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Abstract

The neural network based approach for 3D human pose esti-
mation from monocular images has attracted growing inter-
est. However, annotating 3D poses is a labor-intensive and
expensive process. In this paper, we propose a novel self-
supervised approach to avoid the need of manual annotations.
Different from existing weakly/self-supervised methods that
require extra unpaired 3D ground-truth data to alleviate the
depth ambiguity problem, our method trains the network only
relying on geometric knowledge without any additional 3D
pose annotations. The proposed method follows the two-stage
pipeline: 2D pose estimation and 2D-to-3D pose lifting. We
design the transform re-projection loss that is an effective
way to explore multi-view consistency for training the 2D-
to-3D lifting network. Besides, we adopt the confidences of
2D joints to integrate losses from different views to allevi-
ate the influence of noises caused by the self-occlusion prob-
lem. Finally, we design a two-branch training architecture,
which helps to preserve the scale information of re-projected
2D poses during training, resulting in accurate 3D pose pre-
dictions. We demonstrate the effectiveness of our method on
two popular 3D human pose datasets, Human3.6M and MPI-
INF-3DHP. The results show that our method significantly
outperforms recent weakly/self-supervised approaches.

Introduction

3D human pose estimation has attracted substantial inter-
est for its vast potential on various applications includ-
ing human-computer interaction, virtual reality and action
recognition. With the great success of deep learning, many
researchers (Martinez et al. 2017; Pavllo et al. 2019) ap-
plied the neural network to predict 3D human poses from
monocular images. Estimating 3D poses using neural net-
works mainly faces two main challenges. Firstly, a typical
neural network model needs a large amount of training data.
3D pose annotations are collected through the marker-based
Motion Capture (MoCap) system, which is an expensive
process. Secondly, there are well-founded geometrical the-
ories on how to project 2D images to 3D skeletons. Simply
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Figure 1: (a) The network trained with re-projection loss. (b)
The proposed network trained with transform re-projection
loss. (c) The comparisons of results estimated by the above
two networks. The results are shown in two different views.

using a neural network to approximate this projection may
lead to the network subject to overfitting training data.

To alleviate the above challenges, weakly/self-supervised
learning paradigms have been increasingly explored in re-
cent works (Rhodin et al. 2018; Wu et al. 2016; Chen et
al. 2019; Rhodin, Salzmann, and Fua 2018). Re-projection
loss (Tung et al. 2017), which does not require explicit 3D
ground-truth, has become a commonly used technique. It re-
projects estimated 3D poses back to the 2D space and cal-
culates the loss between the input and re-projected 2D poses
as supervision. However, due to the depth ambiguity prob-
lem where multiple 3D body configurations can explain the
same 2D projection, the re-projection loss cannot yield accu-
rate and realistic 3D poses. For example, as shown in Figure
1, since re-projection loss only constrains the estimated 3D
pose at a specific camera angle, it may result in an invalid
human pose when observed from another angle. Although
some techniques such as adversarial loss (Tung et al. 2017;
Wandt and Rosenhahn 2019) and kinematic constraints
(Habibie et al. 2019; Pavllo et al. 2019), have been pro-
posed to constrain the estimated 3D poses into a semantic
sub-space, they usually require some extra unpaired 3D pose
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annotations (without 2D-3D correspondence) to make the
network memorize the distribution of real 3D skeletons.

3D pose datasets (Ionescu et al. 2013; Mehta et al. 2017)
are usually collected under the configuration with multiple
calibrated cameras. The consistency information between
multiple camera views has not been fully explored in re-
cent weakly/self-supervised methods. Although the recently
proposed work (Kocabas, Karagoz, and Akbas 2019) has
explored multi-view geometry to train a network, they uti-
lized triangulation on detected multi-view 2D poses to gen-
erate ‘ground-truth’ 3D poses, which are subsequently used
to train a 3D pose network. However, this naive application
of 3D multi-view geometry is sub-optimal due to the noises
introduced in the 2D pose detection at each individual cam-
era. The detected 2D poses are combined to produce its 3D
pose, which may further produce noisy supervision signals.
Besides, the process of generating pseudo ground-truth is
redundant.

In this paper, we propose a novel self-supervised approach
to take advantage of the geometric prior for training a 3D
pose estimation model. We formulate 3D pose estimation
as 2D keypoint estimation followed by 2D-to-3D pose lift-
ing. The first stage is compatible with any state-of-the-art
2D keypoint detector, and our work concentrates on train-
ing the 2D-to-3D lifting network without using any addi-
tional 3D ground-truth data. Specifically, in order to over-
come the depth ambiguity problem, we design the transform
re-projection loss. As shown in Figure 1(b), it transforms
the lifted 3D poses from current view to another randomly
selected view through rigid transformation, and then calcu-
lates the re-projection loss between the transformed 3D pose
and the 2D pose of the target view. As a result, it can ef-
fectively constrain the estimated 3D poses by considering
multi-view consistency. Due to the self-occlusion problem,
some 2D joints may be invisible at the frame of a particu-
lar camera angle, which may lead to inaccurate 2D keypoint
detections. However, they may be visible from other cam-
era angles. Thus, the same human joint will obtain different
2D detection confidences on different camera views. We ac-
quire the confidence weights from estimated 2D keypoint
heatmaps and use them to integrate losses of different cam-
era views, which makes our method more robust to noisy 2D
detections. Finally, we introduce a root position regression
branch to restore the global 3D poses during training. In this
way, we can reserve the scale information of re-projected 2D
poses, which can improve the accuracy of the predicted 3D
poses. Moreover, in order to train the root position branch
and lifting branch simultaneously from scratch, we propose
a pre-training technique to help the network converge.

We perform extensive experiments on two popular 3D hu-
man pose datasets: Human3.6M (Ionescu et al. 2013) and
MPI-INF-3DHP (Mehta et al. 2017). The results demon-
strate that our method achieves state-of-the-art performance.
The contributions of our work are summarized as follows:

• We propose a self-supervised approach to train the 2D-
to-3D lifting network without any 3D pose annotations. It
only relies on geometry knowledge to construct supervi-
sion signals, which leads to a better generalization ability.

• We design the transform re-projection loss, which is an
effective technique to exploit multi-view consistency in-
formation and constrain the estimated 3D poses during
training. Moreover, we integrate it with the 2D joint con-
fidences of different camera views to alleviate the self-
occlusion problem.

• The proposed method achieves state-of-the-art results on
two popular 3D pose benchmarks compared with recent
weakly/self-supervised methods.

Related Work

3D Human Pose Estimation

3D human pose estimation is a long-standing problem and
has been considerably studied in the past few years. Re-
cently, following the great success of deep learning, mod-
ern 3D human pose estimation techniques are usually for-
mulated as learning-based frameworks. These works can be
generally classified into two categories. The first class of
methods (Tekin et al. 2017; Pavlakos et al. 2017a; Mehta
et al. 2017; Habibie et al. 2019; Sun et al. 2018) directly
predict the depth from monocular images through the deep
convolutional neural networks (DCNNs). The second cat-
egory (Iqbal et al. 2018; Fang et al. 2018; Tome, Russell,
and Agapito 2017; Martinez et al. 2017; Fang et al. 2018;
Chen and Ramanan 2017) is the two-stage pipeline, which
first obtains 2D joint locations through the advanced 2D
keypoint detector such as Stacked Hourglass (SH) net-
work (Newell, Yang, and Deng 2016) and Cascaded Pyra-
mid Network (CPN) (Chen et al. 2018), and then lifts
them into 3D space. In order to learn the mapping be-
tween 2D and 3D joint positions, various 2D-to-3D lift-
ing network backbones were designed. For example, (Mar-
tinez et al. 2017) proposed a simple baseline using a sim-
ple neural network with only two fully connected layers,
while achieved surprising results. Since human skeletons
are with the graph-like structure, several works (Zhao et
al. 2019) also attempted to exploit the novel Graph Convo-
lution Networks (GCNs) to capture the semantic relation-
ships between human joints for accurate 3D human pose re-
gression. Besides, there are also works (Pavllo et al. 2019;
Arnab, Doersch, and Zisserman 2019; Zhou et al. 2016;
Zhou and De la Torre 2016) that considers temporal infor-
mation from frame sequence to produce more robust predic-
tions. In our work, we follow the two-stage pipeline. More-
over the proposed approach is compatible with any recent
2D-to-3D lifting network backbone.

Weakly/Self-supervised Approaches

Recently, weakly/self-supervised approaches have received
much attention due to the difficulty of gathering 3D pose an-
notations. In order to train the network without explicit 3D
pose annotations, the prior of camera projection geometry
was commonly explored, and some geometry-driven meth-
ods were proposed. Among them, re-projection loss is one
of the most widely used technique (Kanazawa et al. 2018;
Wu et al. 2016; Wandt and Rosenhahn 2019; Pavllo et
al. 2019; Wang et al. 2019; Brau and Jiang 2016). How-
ever, using re-projection loss alone cannot accurately con-
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Figure 2: The overall architecture of our method that follows
a two-stage pipeline.

strain the depth of skeletons due to the depth ambiguity
problem. (Habibie et al. 2019; Pavllo et al. 2019; Rhodin
et al. 2018) alleviated this problem by enforcing the bone
length similarity between predicted and ground-truth skele-
tons. Adversarial loss (Yang et al. 2018; Tung et al. 2017;
Wandt and Rosenhahn 2019; Kanazawa et al. 2018) is an-
other popular technique to regularize the predicted 3D poses.
It encourages the output 3D poses on the real human man-
ifold by introducing a real/fake 3D skeleton discriminator.
For example, (Tung et al. 2017) proposed the Adversarial
Inverse Graphical Network (AIGN), which uses the adver-
sarial prior to match the distribution between the predictions
and a collection ground-truth for the task such as 2D-to-3D
lifting and image-to-image translation. (Wandt and Rosen-
hahn 2019) proposed a weakly-supervised method with
the adversarial supervision for 3D human pose estimation.
(Chen et al. 2019) exploits the geometric self-consistency
of the lift-reproject-lift process with the adversarial prior of
2D poses. As we analyzed above, the bone length constraint
and adversarial loss still require unpaired 3D pose annota-
tions for counting the bone length or training the real/fake
3D skeleton discriminator. Differently, we proposed a self-
supervised approach that solely relies on the camera geom-
etry prior, which can result in better generalization ability.

Multi-view Approaches

Early methods (Belagiannis et al. 2014) reconstructed 3D
poses from multi-view inputs through the triangulation or
the 3D pictorial structures model. Recent works (Pavlakos
et al. 2017b; Tome et al. 2018; Dong et al. 2019) combined
the traditional techniques with the novel CNNs to improve
the robustness of the framework. Different from these meth-
ods requiring multi-view inputs at both training and testing
stages, our method only requires multi-view inputs during
training and requires monocular images during testing.

There are two latest methods that also exploit multi-view
information for 3D pose estimation in a self-supervised way.
(Rhodin, Salzmann, and Fua 2018) pre-trained an encoder-
decoder network that predicts an image from one view to
another to learn a geometry-aware body representation, and
then use a small amount of supervision to learn a mapping
from 2D to 3D poses. (Kocabas, Karagoz, and Akbas 2019)
applied triangulation on the detected 2D joint positions to
generate ‘ground-truth’ 3D poses for training the 3D pose
estimation network. In comparisons, our method directly
adopts the multi-view consistency information for training
rather than generating the pseudo 3D ground-truth, which is
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Figure 3: The architecture of the proposed self-supervised
training approach.

a simpler way and more robust to the noisy 2D detections.
Moreover, our method does not require any additional 3D
pose annotations.

Method

Overall, the proposed method follows a two-stage pipeline,
as shown in Figure 2. First, we use the state-of-the-art 2D
pose estimation network to predict 2D poses from input
frames. Here, we denote X ∈ R

N×2 as N detected 2D joint
locations. Meanwhile, we obtain their corresponding confi-
dence scores w ∈ R

N from estimated keypoint heatmaps
through the max operation. With the detected 2D poses, we
learn a neural network N to project them into 3D space.
Similarly, we define Y ∈ R

N×3 as the output 3D joint loca-
tions. Following the protocol with previous works, we esti-
mate zero-centered 3d poses where the values of Y are the
3D positions relative to the fixed root joint (pelvis).

The architecture of the lifting network N is designed in-
spired by (Martinez et al. 2017). The input layer takes the
concatenated coordinates of N human joints and applies a
fully connected layer with 1024 output channels. Then it
is followed by four blocks that are surrounded by residual
connections. For each block, several fully connected layers
(1024 channels) followed by Batch Normalization, rectified
linear units, and dropout, are stacked for efficiently mapping
the 2D pose features to high-level features. Finally, the fea-
tures extracted by the last residual block are fed into an extra
linear layer (N × 3 channels) to output 3D poses.

Self-supervised Approach

In this section, we introduce the proposed self-supervised
approach for training the lifting network. The training pro-
cess takes as input the detected 2D poses of a pair of frames
that are captured from two different views at the same time.
With the paired frames, we first detect their 2D poses Xv1

and Xv2 and their corresponding confidence weights of each
joint wv1 and wv2. Then, we feed the 2D poses into the lift-
ing network and obtain their estimated 3D poses Yv1 and
Yv2.
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Two-branch Training Architecture For training the lift-
ing network without 3D ground-truth annotations, we design
the transform re-projection loss. It involves the perspective
projection and view transformation operations, which re-
quire global 3D joint positions. Without global 3D joint po-
sitions, we can not obtain the absolute depth of the person in
the camera coordinate, which results in unknown scale when
re-projecting 3D poses back to 2D space. Existing methods
commonly normalize the scale of 2D skeletons to overcome
the scale ambiguity problem. However, it must be used in
conjunction with the kinematic constraint or adversarial loss
to output realistic 3D poses.

In our work, we design another branch, named root posi-
tion branch, to help train the lifting network. It predicts root
joint positions, rv1 and rv2, which are added to relative 3D
poses predicted by the lifting network to restore global 3D
poses, Ỹv1 and Ỹv2. The root position network has the same
architecture with the lifting network, and they do not share
any weights. The two branches can be optimized simultane-
ously using multi-view consistency information, and the loss
function and detailed training procedure will be discussed in
the following sections.

Loss Function With the global 3D poses, we first re-
project them back to the 2D space following the perspective
projection ρ.

ρ(Ỹv1
i ) =

[
f v1
x Ỹv1

i (x)/Ỹv1
i (z) + cv1

x

f v1
y Ỹv1

i (y)/Ỹv1
i (z) + cv1

y

]
,

ρ(Ỹv2
i ) =

[
f v2
x Ỹv2

i (x)/Ỹv2
i (z) + cv2

x

f v2
y Ỹv2

i (y)/Ỹv2
i (z) + cv2

y

]
,

(1)

where fx and fy refer to the focal lengths, cx and cy define
the principal points, Ỹv1

i (x) indicates the value of x coor-
dinate of ith joint position of Ỹv1. And then, we calculate
the l2 loss between the input and re-projected 2D poses as
supervisions,

Lreproj =

N∑
i

wv1
i ‖Xv1

i − ρ(Ỹv1
i )‖2

+wv2
i ‖Xv2

i − ρ(Ỹv2
i )‖2,

(2)

where wv1
i and wv2

i are the confidence scores of the ith joints
of two views. Here, we use the confidence scores of de-
tected 2D poses to integrate the re-projection loss of differ-
ent views. The view with smaller 2D confidence value makes
less contribution to the loss value, which reduces the impact
of the noisy 2D detections for the lifting network training.

However, simply using the re-projection consistency will
encounter the depth ambiguity problem. To overcome the
problem, we design the transform re-projection loss, which
constrains the predicted 3D skeletons from multiple perspec-
tives. Specifically, we transform the estimated 3D pose from
one view to another through the rigid transformation τ as
follows:

τ(Ỹv1
i ) = R1to2

(
Ỹv1

i − t1to2

)
,

τ(Ỹv2
i ) = R2to1

(
Ỹv2

i − t2to1

)
,

(3)
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Figure 4: Illustration of the model pre-training.

where R1to2,R2to1 ∈ R
3×3 are the rotation matrixes, and

t1to2, t2to1 ∈ R
3 are the transformation vectors. With the ex-

trinsic parameters of two cameras R1, t1 and R2, t2, we can
directly obtain the rigid transformation parameters,

R1to2 = R2R
T
1 ; t1to2 = R1 (t2 − t1) ,

R2to1 = R1R
T
2 ; t2to1 = R2 (t1 − t2) .

(4)

If extrinsic parameters of cameras do not exist, we can use
the positions of 2D joins of two views as calibration tar-
gets (Kocabas, Karagoz, and Akbas 2019). We assume the
first camera as the center of the coordinate system, which
means R1 is an identity matrix and t1 is a zero vector. For
corresponding joints in Xv1 and Xv2, we find the fundamen-
tal matrix F satisfying Xv1

i FXv2
i = 0, i = 1 . . . N , using

RANSAC algorithm. From F, we calculate the essential ma-
trix E by E = PT

v2FPv1, where Pv1 and Pv2 are the projec-
tion matrixes of cameras. By decomposing E with SVD, we
obtain four possible solutions to R1to2 and t1to2. We decide
on the correct one by verifying possible pose hypotheses us-
ing cheirality check. In the similar way, we can get R2to1 and
t2to1. Since the calibrated t1to2 and t2to1 are unit vectors, we
need to multiply them by the distance between two camera
centers.

Next, according to multi-view consistency that the 2D
projection of the transformed 3D skeleton should be the
same with the 2D input of the target view, we design the
transform re-projection loss as follows:

Lt-reproj =

N∑
i

wv1
i ‖Xv2

i − ρ(τ(Ỹv1
i ))‖2

+wv2
i ‖Xv1

i − ρ(τ(Ỹv2
i ))‖2.

(5)

In this way, we construct supervision signals entirely rely-
ing on camera geometric prior. Compared with existing tech-
niques that require unpaired 3D pose annotations or kine-
matic constraints, the proposed approach is simple and ef-
fective.

Training

It is challenging to train two inter-dependent branches from
scratch without ground-truth annotations. We find that the
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Table 1: Detailed results on H36M dataset under Protocol #1 and Protocol #2.
Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Reproj 390.2 441.6 479.3 422.8 503.4 479.0 400.6 471.5 568.5 662.2 483.6 423.8 473.2 414.5 413.5 468.5
Reproj+ADV 81.7 93.0 99.3 97.3 106.8 134.7 81.8 101.0 113.2 151.2 100.7 97.0 121.3 111.6 108.3 106.6
Trans Reproj 49.7 54.5 58.0 56.8 63.4 80.0 52.4 52.7 71.4 78.3 58.9 55.2 60.0 43.8 49.6 59.0
Trans Reproj+DA 48.7 53.6 54.7 55.1 61.3 76.1 51.5 50.3 68.0 75.9 56.7 53.8 58.8 42.6 47.9 57.0
Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Reproj 147.1 148.0 174.7 153.1 165.5 162.7 176.1 136.2 156.5 192.5 230.1 147.6 150.5 160.0 154.6 163.7
Reproj+ADV 64.8 69.4 77.4 74.4 78.4 94.2 60.4 68.9 81.5 113.1 74.3 70.4 84.8 82.4 81.6 78.4
Trans Reproj 39.6 42.6 45.7 46.0 47.6 57.1 41.0 39.2 55.4 59.9 46.4 42.5 47.1 34.4 41.0 45.7
Trans Reproj+DA 38.2 41.3 43.5 44.4 45.4 54.7 39.3 38.0 53.2 59.2 45.0 40.7 46.2 33.0 39.4 44.1
1 ADV refers to the adversarial loss; DA means that the network is trained with data augmentation.

network cannot converge if we train it with random initial-
ization. Thus, we design a pre-training technique to warm-
up the network. As shown in Figure 4, the pre-training loss
can be formulated as:

Lpre-train =

N∑
i

‖τ(Ỹv1
i )− Ỹv2

i ‖2+ ‖τ(Ỹv2
i )− Ỹv1

i ‖2. (6)

It is designed according to multi-view consistency that the
transformed 3D pose and the estimated 3D pose of the tar-
get view should be the same. Although this loss is not able
to guide the lifting network to produce valid 3D poses, it
effectively regularizes the output space of the root position
branch. It can be regarded as an advanced initialization of
the root position branch, which greatly reduces the difficulty
of network convergence.

After pre-training, the network is fine-tuned using the re-
projection loss and transform re-projection loss,

LT = Lreproj + λLt-reproj, (7)

where λ is a hyper-parameter that is adapted to set under
different datasets.

Experiments

Datasets

We perform extensive evaluations on two publicly available
benchmarks. Human3.6M (H36M) (Ionescu et al. 2013) is
one of the largest datasets for 3D human pose estimation,
which is captured by MoCap system. It consists of 3.6 mil-
lion images with 11 actors performing 15 actions such as
eating, sitting and walking. They are captured from 4 cal-
ibrated cameras with known intrinsic and extrinsic param-
eters. In our experiments, we follow the standard protocol
with 17-joint subset, use subjects S1, S5, S6, S7, S8 for
training and S9, S11 for testing. MPI-INF-3DHP (3DHP)
(Mehta et al. 2017) is a recently proposed 3D pose dataset
constructed with both constrained indoor scenes and com-
plex outdoor scenes. We use the five chest-height cameras
and the provided 17 joints (compatible with H36M) for
training, and we use the official test set, which contains 2929
frames from six subjects performing seven actions, for eval-
uation.

Evaluation Metrics For the H36M dataset, we consider
two popular evaluation protocols. Protocol 1 is the Mean Per
Joint Position Error (MPJPE) in millimeters (mm). MPJPE

Table 2: Comparisons of different backbones on the H36M
datasets.

Backbone Protocol 1 Protocol 2

ResLinear 59.7 45.0
Ours 57.0 44.1
TemporalDilated 56.1 43.2

is the mean euclidean distance between the ground-truth and
predicted positions of the joints. Protocol 2 is the Procrustes
MPJPE (P-MPJPE), which aligns the estimated 3D pose to
the ground-truth by a rigid transformation called Procrustes
Analysis before computing the MPJPE.

The evaluation metrics for the 3DHP dataset include the
adapted Percentage of Correct Keypoints (PCK) and corre-
sponding Area Under Curve (AUC) (Mehta et al. 2017). The
PCK indicates the percentage of joints whose estimated po-
sition is within 15cm of the ground-truth.

Data Augmentation The H36M dataset has only four cal-
ibrated camera views. Training with more camera views can
improve model performance and generalization ability. We
follow the technique proposed by (Fang et al. 2018) to sim-
ulate a series of virtual camera views. We extend the H36M
dataset from 4 views to 12 views containing 8 virtual cam-
era views, and we obtain the corresponding 2D pose of each
sample through perspective projection to augment the train-
ing set. The detailed analysis will be shown in the following
sections.

Implementation Details

In order to enable the proposed two-branch network to con-
verge without any explicit 3D pose supervision, the training
procedure contains two stages. First, we pre-train the net-
work using the Lpre-train loss. We use the Adam as the op-
timizer and train the network for 20 epoches with learning
rate 0.001. Next, the network is trained using the LT loss for
300 epoches. The learning rate starts from 0.001 and drops
by 0.1 each 100 epoches. During evaluation, for consistency
with other works, we only use the 2D-to-3D lifting branch
to predict the relative 3D poses in the camera space, and not
use the root position branch. We implement our method us-
ing the deep learning toolbox Pytorch.
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Figure 5: Results of different variants in some hard exam-
ples.

Ablation Study

Analysis of Transform Re-projection Loss In order to
evaluate the effectiveness of the proposed transform re-
projection loss, we compare it with the existing popular
technique, adversarial loss. We design several variants and
compare the results under Protocol #1 (MPJPE) and Proto-
col #2 (P-MPJPE) on the H36M dataset. All variants use
2D poses extracted by the CPN network as inputs. Table 1
presents the quantitative results, and Figure 5 shows the re-
sults of different variants on several hard samples, i.e., with
serious self-occlusion or far from the camera. It is obvious
that only using the re-projection loss will obtain strange 3D
skeletons that do not conform the human kinematics. Al-
though adversarial loss can constrain the 3D poses using
unpaired 3D pose annotations, it still can not produce pre-
cise 3D poses, especially when encountering samples with
serious self-occlusion. Compared with adversarial loss, our
method achieve significant performance improvements, and
the MPJPE and P-MPJPE decrease by 47.6 and 32.7 (mm).
This shows that the transform re-projection loss can effec-
tively help the network learn geometric knowledge, which
further constrains the estimated 3D poses to get more ac-
curate results. Moreover, the MPJPE and P-MPJPE will de-
crease by extra 2.0 and 1.6 (mm) when using data augmen-
tation, which verifies that training with more camera views
can effectively facilitate the model performance.

Analysis of Backbones Our method does not depend on
any particular backbone. In this part, we investigate the per-
formance of our method with different 2D-to-3D network
backbones. ResLinear (Martinez et al. 2017) is the earliest
and most commonly used backbone, which consists of fully

��� ���

Figure 6: (a) and (b) are the loss and MPJPE curves of the
network trained without and with pre-training respectively.

connected layers and residual connections. TemporalDilated
(Pavllo et al. 2019) is the latest proposed backbone that
can explore the temporal information using dilated tempo-
ral convolutions. We feed it with 243 neighboring frames
as inputs during training and testing. As shown in Table 2,
our approach can achieve competitive results when using the
simple ResLinear backbone. Therefore, the improvements
of our method are not merely due to the better backbone.
When using the TemporalDilated, our method gains obvious
improvements, which benefits from the exploration of tem-
poral information. These results illustrate that the proposed
self-supervised training technique has strong versatility and
is suitable for any novel 2D-to-3D network architecture.

Analysis of Network Pre-training In this section, we
show the effectiveness of the network pre-training. Since the
proposed network is trained without any 3D pose annota-
tion, the pre-training is very important for our two-branch
networks. As shown in Figure 6, the loss and MPJPE curves
without pre-training violently oscillate. The network fails
to converge despite our best efforts at tuning the hyper-
parameters. In contrast, the loss curve rapidly decreases, and
we achieve low MPJPE value when using the proposed pre-
training technique. It illustrates that pre-training technique
is vital and effective in our work.

Analysis of Generalization Ability To demonstrate the
generalization ability of our model, we train the network
on the H36M dataset and evaluate it on the test split of the
3DHP dataset, which includes challenging outdoor scenes.
We present some examples in Figure 7. It shows that our
approach can successfully recover 3D poses on the datasets
without being trained on them.

Comparisons with State-of-the-art Methods

In this section, we compare our method with recent
weakly/self-supervised methods. First, we compare with
them on the H36M dataset using protocol #1 and protocol #2
in Table 3. (Tung et al. 2017; Wandt and Rosenhahn 2019;
Zhou et al. 2017) are based on re-projection loss and re-
quire additional unpaired 3D pose annotations. Compared
with them, our method has an explicit improvement and ob-
tains average errors of 59.0mm and 45.7mm under two eval-
uation protocols. Our method also outperforms (Kocabas,
Karagoz, and Akbas 2019) that adopts multi-view infor-
mation. We present its result obtained in the case of using
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Table 3: Comparisons with recent weakly/self-supervised methods on the H36M dataset under evaluation Protocol #1 and
Protocol #2.

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Pavlakos et al. CVPR’17 - - - - - - - - - - - - - - - 118.4
Tung et al. ICCV’17 (†) 77.6 91.4 89.9 88 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 - 78.6 - 97.2
Wandt et al. CVPR’19 (†) 77.5 85.2 82.7 93.8 93.9 101.0 82.9 102.6 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9
Wang et al. PAMI’19 (�;†) 50.0 60.0 54.7 56.6 65.7 52.7 54.8 85.9 118.0 62.5 79.6 59.6 41.5 65.2 48.5 63.7
Kocabas et al. CVPR’19 - - - - - - - - - - - - - - - 76.6

Ours 49.7 54.5 58.0 56.8 63.4 80.0 52.4 52.7 71.4 78.3 58.9 55.2 60.0 43.8 49.6 59.0
Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD Smoke Wait WalkD Walk WalkT Avg

Zhou et al. ICCV’17 (†) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 5.4 63.2 55.3 64.9
Drover et al. ECCV’18 60.2 60.7 59.2 65.1 65.5 63.8 59.4 59.4 69.1 88.0 64.8 60.8 64.9 63.9 65.2 64.6
Rhodin et al. ECCV’18 (†) - - - - - - - - - - - - - - - 98.2
Wandt et al. CVPR’19 (†) 53.0 58.3 59.6 66.5 72.8 71.0 56.7 69.6 78.3 95.2 66.6 58.5 63.2 57.5 49.9 65.1
Kocabas et al. CVPR’19 - - - - - - - - - - - - - - - 67.5
Chen et al. CVPR’19 (�) - - - - - - - - - - - - - - - 68.0

Ours 39.6 42.6 45.7 46.0 47.6 57.1 41.0 39.2 55.4 59.9 46.4 42.5 47.1 34.4 41.0 45.7
1 (�) denotes that it takes advantage of the temporal information; (†) denotes that it requires unpaired or part of 3D pose annotations.

Figure 7: Quantitative results of our method (trained on the
H36M dataset) on the 3DHP dataset.

Table 4: Comparisons with recent weakly/self-supervised
methods on the 3DHP dataset.

Method PCK AUC

Zhou et al. ICCV’17 69.2 32.5
Kocabas et al. CVPR’19 64.7 -
Chen et al. CVPR’19 71.1 36.3

Ours 74.1 41.4

ground-truth extrinsic parameters for fair comparisons. It il-
lustrates that the proposed approach is a more effective way
to exploit multi-view information. Table 4 shows the com-
parisons with state-of-the-art methods on the 3DHP dataset.
In this setting, we train the network on the train set of the
3DHP dataset, and evaluate it on the test set following the
PCK and AUC metrics. As seen, the PCK and AUC of our
method reach 74.1 and 41.4 respectively, which outperform
previous methods.

Conclusion

In this work, we proposed a new self-supervised approach
for 3D human pose estimation. The approach explored
multi-view consistency to construct supervision signals for
training a 2D-to-3D lifting network, which can effectively
overcome the depth ambiguity problem. Note that our
method simply applied multi-view information during train-
ing, and required only single view inputs during inference.
Meanwhile, we designed a two-branch training architecture
and pre-training technique to ensure the network can suc-
cessfully converge and achieve excellent performance. Ex-
tensive ablation studies on the H36M and 3DHP datasets il-
lustrated the effectiveness and generalization ability of our
approach. The experiment results showed that our method
obtained a superior performance over recent weakly/self-
supervised methods.
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