in recent years and proven to be of great help when treated as
one kind of mid-level semantic feature. While in most exist-
ing works, attributes are only exploited in the image-based
setting, few works consider to incorporate it into video anal-
ysis. The reasons may lie in two aspects. On one hand, there
are no existing video datasets containing attribute labels and
it takes heavy manual labor to make explicit annotations.
On the other hand, some attributes may occur only in cer-
tain frames in one sequence due to the pose variation or oc-
clusions, it will be ambiguous to decide the sequence-level
labels. To deal with these, we propose to take advantage of
the existing image-based attribute dataset to assist the learn-
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ing of video-based attributes. As a result, the appearance and
semantic information in the human walking tracklets can be
largely strengthened.

Based on above analysis, in this paper we propose a
video-based person ReID model called Appearance and
Motion Enhancement Model (AMEM) which enriches the
two types of information in the backbone networks to better
leverage the abundant information provided by video data.
To enrich the appearance information, an Appearance En-
hancement Module (AEM) is proposed where human at-
tribute learning is exploited on video data to pay attention
to different aspects of human appearance. Compared with
single-image based attribute learning, multiple images in a
sequence can cope with the pose variation and occlusions
which cause the absence of certain attributes in some frames,
leading to more robust attribute learning and more accurate
appearance information for the target identity. For the mo-
tion information enhancement, a generative model named
Motion Enhancement Module (MEM) is designed to cap-
ture the walking style of a certain identity through predicting
successive frames. The motivation is based on the hypothe-
sis that if continuous frames can be correctly predicted, the
model can successfully capture the latent specific walking
style of one identity which is discriminative from others’. In
this way, the motion information can be explicitly enriched
and simultaneously, the properties of human walking activ-
ity can be fully studied in our proposed model. Despite a
large-scale model the AMEM is in the training stage, only
the backbone network plus two simple branches are kept for
the final feature extraction during the inference, with both
the appearance and motion feature enhanced while bringing
about limited increment on computational complexity. We
evaluate our AMEM on three public video-based datasets
to verify the effectiveness of our ideas and demonstrate that
it can achieve state-of-the-art performance compared with
other video-based ReID methods.

The main contributions of our work are summarized as
follows: (1) We propose a novel end-to-end trainable frame-
work for video-based Person ReID called Appearance and
Motion Enhancement Model (AMEM), which enriches both
the appearance and motion information in the final feature
representation. (2) We propose an Appearance Enhancement
Module (AEM) which exploits video-based human attribute
learning to improve the appearance learning for the back-
bone network. (3) We propose a generative model for the
motion feature enhancement. By means of predicting con-
secutive frames, the model can capture the specific walk-
ing style of each identity. To our best knowledge, it is the
first time that human walking styles are explicitly studied to
provide id-discriminative information in person ReID field.
(4) The performance of the final model achieves a large im-
provement without integrating complicated modules.

Related Works
Video-based Person ReID. Current video-based ReID ap-
proaches can be categorized into two classes, video-based
methods and multi-image based methods. For video-based
methods, the model takes the input tracklet as video data and
tries to capture the temporal information in it. Li et al. (Li,

Zhang, and Huang 2019) propose 3D convolutional network
with multi-scale temporal convolutions and residual atten-
tion layers. Chung et al. (Chung, Tahboub, and Delp 2017)
design a two stream siamese network which integrates the
optical flow learning for timing information learning. How-
ever, the process of optical flow extraction is too slow and
complicated that can hardly be put into practical use. All the
methods above have the ability to capture the temporal cues
in the video data, while none of them takes into considera-
tion the special properties of human walking patterns.

For the other category, video data is usually taken as
multiple independent images, where attention models are
adopted for fusing multiple image features. Fu et al. (Fu et
al. 2019) design the STA model to generate attention scores
both intra and inter different frames, which are finally com-
bined according to their scores. Zhang et al. (Zhang et al.
2019) propose the SCAN model including two types of at-
tention modules, namely self-attention and collaborative at-
tention network. These methods are with less computational
complexity while they do not make full use of the abundant
temporal information provided by video data.

Attribute Learning. Treated as one kind of middle level
semantic feature, attributes have been widely studied in the
image-based person ReID. Su et al. (Su et al. 2016) train
an attribute learning model treating the deep attribute pre-
dictions as final representation. Deng et al. (Deng et al.
2014) have released a large-scale pedestrian attribute dataset
PETA. Recently, a video-based attribute learning model is
proposed by Zhao et al. (Zhao et al. 2019) which disentan-
gles the frame feature into several sub-features for differ-
ent groups of attributes. All the sub-features are aggregated
in the temporal dimension to produce final predictions. Our
work is similar to this while we put our main energy into the
learning for human walking patterns.

Video Prediction. Visual forecasting is a vital part of
computer vision. It has been exploited as a self-supervised
method for video representation learning in many works
recently. Srivastava et al. (Srivastava, Mansimov, and
Salakhudinov 2015) try to learn the video representation in
an unsupervised manner by predicting future frames apart
from reconstructing previous frames. Walker et al. (Vaswani
et al. 2017) generate future frames through predicting fu-
ture human poses. In this paper, we focus on a special case
among various activities – human walking, and seek to en-
hance the motion feature through prediction as well.

Approaches

In this section, an end-to-end trainable framework is formu-
lated to enhance both the appearance and motion informa-
tion in the backbone network. The overall architecture is il-
lustrated in Fig. 1, where given an input walking sequence, it
firstly goes through the backbone network to perform an ini-
tial feature extraction, then the two auxiliary modules named
Appearance Enhancement Module (AEM) and Motion En-
hancement Module (MEM) work independently to enrich
the appearance and motion information contained in the fi-
nal feature. Finally, only the backbone model and two small
branches are kept for similarity estimation.
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Figure 1: The overall architecture of our proposed AMEM. Only the Main Model is exploited during the inference. (Best viewed
in color.)

Table 1: Some examples of the partitioned attribute groups
in our proposed method. The attribute names are consistent
with the names defined in PETA.

Group Name Attribute names
Personal Less15, ... , Larger60, Female

Hair Black, ..., Short
UpperBody Black, Casual, ..., Jacket
LowerBody Formal, Shorts, ..., White
Footwear Boots, Sneakers, ..., Blue
Accessory Backpack, Suitcase, ..., Umbrella

{ResNet-50 GAP

Conv5_x out
ˆ
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FC Fully Connected layer

..
.
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Figure 2: The overall architecture of the Attribute Recogni-
tion Model (ARM) (Best viewed in color).

Some necessary notations are firstly introduced. Let S =
{I1, I2, ..., IT } and y denote the input video sequence with
T continuous frames and its corresponding identity label
in the dataset. Given an input sequence S, it is sent into
a backbone network to perform feature extraction, whose
process is denoted as a function BF = φ(S, θB),BF ∈
R

C×T ′×H×W , where θB represents the network parameters.

Appearance Enhancement Module (AEM)

Human attributes are basic representations for human ap-
pearance and have been studied extensively as mid-level se-
mantic features in recent years. Motivated by these, we pro-
pose AEM to take advantage of attributes to enrich the ap-
pearance and semantic information during model learning.

Pseudo Attribute Labels Generation Since there are
no available video-based datasets containing attribute la-
bels and it requires expensive labor to manually anno-
tate, we seek to take advantage of existing large-scale at-
tribute datasets to obtain a robust attribute recognition model
(ARM) firstly. Concretely, we train a ResNet-50 model on
the PETA dataset (Deng et al. 2014), which is a commonly
used benchmark for person attribute recognition. As pre-
sented in Fig. 2, we use the output of Conv5 x block in
ResNet-50 as the final feature map f̂A for attribute recog-
nition. Since the number of pre-defined attributes N is large
(N = 105) which may cause ambiguous learning for the
classifiers, we manually divide all attributes into M groups
according to different locations or types like in (Zhao et al.
2019). Each group contains an attribute feature am and sev-
eral types of attributes. The details of attribute groups can be
referred to in Tab. 1. For each attribute feature am, it is ac-
quired from f̂A by applying a global average pooling layer
and a fully connected layer, and is responsible for predicting
corresponding attributes in the same group. Suppose there
are Nm attributes in each group, the probability p̂i of each at-
tribute occurrence is predicted by applying a fully-connected
layer and Sigmoid layer on am, then the loss in the m-th
group is calculated by Binary Cross-Entropy (BCE) loss:

L̂m = −
Nm∑
i

lmi log p̂i + (1− lmi ) log(1− p̂i) (1)

where lmi is the binary-value label of the i-th attribute in the
m-th attribute group. The spatial size of f̂A is set to 2048×
16× 8 and the dimension of am is set to 256. The total loss
for training ARM is defined by summing all the group ones:

L̂ARM =

M∑
m=1

L̂m (2)

After obtaining a powerful attribute recognition model
ARM, we take advantage of it to generate pseudo labels
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Table 2: The structure of appearance and motion branch.
(out channel × kernel size).

Input (c=1024)
branch 0 branch 1 branch 2 branch 3

384× 1
192× 1 48× 1 MaxPooling
384× 3 128× 3 128× 1

Concat, Temporal Average Pooling, Output

for each sequence in the video ReID dataset. Firstly, each
frame in one sequence is sent into ARM to obtain image-
level probabilities for all types of attributes. Secondly, for
each attribute, we perform the temporal average pooling on
the predicted probabilities of T frames to obtain the aver-
aged prediction. Finally, if the averaged predicted probabil-
ity of a certain attribute is beyond 0.5, we set its pseudo label
l̂i = 1, else l̂i = 0. We denote the generated pseudo attribute
labels as l̂1, l̂2, . . . , l̂N .

Appearance Enhancement Next, the pseudo attribute la-
bels are taken as the supervision for our AEM training. After
acquiring BF, we send it into an appearance branch to gen-
erate an attribute feature map fA ∈ R

C×H×W . The struc-
ture is listed in Tab. 2 which adopts the inception block in
I3D (Carreira and Zisserman 2017). Each Conv-layer is fol-
lowed by a batch normalization layer and a ReLU layer. Af-
terwards, M attribute features and N attribute predictions
are obtained in the same way as in ARM. Finally, the at-
tribute loss for the input sequence supervised by pseudo at-
tribute labels is computed by:

LAEM = −
N∑
i=1

l̂i log(pi) + (1− l̂i) log(1− pi) (3)

where pi is the predicted probability for the i-th attribute.

Motion Enhancement Module (MEM)

Albeit only single kind of human activity is contained in
the human walking sequences, people belonging to differ-
ent identities still possess different walking styles which can
be easily distinguished by human beings. However, this sub-
tle difference can not be easily captured by common video
learning structures like RNN or 3D-Conv without specific
design. To this end, we propose the MEM which employs
a generative method for motion feature learning through
predicting future frames. If frames can be successfully pre-
dicted, the model is considered to be able to capture the id-
discriminative walking patterns.

Texture AutoEncoder The AutoEncoder structure (Hin-
ton and Salakhutdinov 2006) is exploited to encode and
decode the input human walking images, which is called
Texture AutoEncoder (TAE) here. Like a common AutoEn-
coder, taking as the input of TAE a pedestrian image, the
encoder will embed the image into a texture feature map
ftex ∈ R

C×H×W , then the decoder will reconstruct the
original image depending on it. The overall architecture of

TAE is presented in Fig. 3. Concretely, we exploit ResNet-
18 model (He et al. 2016) as the encoder, and the decoder is
composed of four de-convolution blocks. Each block com-
prises one de-convolution layer with 3 × 3 kernel size fol-
lowed by a batch normalization layer. ReLU layer is added
except in the last block. Finally, a Sigmoid layer is applied
to normalize the output image.

To obtain a self-contained texture of the pedestrian im-
age, we pretrain the TAE on a large-scale pedestrian im-
age dataset: Market-1501 (Zheng et al. 2015). The Mean
Squared Error (MSE) loss is adopted for reconstruction task.
In addition, as the images reconstructed by AutoEncoder of-
ten suffer from the blurry problem, for better visualization
results, we add a discriminator DTAE to judge whether the
generated image is real or fake. The structure of DTAE is
the same as in DCGAN (Yu et al. 2017). In summary, the
loss function for TAE training is defined by:

L̂TAE =

L̂mse︷ ︸︸ ︷
‖Ĩ − Î‖2

+ EÎ∼pÎ
[logD(Î)] + Ef∼pf

[log(1−D(G(ftex)))]︸ ︷︷ ︸
L̂adv

(4)

where Î is the input image to TAE, and Ĩ is the reconstructed
result of Î . G, D, f is short for the decoder of TAE, DTAE

and ftex. pÎ and pf denote the sample distributions in the
image and texture feature space. The DTAE is optimized to
maximize the L̂adv while the TAE is to minimize.

Motion Enhancement through Prediction After pre-
training the TAE, it is used to help the motion feature ex-
traction. We randomly select one frame It in the input se-
quence (0 < t < T − c) and predict the next frame It+1

according to It. To simplify the task, we consider the It+1

to be generated from the texture feature f t+1
tex through the

decoder of TAE. Furthermore, the texture feature f t+1
tex can

be disentangled into two components: the texture feature of
current frame f t

tex, and the motion feature fM representing
the movement between two continuous frames. In particular,
the texture feature f t

tex is extracted by the encoder of TAE,
and the motion feature fM ∈ R

C×H×W is provided by the
backbone network φ(S, θB). Same structure while different
parameters compared with the appearance branch, a small
motion branch is applied on BF to generate fM . In this way,
the backbone model can concentrate on exploring the mo-
tion properties while not being distracted by human appear-
ance or cluttered background during the predicting process.

Then the texture feature f t
tex is concatenated with the mo-

tion feature fM and sent into a small texture embedding
module to obtain f t+1

tex for the next frame. The embedding
module comprises two convolutional layers with kernel sizes
of 3×3 and 1×1. A batch normalization layer is applied on
each convolutional layer and a ReLU layer only on the first
one. After that, f t+1

tex is sent into TAE decoder for Ĩt+1.
However, predicting only one frame cannot capture the

complete walking pattern of one person since the movement
between two adjacent frames is often small and it usually
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Figure 3: The overall architecture of the TAE.

takes several continuous frames for people to get the walk-
ing style and identify someone. In this case, we resolve to
predict c continuous frames for better motion feature learn-
ing. In particular, after first round of prediction which gener-
ates the Ĩt+1, we take Ĩt+1 as the new “current frame” and
predict Ĩt+2. The process is repeated for c times until the
Ĩt+c. With the intention that the motion feature should cap-
ture the complete walking style in one sequence, we keep
the predicting process at different time stamps sharing the
same motion feature fM . In this way, the model can be aware
of a continuous motion pattern and successfully capture the
global walking style of someone at the same time.

Similar to the TAE training, we apply the MSE loss and
adversarial loss on the MEM training. While differently, to
preserve the semantic texture for a better prediction, a tex-
ture MSE loss is added which measures the similarity be-
tween the predicted and real texture feature (f̃ t+1

tex and f t+1
tex ).

In summary, the total loss for MEM training is computed by:

LMEM =

t+c∑
0<t<T−c

Lmse︷ ︸︸ ︷
‖Ĩt+1 − It+1‖2 + ‖f̃ t+1

tex − f t+1
tex ‖2

+ EI∼pI
[logD(It+1)] + Ef∼pf

[log(1−D(G(f̃ t+1
tex )))]︸ ︷︷ ︸

Ladv

(5)

where G,D, f is short for the TAE decoder, Discriminator
and ftex, respectively. The parameter c is experimentally set
to 3 in this paper. Moreover, during training, the parameters
of the TAE encoder are frozen for better texture extraction,
and the decoder is fine-tuned to make better predictions.

Intuitively, the MEM proposed in our model can be inter-
preted from two other aspects. On one hand, the prediction
task adopted in MEM can be taken as a special kind of recon-
struction, since it is conducted inside the original sequence
while not predicting for unseen frames. While different from
existing works (Srivastava, Mansimov, and Salakhudinov
2015), we conduct the “reconstruction” in the forward or-
der and start from a randomly selected frame, which seems
to be a combination of reconstruction and prediction. On
the other hand, capturing the movement between two suc-
cessive frames seems similar to the optical flow. However,
we mainly focus on the movement of human walking while
the optical flow tries to precisely capture all possible differ-
ences between frames and may easily be distracted by vari-
ous changes in cluttered background or other objects. More-
over, the accurate estimation of optical flow itself is still a
challenging task with high computation complexity.

The walking patterns also share many similarities with
human gaits. Nevertheless, due to the strong assumptions
on input data and specific scenario settings used in the gait
recognition field, none of current gait recognition methods
can be extended to common person ReID tasks. In this way,
we propose the MEM for learning human gaits on common
pedestrian data. To our best knowledge, there are no existing
works leveraging frame prediction in ReID and for walking
patterns learning, also the prediction results can serve as an
evaluation for the quality of motion feature learning.

Optimization

To integrate the enhanced appearance and motion informa-
tion into our backbone network to improve the performance
of person re-identification, we concatenate the fA and fM
with fB along the channel dimension to constitute the final
feature map F. The fB ∈ R

C×H×W is the backbone fea-
ture acquired from BF by adding a temporal average pool-
ing layer. Followed by a global average pooling layer and a
fully-connected layer, the final feature representation fs for
the whole sequence is acquired. The whole model containing
the backbone network, AEM and MEM is trained in end-to-
end manner. Apart from the LAEM and LMEM , the identity
softmax loss Lid and triplet loss Ltri are applied to fs for
ReID task. The total loss for the whole model is defined by:

Ltotal = Lid + Ltri + λALAEM + λMLMEM (6)

Lid = − 1

L

L∑
i=1

yi log(qi)

Ltri =
1

K

K∑
i=1

[dpi − dni + k]+

(7)

where L and K are the numbers of samples and triplets in
one batch. yi and qi are the identity label and predicted prob-
ability for the target identity. [∗]+ = max(∗, 0) is the hinge
loss, dpi , dni denote the feature distance in positive and neg-
ative pairs, k is the margin to separate them. λA and λM are
determined by cross-validation to balance different losses.

During the inference stage, only the backbone network
plus the two small branches for appearance and motion fea-
ture extraction are preserved, as shown in the Main Model
block in Fig. 1. fs is used for the similarity evaluation after
the L2 normalization. The model with appearance and mo-
tion information enriched largely improves the performance
of re-identification while the increment on computational
complexity is limited.

Experiments
In this section, we report the experimental results on several
standard datasets and a detailed ablation study is conducted
over different modules of the AMEM. Extensive experi-
ments on three widely used benchmarks demonstrate that
our approach can achieve state-of-the-art performances.

Implementation Details

We implement our proposed algorithm based on PyTorch
framework on two GTX 1080Ti GPUs with 11GB mem-
ory. We adopt the I3D model (Carreira and Zisserman 2017)
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Table 3: Ablation study on each module of our proposed
method on MARS.

Models MARS
rank-1 rank-5 rank-20 mAP

Baseline (I3D) 83.3 93.3 96.4 75.1
Baseline + AEM 86.0 93.6 96.7 78.4

Baseline + MEM (c=1) 85.4 94.1 97.0 78.3
Baseline + MEM (c=2) 86.0 94.0 96.9 78.7
Baseline + MEM (c=3) 86.2 94.1 97.2 79.0
Baseline + MEM (c=4) 85.6 94.1 97.1 78.6

Baseline (After Enhancement) 85.0 93.7 96.7 77.3
Baseline + AEM + MEM (AMEM) 86.7 94.0 97.1 79.3

which is pretrained on Kinetics (Kay et al. 2017) as our
backbone network. The whole network is optimized using
Adam optimizer in an end-to-end manner. The initial learn-
ing rate is set to 1e-3, and decreased by 0.2 every 60 epochs.
The weight decay is set to 5e-4. The length of the input se-
quence T is empirically set to 8. The input frames are re-
sized to 256 × 128. The sizes of the feature maps in our
model are set to H = 16,W = 8, C = 1024, T ′ = 3, and
the dimension of the final feature fs is set to 512. The hyper-
parameters k, λA, λM are set to 0.2, 0.1, 10 respectively.

Datasets and Evaluation Metric

MARS (Zheng et al. 2016) is currently one of the largest
video-based person re-identification datasets, which consists
of 1261 identities and around 20000 human walking se-
quences. Among them, 625 identities are used for training
and 8298 tracklets of the rest 636 identities are for testing.

iLIDS-VID (Wang et al. 2014) is composed of 600 se-
quences belonging to 300 different pedestrians from two
non-overlapping cameras. The sequence length is varied
from 23 to 192 frames, which has 73 frames on average.

PRID-2011 (Hirzer et al. 2011) consists of 749 differ-
ent identities from one camera, and 385 identities from the
other, with only the first 200 people appear in both cameras.
Each sequence has a length between 5 and 675 frames.

Following the evaluation metrics widely adopted, we
adopt cumulative matching characteristics (CMC) for eval-
uating the three datasets. Besides, for MARS which have
multiple ground truths in the gallery, we also report mAP
scores. We follow the original splits provided by MARS, and
for iLIDS-VID and PRID-2011, we follow the evaluation
protocol from previous works (Wang et al. 2014) where the
dataset is randomly split into the train/test set for 10 times,
then the averaged accuracies are reported.

Ablation study

Baseline Comparison In Tab. 3, we list the performance
of the baseline model and the model after the enhancement.
From the results we can find that, either adding the AEM
or MEM can boost the performance of the baseline model,
which demonstrates the effectiveness of our proposed mod-
ules for enriching the appearance and motion information
in the backbone network. Furthermore, by integrating both
modules, the best performance is achieved.

We also find that compared with the AEM, the MEM can
bring more improvement on the performance, especially on
rank5, 20 and mAP. The reason may be that the multiple

Table 4: Experimental results conducted on different back-
bone networks. ‘B’ stands for Baseline and ‘A’, ‘M’ for
AEM and MEM respectively.

Backbones Ranks MARS
B B+A B+M AMEM

R3D rank-1 56.1 61.7 61.8 62.8
mAP 41.5 46.6 48.5 49.1

P3D rank-1 68.8 73.5 74.0 74.5
mAP 54.3 61.2 62.6 63.1

I3D rank-1 83.3 86.0 86.2 86.7
mAP 75.1 78.4 79.0 79.3

images contained in a sequence have provided enough in-
formation to cope with different appearance variations. In
this way, the promotion brought by attribute learning may be
limited. While for motion information extraction, the base-
line model cannot capture the special patterns contained in
human walking styles without MEM. Therefore, the MEM
can lead to full promotion for the final performance.

Moreover, to intuitively demonstrate the impact of AEM
and MEM on the backbone feature fB , we further made an
experiment on not concatenating the fA and fM with fB ,
which means only the fB is exploited both in ReID task
training and testing stage. In this way, the inference model
can discard the two branches and has the same structure as
the baseline model, whose results are shown in the second
last row of Tab. 3. The improved results compared to the ini-
tial baseline also verified that the backbone feature fB has
benefited from our designed AEM and MEM.

Scalability To empirically demonstrate the scalability of
our designed AEM and MEM for the appearance and motion
enhancement. We conducted an experiment on exploiting
different backbone networks. Since our model involves both
spatial and temporal feature extraction, we choose some
variants of 3D-Conv models apart from the adopted I3D, in-
cluding 3D-ResNet (R3D) (Hara, Kataoka, and Satoh 2018)
and Pseudo 3D (P3D) (Qiu, Yao, and Mei 2017) networks.
The experimental results are listed in Tab. 4, where the pro-
posed AEM and MEM improve the performances for all
three different backbones. The results reveal that our de-
signed AMEM can be easily integrated into different back-
bone networks to mine the appearance and motion informa-
tion contained in video data, which verified its scalability.
The reason that R3D and P3D show inferior performance to
the I3D model may lie in the huge amount of parameters in
R3D and P3D which cause over-fitting for the training set.

Model Size We also compare the model size between the
baseline model and our final model. The model size of the
backbone network is 50.2MB, and 67.7MB for the final
model. The increment of model size mainly comes from the
appearance and motion branches. Thanks to the special de-
sign of 3D Inception block in I3D, it can still maintain a rel-
atively small size after adding two small branches. We also
did an experiment on designing the two branches with other
structures. Using one simple 3D-Conv layer brings about
90MB increment for one branch, and 32.6MB when using
two 2D-Conv layers. If more complicated modules like at-
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Table 5: Comparisons with state-of-the-arts methods on several datasets.
Models MARS iLIDS-VID PRID-2011

rank-1 rank-5 rank-20 mAP rank-1 rank-5 rank-20 rank-1 rank-5 rank-20
CNN+XQDA (Zheng et al. 2016) 68.3 82.6 89.4 49.3 53.0 81.4 95.1 77.3 93.5 99.3

RQEN (Song et al. 2018) 77.8 88.8 94.3 71.1 76.1 92.9 99.3 92.4 98.8 100.0
CSA-CSE (Chen et al. 2018) 81.2 92.1 - 69.4 79.8 91.8 - 88.6 99.1 -

DR-STAN (Li et al. 2018) 82.3 - - 65.8 80.2 - - 93.2 - -
3D-NLA (Liao et al. 2018) 84.3 94.6 - 77.0 81.3 - - 91.2 - -

3D PersonVLAD (Wu et al. 2019) 82.8 94.8 99.0 64.7 70.7 88.2 99.2 88.0 96.2 99.7
STMP (Liu et al. 2019) 84.4 93.2 96.3 72.7 84.3 96.8 99.5 92.7 98.8 99.8

M3D (Li, Zhang, and Huang 2019) 84.4 93.9 97.8 74.1 74.0 94.3 - 91.0 - -
SCAN (Zhang et al. 2019) 86.6 94.8 97.1 76.7 81.3 93.3 100.0 92.0 98.0 100.0

Baseline 83.3 93.3 96.4 75.1 82.6 96.3 99.0 88.8 98.1 99.8
Ours (AMEM) 86.7 94.0 97.1 79.3 87.2 97.7 99.5 93.3 98.7 100.0

Figure 4: The randomly selected samples of frame predic-
tion from different datasets and settings. The first row of
each sample presents the original images and the second row
presents the generated ones (Best viewed in color).

tention models are designed and integrated, the model size
will be further increased. In summary, our proposed algo-
rithm can achieve enhancement on both appearance and mo-
tion fields while maintaining a light-weight model.

The Number of Frames Prediction We empirically study
the number of frames prediction in our MEM. The visual-
ization results and accuracies are shown in Fig. 4 and Tab. 3
respectively. The simplest case is to predict only one future
frame (c = 1), where the MEM can make correct but blurry
predictions and the accuracy is relatively inferior. The reason
we analyze is that predicting only one frame is not enough
for MEM to extract the walking pattern of someone since it
usually takes several frames for human beings to identify. In
this way, we consider to predict more continuous frames and
started from c = 2, both the generation results and the test
performance are further improved, which verified our anal-
ysis. However, when c = 4, the rank1 accuracy falls down
again, which may be due to the vanishing gradient during
the too long range of prediction. Finally, to balance the per-
formance and efficiency, we adopted c = 3 in our model.

Different Components in the Loss Function We empiri-
cally analyze the different components in our loss function.
The Lid and Ltri are commonly used losses for person ReID
tasks. For LAEM , it is the attribute recognition loss which
helps enrich the appearance information in the final model.
In LMEM there are three elements, of which the most im-
portant is the MSE loss for prediction. It provides the su-

pervision for our model to capture the walking patterns con-
tained in the input sequences. The MSE loss for texture and
the adversarial loss mainly aim at achieving sound genera-
tion results. Take texture-MSE loss as an example, we did
an experiment on removing it and the visualization results
are shown in Fig. 4. From which we can find that the model
can still make predictions while the texture information de-
creases over time, leading to the blurry and noisy generation
results. Since it can capture the walking patterns, the final
performance is similar to our final model thus is not listed
here. In conclusion, removing Ladv or Lmse for texture will
not bring too much impact on the ReID accuracy, whereas
the quality of generated images drops a lot.

Comparison with the State-of-the-arts

In this section, we present the comparison with several state-
of-the-art algorithms which are listed in Tab. 5. From the
results we can observe that, our method can achieve the
best performances on all three datasets, with nearly the
minimum complexity increment on the backbone network.
Similar 3D-Conv based works like M3D and 3D-NLA all
aimed at modifying the Conv operations to enhance the
spatial and temporal feature learning, while were hard to
discover more latent information like the human attributes
and walking patterns. Our method outperforms M3D by
2.3%@rank1 on PRID-2011 and despite a spatial feature
stream is further added in M3D, AMEM can still outperform
it by 2.3%@rank1, 13.2%@rank1 on MARS and iLIDS-
VID respectively. Compared with multi-images based mod-
els CSA-CSE and SCAN, which designed complicated at-
tention modules to aggregate frame features, our model still
perform better since the temporal cues contained in the se-
quences are explicitly studied by the designed MEM.

Conclusion

In this paper, an Appearance and Motion Enhancement
Model (AMEM) for video-based person ReID is proposed
aiming to simultaneously enrich the two types of informa-
tion contained in the final feature. The appearance informa-
tion is enhanced by the human attribute information and the
motion information is enriched through future frames pre-
diction. We demonstrate that, apart from the appearance in-
formation can be improved by attribute recognition which
has been verified in image-based person ReID, the pro-
posed MEM can capture the id-discriminative walking pat-
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terns which were hardly studied in previous works. The fi-
nal model used for inference has similar complexity to the
backbone network while with both appearance and motion
information enhanced. Experiments on three popular video-
based ReID datasets verified the effectiveness of our model.
In future work, we will dig more into understanding human
recognition mechanism for re-identifying people, including
but not limited to human attributes or walking patterns.
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