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Abstract

Over the last few years, deep learning based approaches have
achieved outstanding improvements in natural image matting.
Many of these methods can generate visually plausible alpha
estimations, but typically yield blurry structures or textures
in the semitransparent area. This is due to the local ambigu-
ity of transparent objects. One possible solution is to leverage
the far-surrounding information to estimate the local opac-
ity. Traditional affinity-based methods often suffer from the
high computational complexity, which are not suitable for
high resolution alpha estimation. Inspired by affinity-based
method and the successes of contextual attention in inpaint-
ing, we develop a novel end-to-end approach for natural im-
age matting with a guided contextual attention module, which
is specifically designed for image matting. Guided contex-
tual attention module directly propagates high-level opacity
information globally based on the learned low-level affin-
ity. The proposed method can mimic information flow of
affinity-based methods and utilize rich features learned by
deep neural networks simultaneously. Experiment results on
Composition-1k testing set and alphamatting.com benchmark
dataset demonstrate that our method outperforms state-of-
the-art approaches in natural image matting. Code and models
are available at https://github.com/Yaoyi-Li/GCA-Matting.

Introduction

The natural image matting is one of the important tasks in
computer vision. It has a variety of applications in image or
video editing, compositing and film post-production (Wang,
Cohen, and others 2008; Aksoy, Ozan Aydin, and Pollefeys
2017; Lutz, Amplianitis, and Smolic 2018; Xu et al. 2017;
Tang et al. 2019). Matting has received significant interest
from the research community and been extensively studied
in the past decade. Alpha matting refers to the problem that
separating a foreground object from the background and es-
timating transitions between them. The result of image mat-
ting is a prediction of alpha matte which represents the opac-
ity of a foreground at each pixel.

Mathematically, the natural image I is defined as a convex
combination of foreground image F and background image
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Figure 1: The visualization of our guided contextual atten-
tion map. Top row from left to right, the image, trimap and
ground-truth. Second row, the alpha matte prediction, atten-
tion offset map from first GCA block in the encoder, offset
from GCA block in the decoder.

B at each pixel i as:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1], (1)

where αi is the alpha value at pixel i that denotes the opacity
of the foreground object. If αi is not 0 or 1, then the image at
pixel i is mixed. Since the foreground color Fi, background
color Bi and the alpha value αi are left unknown, the ex-
pression of alpha matting is ill-defined. Thus, most of the
previous hand-crafted algorithms impose a strong inductive
bias to the matting problem.

One of the basic idea widely adopted in both affinity-
based and sampling-based algorithms is to borrow infor-
mation from the image patches with similar appearance.
Affinity-based methods (Levin, Lischinski, and Weiss 2008;
Chen, Li, and Tang 2013; Aksoy, Ozan Aydin, and Polle-
feys 2017) borrow the opacity information from known
patches with the similar appearance to unknown ones.
Sampling-based approaches (Wang and Cohen 2007; Gastal
and Oliveira 2010; He et al. 2011; Feng, Liang, and Zhang
2016) borrow a pair of samples from the foreground and
background to estimate the alpha value at each pixel in the
unknown region based on some specific assumption. One
obstacle of the previous affinity-based and sampling-based
methods is that they cannot handle the situation that there
are only background and unknown areas in the trimap. It is
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because that these methods have to make use of both fore-
ground and background information to estimate the alpha
matte.

Benefiting from the Adobe Image Matting dataset (Xu
et al. 2017), more learning-based image matting meth-
ods (Xu et al. 2017; Lutz, Amplianitis, and Smolic 2018;
Lu et al. 2019; Tang et al. 2019) has emerged in recent years.
Most of learning-based approaches use network prior as the
inductive bias and predict alpha mattes directly. Moreover,
SampleNet (Tang et al. 2019) proposed to leverage deep in-
painting methods to generate foreground and background
pixels in the unknown region rather than select from the
image. It provides a combination of the learning-based and
sampling-based approach.

In this paper, we propose a novel image matting method
based on the opacity propagation in a neural network. The
information propagation has been widely adopted within
the neural network framework in recent years, from natu-
ral language processing (Vaswani et al. 2017; Yang et al.
2019), data mining (Kipf and Welling 2016; Veličković et al.
2017) to computer vision (Yu et al. 2018; Wang et al. 2018).
SampleNet Matting (Tang et al. 2019) indirectly leveraged
the contextual information for foreground and background
inpainting. In contrast, our proposed method conducts in-
formation flow from the image context to unknown pix-
els directly. We devise a guided contextual attention mod-
ule, which mimic the affinity-based propagation in a fully
convolutional network. In this module, the low-level image
features are used as a guidance and we perform the alpha
feature transmission based on the guidance. We show an
example of our guided contextual attention map in Figure
1 and more details in the section of results. In the guided
contextual attention module, features from two distinct net-
work branches are leveraged together. The information of
both known and unknown patches are transmitted to feature
patches in the unknown region with similar appearance.

Our proposed method can be viewed from two differ-
ent perspectives. On one hand, the guided contextual atten-
tion can be elucidated as an affinity-based method for al-
pha matte value transmission with a network prior. Unknown
patches share high-level alpha features with each other under
the guidance of similarity between low-level image features.
On the other hand, the proposed approach can also be seen as
a guided inpainting task. In this aspect, image matting task
is treated as an inpainting task on the alpha image under the
guidance of input image. The unknown region is analogous
to the holes to be filled in image inpainting. Unlike inpaint-
ing methods which borrows pixels from background of the
same image, image matting borrows pixel value 0 or 1 from
the known area in the alpha matte image under the guidance
of original RGB image to fill in the unknown region.

Related Work
In general, natural image matting methods can be classified
into three categories: sampling-based methods, propagation
methods and learning-based methods.

Sampling-based methods (Wang and Cohen 2007; Gastal
and Oliveira 2010; He et al. 2011; Feng, Liang, and Zhang
2016) solve combination equation (1) by sampling colors

from foreground and background regions for each pixel in
the unknown region. The pair of foreground and background
samples are selected under different metrics and assump-
tions. Then the initial alpha matte value is calculated by
the combination equation. Robust Matting (Wang and Co-
hen 2007) selected samples along the boundaries with con-
fidence. The matting function was optimized by a Random
Walk. Shared Matting (Gastal and Oliveira 2010) selected
the best pairs of samples for a set of neighbor pixels and re-
duced much of redundant computation cost. In Global Mat-
ting (He et al. 2011), all samples available in image were uti-
lized to estimate the alpha matte. The sampling was achieve
by a randomized patch match algorithm. More recently, CSC
Matting (Feng, Liang, and Zhang 2016) collected a set of
more representative samples by sparse coding to avoid miss-
ing out true sample pairs.

Propagation methods (Levin, Lischinski, and Weiss 2008;
Chen, Li, and Tang 2013; Aksoy, Ozan Aydin, and Polle-
feys 2017), which are also known as affinity-based meth-
ods, estimate alpha mattes by propagating the alpha value
from foreground and background to each pixel in the un-
known area. The Closed-form Matting (Levin, Lischinski,
and Weiss 2008) is one of the most prevailing algorithm in
propagation-based methods. It solved the cost function un-
der the constraint of local smoothness. KNN Matting (Chen,
Li, and Tang 2013) collected matching nonlocal neigh-
borhoods globally by K nearest neighbors. Moreover, the
Information-flow Matting (Aksoy, Ozan Aydin, and Polle-
feys 2017) proposed a color-mixture flow which combined
the local and nonlocal affinities of colors and spatial smooth-
ness.

Due to the tremendous success of deep convolutional
neural networks, learning-based methods achieve a domi-
nate position in recent natural image matting (Cho, Tai, and
Kweon 2016; Xu et al. 2017; Lutz, Amplianitis, and Smolic
2018; Lu et al. 2019; Tang et al. 2019). DCNN Matting
(Cho, Tai, and Kweon 2016) is the first method that intro-
duced a deep neural network into image matting task. It
made use of the network to learn a combination of results
from different previous methods. Deep Matting (Xu et al.
2017) proposed a fully neural network model with a large-
scale dataset for learning-based matting methods, which was
one of the most significant work in deep image matting.
Following Deep Matting, AlphaGan (Lutz, Amplianitis, and
Smolic 2018) explored the deep image matting within a gen-
erative adversarial framework. More subsequent work like
SampleNet Matting (Tang et al. 2019) and IndexNet (Lu et
al. 2019) with different architectures also yielded appealing
alpha matte estimations.

Baseline Network for Deep Image Matting

Our proposed model uses the guided contextual attention
module and a customized U-Net (Ronneberger, Fischer, and
Brox 2015) architecture to perform deep natural image mat-
ting. We first construct our customized U-Net baseline for
matting, then introduce the proposed guided contextual at-
tention (GCA) module.
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Figure 2: Overview of our proposed guided contextual attention matting framework. The baseline model shares the same
architecture without GCA blocks and image feature block. Original image and trimap are the inputs of alpha feature. Image
feature block and GCA blocks only takes the original merged image as input. The blue arrows denote alpha feature flow and
yellow arrows denote low-level image feature flow. GCA: guided contextual attention; SN: spectral normalization; BN: batch
normalization; ×N : replicate N times.

Baseline Structure

The U-Net (Ronneberger, Fischer, and Brox 2015) like ar-
chitecture are prevailing in recent matting tasks (Lutz, Am-
plianitis, and Smolic 2018; Tang et al. 2019; Lu et al. 2019)
as well as image segmentation (Long, Shelhamer, and Dar-
rell 2015), image-to-image translation (Isola et al. 2017)
and image inpainting (Liu et al. 2018). Our baseline model
shares almost the same network architecture with guided
contextual attention framework in Figure 2. The only dif-
ference is that the baseline model replaces GCA blocks with
identity layers and has no image feature block. The input
to this baseline network is a cropped image patch and a
3-channel one-hot trimap which are concatenated as a 6-
channel input. The output is corresponding estimated alpha
matte. The baseline structure is built as an encoder-decoder
network with stacked residual blocks (He et al. 2016).

Since the low-level features play a crucial role in retain-
ing the detailed texture information in alpha mattes, in our
customized baseline model, the decoder combines encoder
features just before upsampling blocks instead of after each
upsampling block. Such a design can avoid more convolu-
tions on the encoder features, which are supposed to pro-
vide lower-level feature. We also use a two layer short cut
block to align channels of encoder features for feature fu-
sion. Moreover, in contrast to the typical U-Net structure
which only combines different middle-level features, we di-
rectly forward the original input to the last convolutional
layer through a short cut block instead. These features do
not share any computation with the stem. Hence, this short
cut branch only focuses on detailed textures and gradients.

In addition to the widely used batch normalization (Ioffe
and Szegedy 2015), we introduce the spectral normalization
(Miyato et al. 2018) to each convolutional layer to add a
constraint on Lipschitz constant of the network and stable
the training, which is prevalent in image generation tasks
(Brock, Donahue, and Simonyan 2019; Zhang et al. 2019).

Loss Function

Our network only leverages one alpha prediction loss. The
alpha prediction loss is defined as an absolute difference be-
tween predicted and ground-truth alpha matte averaged over
the unknown area:

L =
1

|U|
∑
i∈U

|α̂i − αi|, (2)

where U indicates the region labeled as unknown in the
trimap, α̂i and αi denote the predicted and ground-truth
value of alpha matte as position i.

There are some losses proposed in prior work for the
deep image matting tasks, like compositional loss (Xu et
al. 2017), gradient loss (Tang et al. 2019) and Gabor loss
(Li et al. 2019). Compositional loss used in Deep Matting
(Xu et al. 2017) is the absolute difference between the orig-
inal input image and predicted image composited by the
ground-truth foreground, background and the predicted al-
pha mattes. The gradient loss calculates the averaged abso-
lute difference between the gradient magnitude of predicted
and ground-truth alpha mattes in the unknown region. Ga-
bor loss proposed in (Li et al. 2019) substitutes the gradient
operator with a bundle of Gabor filters and aims to have a
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Table 1: Ablation study on data augmentation and differ-
ent loss functions with baseline structure. The quantitative
results are tested on Composition-1k testing set. Aug: data
augmentation; Rec: alpha prediction loss; Comp: composi-
tional loss; GradL: gradient loss; Gabor: Gabor loss.

Aug Rec Comp GradL Gabor MSE Grad

� � 0.0106 21.53
� � � 0.0107 21.85
� � � 0.0108 22.51
� � � 0.0109 20.66

� 0.0146 32.01

more comprehensive supervision on textures and gradients
than gradient loss.

We delve into these losses to reveal whether involv-
ing different losses can benefit the alpha matte estimation
in our baseline model. We provide an ablation study on
Composition-1k testing set (Xu et al. 2017) in Table 1. As
Table 1 shows, the use of compositional loss does not bring
any notable difference under MSE and Gradient error, and
both errors increase when we incorporate the gradient loss
and alpha prediction loss. Although the adoption of Gabor
loss can reduce the Gradient error to some degree, it also
slightly increases the MSE. Consequently, we only opt for
the alpha prediction loss in our model.

Data Augmentation

Since the most dominant image matting dataset proposed by
Xu et al. only contains 431 foreground objects for training.
We treat the data augmentation as a necessity of our baseline
model. We introduce a sequence of data augmentation.

Firstly, following the data augmentation in (Tang et al.
2019), we randomly select two foreground object images
with a probability of 0.5 and combine them to obtain a new
foreground object as well as a new alpha image. Subse-
quently, the foreground object and alpha image will be re-
sized to 640× 640 images with a probability of 0.25. In this
way, the network can nearly see the whole foreground image
instead of a cropped snippet. Then, a random affine transfor-
mation are applied to the foreground image and the corre-
sponding alpha image. We define a random rotation, scaling,
shearing as well as the vertical and horizontal flipping in this
affine transformation. Afterwards, trimaps are generated by
a dilation and an erosion on alpha images with random num-
ber of pixels ranging from 5 to 29. With the trimap obtained,
we randomly crop one 512×512 patch from each foreground
image, corresponding alpha and trimap respectively. All of
the cropped patches are centered on an unknown region. The
foreground images are then converted to HSV space, and dif-
ferent jitters are imposed to the hue, saturation and value. Fi-
nally, we randomly select one background image from MS
COCO dataset (Lin et al. 2014) for each foreground patch
and composite them to get the input image.

To demonstrate the effectiveness of data augmentation,
we conduct an experiment with minimal data augmentation.
In this case, only two necessary operations, image cropping
and trimap dilation are retained. More augmentations like
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Figure 3: The illustration of the guided contextual attention
block. Computation is implemented as a convolution or a de-
convolution. Two additional 1 × 1 convolutional layers for
adaptation are not shown in this figure to keep neat. One is
applied to the input image feature before extracting patches,
and the other one is applied to the result of propagation be-
fore the element-wise summation.

random image resize and flipping, which are widely used
in most of previous deep image matting methods (Xu et al.
2017; Lutz, Amplianitis, and Smolic 2018; Tang et al. 2019;
Lu et al. 2019), are not included in this experiment. We
treat this experiment setting as no data augmentation. The
experimental results are also listed in Table 1. We can see
that without additional augmentation, our baseline model al-
ready achieves comparable performance with Deep Matting.

Guided Contextual Attention Module

The guided contextual attention module contains two kinds
of components, an image feature extractor block for low-
level image feature and one or more guided contextual at-
tention blocks for information propagation.

Low-level Image Feature

Most of the affinity-based approaches have a basic induc-
tive bias that local regions with almost identical appearance
should have similar opacity. This inductive bias allows the
alpha value propagates from the known region of a trimap to
the unknown region based on affinity graph, which can often
yields impressive alpha matte prediction.

Motivated by this, we define two different feature flows in
our framework (Figure 2): alpha feature flow (blue arrows)
and image feature flow (yellow arrows). Alpha features are
generated from the 6-channel input which is a concatenation
of original image and trimap. The final alpha matte can be
predicted directly from alpha features. Low-level image fea-
tures contrast with the high-level alpha features. These fea-
tures are generated only from the input image by a sequence
of three convolutional layer with stride 2, which are anal-
ogous to the local color statistics in conventional affinity-
based methods.
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In other words, the alpha feature contains opacity infor-
mation and low-level image feature contains appearance in-
formation. Given both opacity and appearance information,
we can build an affinity graph and carry out opacity propa-
gation as affinity-based methods. Specifically, we utilize the
low-level image feature to guide the information flow on al-
pha features.

Guided Contextual Attention

Inspired by the contextual attention for image inpainting
proposed in (Yu et al. 2018), we introduce our guided con-
textual attention block.

As shown in Figure 3, the guided contextual attention
leverages both the image feature and alpha feature. Firstly,
the image feature are divided into known part and unknown
part and 3 × 3 patches are extracted from the whole image
feature. Each feature patch represents the appearance infor-
mation at a specific position. We reshape the patches as con-
volutional kernels. In order to measure the correlation be-
tween an unknown region patch Ux,y centered on (x, y) and
an image feature patch Ix′,y′ centered on (x′, y′) , the simi-
larity is defined as the normalized inner product:

s(x,y),(x′,y′) =

{
λ (x, y) = (x′, y′);
〈 Ux,y

‖Ux,y‖ ,
Ix′,y′

‖Ix′,y′‖ 〉 otherwise,
(3)

where Ux,y ∈ U is also an element of the image feature
patch set I, i.e. U ⊆ I. The constant λ is a punishment
hyperparameter that we use −104 in our model, which can
avoid a large correlation between each unknown patch and
itself. In implementation, this similarity is computed by a
convolution between unknown region features and kernels
reshaped from image feature patches. Given the correlation,
we carry out a scaled softmax along (x′, y′) dimension to
attain the guided attention score for each patch as following,

a(x,y),(x′,y′) = softmax(w(U ,K, x′, y′)s(x,y),(x′,y′)), (4)

w(U ,K, x′, y′) =

⎧⎨
⎩
clamp(

√
|U|
|K| ) Ix′,y′ ∈ U ;

clamp(
√

|K|
|U| ) Ix′,y′ ∈ K,

(5)

clamp(φ) = min(max(φ, 0.1), 10), (6)
in which w(·) is a weight function and K = I − U is the
set of image feature patches from known region. As distinct
from image inpainting task, the area of unknown region in
a trimap is not under control. In many input trimaps, there
are overwhelming unknown region and scarcely any known
pixel. Thus, typically it is not feasible that only propagate
the opacity information from the known region to unknown
part. In our guided contextual attention, we let the unknown
part borrow features from both known patches and unknown
ones. Different weights are assigned to known and unknown
patches based on the area of each region as the weight func-
tion defined in Eq. (5). If the area of known region is larger,
the known patches can convey more accurate appearance in-
formation which exposes the difference between foreground
and background, hence we weigh known patches with a
larger weight. Whereas, if the unknown region has an over-
whelming area, the known patches only provide some local

Table 2: The quantitative results on Composition-1k test-
ing set. Best results are emphasized in bold. (- indicates not
given in the original paper.)

Methods MSE SAD Grad Conn

Learning Based Matting 0.048 113.9 91.6 122.2
Closed-Form Matting 0.091 168.1 126.9 167.9
KNN Matting 0.103 175.4 124.1 176.4
Deep Matting 0.014 50.4 31.0 50.8
IndexNet Matting 0.013 45.8 25.9 43.7
SampleNet Matting 0.0099 40.35 - -

Baseline 0.0106 40.62 21.53 38.43
Ours 0.0091 35.28 16.92 32.53

appearance information, which may harm the opacity prop-
agation. Then a small weight is assigned to known patches.

When we get guided attention scores from image features,
we do the propagation on alpha features based on the affin-
ity graph defined by guided attention. Analogous to image
features, patches are extracted and reshaped as filter ker-
nels from alpha features. The information propagation is
implemented as a deconvolution between guided attention
scores and reshaped alpha feature patches. This deconvolu-
tion yields a reconstruction of alpha features in the unknown
area and the values of overlapped pixels in the deconvolution
are averaged. Finally, we combine the input alpha features
and the propagation result by an element-wise summation.
This element-wise summation works as a residual connec-
tion which can stable the training.

Network with Guided Contextual Attention

Most of the affinity-based matting methods result in a
closed-form solution based on the graph Laplacian (Levin,
Lischinski, and Weiss 2008; Lee and Wu 2011; Chen, Li,
and Tang 2013). The closed-form solution can be seen as a
fixed point of the propagation or a limitation of infinite prop-
agation iterations (Zhou et al. 2004). Motivated by this, we
stick two guided contextual attention blocks to the encoder
and decoder symmetrically in our stem. It aims to propagate
more times in our model and take full advantage of the opac-
ity information flow.

When we compute the guided contextual attention on
higher-resolution features, more detailed appearance in-
formation will be attended. However, on the other hand,
the computational complexity of the attention block is
O(c(hw)2), where c, h, w are the channels, height and width
of the feature map respectively. Therefore, we append two
guided contextual attention blocks to the stage with 64× 64
feature maps.

The network is trained for 200, 000 iterations with a batch
size of 40 in total on the Adobe Image Matting dataset (Xu
et al. 2017). We perform optimization using Adam optimizer
(Kingma and Ba 2014) with β1 = 0.5 and β2 = 0.999.
The learning rate is initialized to 10−4. Warmup and cosine
decay (Loshchilov and Hutter 2016; Goyal et al. 2017; He et
al. 2019) are applied to the learning rate.
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Figure 4: The visual comparison results on Adobe Composition-1k. From left to right, the original image, trimap, ground-truth,
Deep Matting (Xu et al. 2017), IndexNet Matting (Lu et al. 2019), baseline and ours.

Results

In this section we report the evaluation results of our pro-
posed model on two datasets, the Composition-1k testing set
and alphamatting.com dataset. Both quantitative and qualita-
tive results are shown in this section. We evaluate the quanti-
tative results under the Sum of Absolute Differences (SAD),
Mean Squared Error (MSE), Gradient error (Grad) and Con-
nectivity error (Conn) proposed by (Rhemann et al. 2009).

Composition-1k Testing Dataset

The Composition-1k testing dataset proposed in (Xu et al.
2017) contains 1000 testing images which are composed
from 50 foreground objects and 1000 different background
images from Pascal VOC dataset (Everingham et al. 2015).

We compare our approach and the baseline model with
three state-of-the-art deep image matting methods: Deep
Matting (Xu et al. 2017), IndexNet Matting (Lu et al. 2019)
and SampleNet Matting (Tang et al. 2019), as well as three
conventional hand-crafted algorithms: Learning Based Mat-
ting (Zheng and Kambhamettu 2009), Closed-Form Mat-
ting (Levin, Lischinski, and Weiss 2008) and KNN Mat-
ting (Chen, Li, and Tang 2013). The quantitative results are
shown in Table 2. Our method outperforms all of the state-
of-the-art approaches. In addition, our baseline model also
get better results than some of the top performing methods.
The effectiveness of the proposed guided contextual atten-
tion can be validated by the results displayed in Table 2.

Some qualitative results are given in Figure 4. The re-
sults of Deep Matting and IndexNet Matting are generated
by source codes and pretrained models provided in (Lu et al.
2019). As displayed in Figure 4, our approach achieves bet-
ter performance on different foreground objects, especially

in the semitransparent regions. Advantages are more obvi-
ous with a larger unknown region. This good performance
profits from the information flow between feature patches
with similar appearance features.

Additionally, our proposed method can evaluate each im-
age in Composition-1k testing dataset as a whole on a single
Nvidia GTX 1080 with 8GB memory. Since we take each
image as a whole in our network without scaling, the guided
contextual attention blocks are applied to feature maps with
a much higher resolution than 64×64 in training phase. This
results in a better performance in the detailed texture.

Alphamatting.com Benchmark dataset

The alphamatting.com benchmark dataset (Rhemann et al.
2009) has eight different images. For each testing image,
there are three corresponding trimaps, namely, ”small”,
”large” and ”user”. The methods on the benchmark are
ranked by the averaged rank over 24 alpha matte estimations
in terms of four different metrics. We evaluate our method on
the the alphamatting.com benchmark, and show the scores
in Table 3. Some top approaches in the benchmark are also
displayed for comparison.

As displayed in Table 3, GCA Matting ranks the first place
under the Gradient Error metric in the benchmark. The eval-
uation results of our method under the ”large” and ”user”
trimaps are much better than the other top approaches. The
image matting becomes more difficult as the trimap has a
larger unknown region. Therefore, we can say that our ap-
proach is more robust to changes in the area of unknown
region. Additionally, our approach has almost the same over-
all ranks with the SampleNet under the MSE metric. Gener-
ally, the proposed GCA Matting is one of the top performing
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Table 3: Our scores in the alpha matting benchmark, S, L and U denote the three trimap types, small, large and user, included
in the benchmark. (Bold numbers indicate scores which rank the 1st place in the benchmark at the time of submission)

Gradient Error Average Rank Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net
Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Ours 5.2 5 4 6.5 0.1 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.3 1.3 1.6 1.9 0.7 0.8 1.4 0.6 0.7 0.6 0.4 0.4 0.4
SampleNet Matting 7.2 3.6 4.4 13.6 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.3 0.3 0.1 0.2 0.5 1.1 1.5 2.7 0.6 0.9 1 0.8 0.9 0.9 0.4 0.4 0.4
IndexNet Matting 10.3 8.6 8.8 13.6 0.2 0.2 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.4 1.7 1.9 2.5 1 1.1 1.3 1.1 1.2 1.2 0.4 0.5 0.5
AlphaGAN 14.9 13.612.518.5 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.4 1.8 2.4 2.7 1.1 1.4 1.5 0.9 1.1 1 0.5 0.5 0.6
Deep Matting 15.6 12 12.322.5 0.4 0.4 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.6 1.3 1.5 2.4 0.8 0.9 1.3 0.7 0.8 1.1 0.4 0.5 0.5
Information-flow matting 18.3 21.516.516.8 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 1.7 1.8 2.2 0.9 1.3 1.3 1.5 1.4 0.8 0.5 0.6 0.5

Figure 5: The alpha matte predictions of the test images from alphamatting.com benchmark. From left to right, the original
image, trimap, Information-flow Matting (Aksoy, Ozan Aydin, and Pollefeys 2017) , Deep Matting (Xu et al. 2017), AlphaGAN
(Lutz, Amplianitis, and Smolic 2018), IndexNet Matting (Lu et al. 2019), SampleNet Matting (Tang et al. 2019) and ours.

method on this benchmark dataset.
We provide some of the visual examples in Figure 5. The

results of our method and some top algorithms on ”Ele-
phant” and ”Plastic bag” are displayed to demonstrate the
good performance of our approach. For example, in the test
image ”Plastic bag”, most of the previous methods make a
mistake at the iron wire. However, our method learns from
the contextual information in the surrounding background
patches and predicts these pixels correctly.

Visualization of Attention Map

We visualize the attention map learned in the guided con-
textual attention block by demonstrating the pixel position
with the largest attention score. Unlike the offset map widely
used in optical flow estimation (Dosovitskiy et al. 2015;
Hui, Tang, and Loy 2018; Sun et al. 2018) and image in-
painting (Yu et al. 2018) which indicates the relative dis-
placement of each pixel, our attention map demonstrates the
absolute position of the corresponding pixel with highest at-
tention activation. From this attention map, we can easily
identify where the opacity information is propagated from
for each feature pixel. As we can see in Figure 1, there is
no information flow in the known region and feature patches
in the unknown region tend to borrow information from the
patches with similar appearance. Figure 1 reveals where our
GCA blocks attend to physically in the input image. Since
there is an adaption convolutional layer in the guided con-
textual attention block before patch extraction on image fea-
tures, attention maps from two attention blocks are not iden-
tical. The weights of known and unknown part are shown in
the top-left corner of the attention map.

From the attention offset map in Figure 1, we can easily
recognize the car in the sieve. The light pink patches at the
center of the sieve indicate that these features are propagated
from the left part of the car. While blue patches show the

features which are borrowed from the right-hand side road.
These propagated features will assist in the identification of
foreground and background in ensuing convolutional layers.

Conclusions

In this paper, we propose to solve the image matting problem
by opacity information propagation in an end-to-end neural
network. Consequently, a guided contextual attention mod-
ule is introduced to imitate the affinity-based propagation
method by a fully convolutional manner. In the proposed at-
tention module, the opacity information is transmitted be-
tween alpha features under the guidance of appearance in-
formation. The evaluation results on both Composition-1k
testing dataset and alphamatting.com dataset show the supe-
riority of our proposed method.

Acknowledgement

This paper is supported by NSFC (No.61772330,
61533012, 61876109), the advanced research project
(No.61403120201), Shanghai authentication key Lab.
(2017XCWZK01), Technology Committee the interdis-
ciplinary Program of Shanghai Jiao Tong University
(YG2015MS43). We also would like to thank the help and
support from Versa.

References
Aksoy, Y.; Ozan Aydin, T.; and Pollefeys, M. 2017. Designing
effective inter-pixel information flow for natural image matting. In
CVPR.
Brock, A.; Donahue, J.; and Simonyan, K. 2019. Large scale gan
training for high fidelity natural image synthesis. In ICLR.
Chen, Q.; Li, D.; and Tang, C.-K. 2013. Knn matting. IEEE
TPAMI.
Cho, D.; Tai, Y.-W.; and Kweon, I. 2016. Natural image matting
using deep convolutional neural networks. In ECCV.

11456



Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazirbas, C.;
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