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Abstract

Recent development of adversarial attacks has proven
that ensemble-based methods outperform traditional, non-
ensemble ones in black-box attack. However, as it is compu-
tationally prohibitive to acquire a family of diverse models,
these methods achieve inferior performance constrained by
the limited number of models to be ensembled.
In this paper, we propose Ghost Networks to improve the
transferability of adversarial examples. The critical principle
of ghost networks is to apply feature-level perturbations to
an existing model to potentially create a huge set of diverse
models. After that, models are subsequently fused by longi-
tudinal ensemble. Extensive experimental results suggest that
the number of networks is essential for improving the trans-
ferability of adversarial examples, but it is less necessary to
independently train different networks and ensemble them in
an intensive aggregation way. Instead, our work can be used
as a computationally cheap and easily applied plug-in to im-
prove adversarial approaches both in single-model and multi-
model attack, compatible with residual and non-residual net-
works. By reproducing the NeurIPS 2017 adversarial compe-
tition, our method outperforms the No.1 attack submission
by a large margin, demonstrating its effectiveness and ef-
ficiency. Code is available at https://github.com/LiYingwei/
ghost-network.

Introduction

In recent years, Convolutional Neural Networks (CNNs)
have greatly advanced performance in various vision tasks,
including image recognition (He et al. 2016b; Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman
2015), object detection (Ren et al. 2015; Girshick 2015),
and semantic segmentation (Chen et al. 2018), etc.. How-
ever, it has been observed (Szegedy et al. 2014; Goodfellow,
Shlens, and Szegedy 2015) that adding human impercepti-
ble perturbations to input image can cause CNNs to make
incorrect predictions even if the original image can be cor-
rectly classified. These intentionally generated images are
usually called adversarial examples (Goodfellow, Shlens,
and Szegedy 2015; Kurakin, Goodfellow, and Bengio 2017a;
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Figure 1: An illustration of the capacity of the proposed
ghost networks in learning transferable adversarial exam-
ples. The base model is ResNet-50, which is used to gen-
erate adversarial examples and to generate ghost networks.
The evaluation is done on Inception v3.

Szegedy et al. 2014). Besides image classification, adver-
sarial examples also exist on other tasks (Xie et al. 2017;
Bai et al. 2019; Sun et al. 2019; Tang et al. 2019; Li et al.
2019).

Two attack settings are later developed, i.e., white-box
attack and black-box attack. In white-box attack, attackers
can access the model (Carlini and Wagner 2017b; Kurakin,
Goodfellow, and Bengio 2017a). By contrast, in black-box
attack, attackers cannot access the target model. A typi-
cal solution is to generate adversarial examples with strong
transferability (transferable adversarial examples).

The transferability of adversarial examples refers to the
property that the same input can successfully attack different
models (Szegedy et al. 2014). Taking advantage of the trans-
ferability, (Papernot, McDaniel, and Goodfellow 2016) de-
velop a black-box (attackers cannot access the target model)
attack system by attacking a substitute model. (Liu et al.
2017) suggest attacking an ensemble of substitute models
could improve transferability. Based on (Liu et al. 2017) and
I-FGSM, several methods are developed to further improve
the transferability by smoothing gradient (Dong et al. 2018;
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Zhou et al. 2018). In this work, we focus on learning trans-
ferable adversarial examples for black-box attack.

Focusing on the transferability, many attempts have been
made, such as attacking a substitute model (Papernot, Mc-
Daniel, and Goodfellow 2016) or an ensemble of multi-
ple substitute models (Liu et al. 2017; Dong et al. 2018;
Zhou et al. 2018). In particular, the ensemble-based attacks
obtain much better performance than the non-ensemble
ones, and thus have attracted many attentions. Almost all
top-ranked entries in competitions use ensemble-based at-
tacks (Kurakin et al. 2018).

However, the ensemble-based attacks suffer from expen-
sive computational overhead, making it difficult to generate
transferable adversarial examples efficiently. First, in order
to acquire good (i.e., low test error) and diverse (i.e., con-
verge at different local minima) models, people usually inde-
pendently train them from scratch. Second, to leverage their
complementarity, existing methods adopt an intensive aggre-
gation way to fuse the outputs of those networks (e.g., log-
its). Consequently, attacking methods in competitions (like
Kurakin et al. (2018)) generally ensemble at most only ten
networks restricted by the high computational cost. How-
ever, efficiently attacking a huge ensemble of models is crit-
ical.

How to improve the transferability of adversarial exam-
ples without additional cost remains a challenging task.
Baluja and Fischer; Poursaeed et al.; Xiao et al. (2018; 2017;
2018) suggest that re-training networks can achieve high
transferability. Chen et al.; Bhagoji et al.; Guo, Frank, and
Weinberger (2017; 2018; 2018) propose query-based meth-
ods to attack black-box model without substitute models,
which require extensive information from the target model.
In conclusion, acquiring and integrating information from
various models to approximate the target model is the key
to achieving better transferability. However, most works are
inefficient and inadequate to learn adversarial examples with
strong transferability. Our work addresses this issue.

In this paper, we propose a highly efficient alternative
called Ghost Networks to address this issue. As shown in
Fig. 1, the basic principle is to generate a vast number of vir-
tual models built on a base network (a network trained from
scratch). The word “virtual” means that these networks are
not stored or trained (therefore termed as ghost networks).
Instead, they are generated by imposing erosion on certain
intermediate structures of the base network on-the-fly. How-
ever, with an increasing number of models we have, a stan-
dard ensemble (Liu et al. 2017) would be problematic ow-
ing to its complexity. Accordingly, we propose Longitudi-
nal Ensemble, a specific fusion method for ghost networks,
which conducts an implicit ensemble during attack itera-
tions. Consequently, adversarial examples can be easily gen-
erated without sacrificing computational efficiency.

To summarize, the contributions of our work are divided
into three folds: 1) Our work is the first one to explore
network erosion to learn transferable adversarial examples,
not solely relying on multi-network ensemble. 2) We ob-
serve that the number of different networks used for en-
semble (intrinsic networks) is essential for transferability.
However, it is less necessary to train different models inde-

pendently. Ghost networks can be a competitive alternative
with extremely low complexity. 3) Ghost network is generic.
Seemingly an ensemble method for multi-model attacks, it
can also be applied to single-model attacks where only one
trained model is accessible. Furthermore, it is also compati-
ble with various network structures, attack methods, and ad-
versarial settings.

Extensive experimental results demonstrate our method
improves the transferability of adversarial examples, acting
as a computationally cheap plug-in. In particular, by repro-
ducing NeurIPS 2017 adversarial competition (Kurakin et
al. 2018), our work outperforms the No.1 attack submission
by a large margin, demonstrating its effectiveness and effi-
ciency.

Backgrounds
This section introduces two iterative-based methods, Itera-
tive Fast Gradient Sign Method (I-FGSM) (Kurakin, Good-
fellow, and Bengio 2017a) and Momentum I-FGSM (MI-
FGSM) (Dong et al. 2018).

I-FGSM was proposed by Kurakin et al. (Kurakin, Good-
fellow, and Bengio 2017a), and learns the adversarial exam-
ple Iadv by

Iadv
0 = I,

Iadv
n+1 = Clipε

I{Iadv
n + αsign

(∇IL(I
adv
n , ytrue; θ)

)}, (1)

where L is the loss function of a network with parameter θ.
ClipεI is the clip function which ensures the generated ad-
versarial example is within the ε-ball of the original image I
with ground-truth label ytrue. n is the iteration number and α
is the step size.

MI-FGSM was proposed by Dong et al. (Dong et al.
2018), and integrates the momentum term into the attack
process to stabilize the update directions and escape from
poor local maxima. At the n-th iteration, the accumulated
gradient gn+1 is calculated by:

gn+1 = μ · gn +
∇IL(I

adv
n , ytrue; θ)

||∇IL(Iadv
n , ytrue; θ)||1 , (2)

where μ is the decay factor of the momentum term. The sign
of the accumulated gradient gn+1 is then used to generate
the adversarial example, by

Iadv
n+1 = ClipεI{Iadv

n + αsign(gn+1)}. (3)

Ghost Networks
The goal of this work is to learn transferable adversarial ex-
amples. Given a clean image I , we want to find an adver-
sarial example Iadv = I + r, which is still visually similar
to I after adding adversarial noise ‖r‖∞ < ε but fools the
classifier.

Without additional cost, we generate a huge number of
ghost networks from a single trained model for later at-
tack by applying feature-level perturbations to non-residual
and residual based networks in the next two subsections re-
spectively. Then we present an efficient customized fusion
method, longitudinal ensemble, leading to ensemble a huge
amount of ghost networks possible.
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Dropout Erosion

Revisit Dropout. Dropout (Srivastava et al. 2014) is one
of the most popular techniques in deep learning. By ran-
domly dropping out units from the model during training
phase, dropout can prevent deep neural networks from over-
fitting. Let xl be the activation in the lth layer, at training
time, the output yl after the dropout layer can be mathemat-
ically defined as

yl = rl ∗ xl,

rl ∼ Bernoulli(p),
(4)

where ∗ denotes an element-wise product and Bernoulli(p)
denotes the Bernoulli distribution with the probability p of
elements in rl being 1. At the test time, units in xl are always
present, thus to keep the output yl the same as the expected
output at the training time, yl is set to be pxl.

Perturb Dropout. Dropout provides an efficient way of
approximately combining different neural network architec-
tures and thereby prevents overfitting. Inspired by this, we
propose to generate ghost networks by inserting the dropout
layer. To make ghost networks as diverse as possible, we
densely apply dropout to every block throughout the base
network, rather than simply enable default dropout lay-
ers (Carlini and Wagner 2017a). From our preliminary ex-
periments, the latter cannot provide transferability. There-
fore, diversity is not limited to high-level features but ap-
plied to all feature levels.

Let fl be the function between the ith and (i + 1)th

layer, i.e., xl+1 = fl(xl), then the output gl(xl) after ap-
plying dropout erosion is

gl(xl) = fl

(rl ∗ xl

1− Λ

)
,

rl ∼ Bernoulli(1− Λ),
(5)

where Λ = 1− p, and p has the same meaning as in Eq. (4),
indicating the probability that xl is preserved. To keep the
expected input of fl(·) consistent after erosion, the activa-
tion of xl should be divided by 1− Λ.

During the inference, the output feature after (L − 1)-th
dropout layer (L > l) is

xL = gL−1 ◦ gL−2 ◦ gL−3 ◦ · · · ◦ gl(xl), (6)

where ◦ denotes composite function, i.e., g ◦ f(x) =
g (f(x)).

By combining Eq. (5) and Eq. (6), we observe that when
Λ = 0 (means p = 1), all elements in rl equal to 1. In
this case, we do not impose any perturbations to the base
network. When Λ gradually increases to 1 (p decreases to
0), the ratio of elements dropped out is Λ. In other words,
(1 − Λ) of elements can be back-propagated. Hence, larger
Λ implies a heavier erosion on the base network. Therefore,
we define Λ to be the magnitude of erosion.

When perturbing dropout layers, the gradient in back-
propagation can be written as

∂xL

∂xl
=

∏
l≤i<L

(
ri

1− Λ
∗ ∂

∂xi
fi

(ri ∗ xi

1− Λ

))
. (7)

(a) (b)

Figure 2: An illustration of skip connection (a, Eq. (8)) and
skip connection erosion (b, Eq. (9)).

As shown in Eq. (7), deeper networks with larger L are in-
fluenced more easily according to the product rule. We will
experimentally analyze the impact of Λ in the experiments
part.

Generate Ghost Network. The generation of ghost net-
works via perturbing dropout layer proceeds in three steps:
1) randomly sample a parameter set from the Bernoulli dis-
tribution r = {r1, r2..., rl, ..., rL}; 2) apply Eq. (5) to the
base network with the parameter set r and get the perturbed
network; 3) repeat step 1) and step 2) to independently sam-
ple r for N times and obtain a pool of ghost networks
M = {M1,M2, ...,MN} which can be used for adversar-
ial attacks.

Skip Connection Erosion

Revisit Skip Connection. He et al. (2016a) propose skip
connections in CNNs, which makes it feasible to train very
deep neural networks. The residual block is defined by

xl+1 = h(xl) + F (xl,Wl), (8)
where xl and xl+1 are the input and output to the l-th resid-
ual block with the weights Wl. F (·) denotes the residual
function. As suggested in He et al. (2016b), it is crucial to
uses the identity skip connection, i.e., h(xl) = xl, to fa-
cilitate the residual learning process, otherwise the network
may not converge to a good local minima.

Perturb Skip Connection. Following the principle of
skip connection, we propose to perturb skip connections to
generate ghost networks.

Specifically, the network weights are first learned using
identity skip connections, then switched to the randomized
skip connection (see Fig. 2). To this end, we apply random-
ized modulating scalar λl to the l-th residual block by

xl+1 = λlxl + F (xl,Wl), (9)
where λl is drawn from the uniform distribution U [1 −
Λ, 1 + Λ]. One may have observed several similar formula-
tions on skip connection to improve the classification perfor-
mance, e.g., the gated inference in Veit and Belongie (2018)
and lesion study in Veit, Wilber, and Belongie (2016). How-
ever, our work focuses on attacking the model with a ran-
domized perturbation on skip connection, i.e., the model is
not trained via Eq. (9).
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(a)

(b)

Figure 3: The illustration of the standard ensemble (a) and
the proposed longitudinal ensemble (b).

During inference, the output after (L− 1)th layer is

xL = (
L−1∏
i=l

λi)xl +
L−1∑
i=l

(
L−1∏

j=i+1

λj)F (xi,Wi). (10)

The gradient in back-propagation is then written as

∂xL

∂xl
= (

L−1∏
i=l

λi) +

L−1∑
i=l

(

L−1∏
j=i+1

λj)
∂F (xi,Wi)

∂xl
. (11)

Similar to the analysis of dropout erosion, we conclude from
Eq. (10) and Eq. (11) that a larger Λ will have a greater in-
fluence on the base network and deeper networks are easily
influenced.

Generate Ghost Network. The generation of ghost net-
works via perturbing skip connections is similar to that via
perturbing the dropout layer. The only difference is we need
to sample a set of modulating scalars λ = {λ1, λ2, ..., λL}
from the uniform distribution for each skip connection.

Longitudinal Ensemble

The existing iteration-based ensemble-attack approach (Liu
et al. 2017) require averaging the outputs (e.g., logits, clas-
sification probabilities, losses) of different networks. How-
ever, such a standard ensemble is too costly and inefficient
for us because we can readily obtain a huge candidate pool
of qualified neural models by using Ghost Networks.

To remedy this, we propose longitudinal ensemble, a spe-
cific fusion method for Ghost Networks, which constructs
an implicit ensemble of the ghost networks by randomiz-
ing the perturbations during iterations of adversarial attack
(e.g., I-FGSM (Kurakin, Goodfellow, and Bengio 2017a)
and MI-FGSM (Dong et al. 2018)). Suppose we have a base
model B, which can generate a pool of networks M =
{M1,M2, ...,MN}, where N is the model number. The crit-
ical step of longitudinal ensemble is that at the j-th itera-
tion, we attack the ghost network Mj only. In comparison,
for each iteration, standard ensemble methods require fus-
ing gradients of all the models in the model pool M , leading
to high computational cost. We illustrate the difference be-
tween the standard ensemble and the longitudinal ensemble
method in Fig. 3.

The longitudinal ensemble shares the same prior as Liu
et al. (2017) that if an adversarial example is generated by

0 6 12 18 24 30

( 10
-3

)

0

0.2

0.4

0.6

0.8

T
o
p

-1
 A

cc
u

ra
cy

Inc-v3

Inc-v4

(a)

0 6 12 18 24 30

( 10
-2

)

0

0.2

0.4

0.6

0.8

T
o
p

-1
 A

cc
u

ra
cy

Res-50

Res-101

Res-152

IncRes-v2

(b)

Figure 4: The top-1 accuracy of dropout erosion (a) and skip
connection erosion (b) with different magnitude Λ .

Figure 5: The illustration of the mean diversity (×10−2)
of any pair of networks over the ILSVRC 2012 validation
set.The higher value indicates larger diversity.

attacking multiple networks, it is more likely to transfer to
other networks. However, longitudinal ensemble method re-
moves duplicated computations by sampling only one model
from the pool rather than using all models in each iteration.

There are three noteworthy comments here. First, ghost
networks are never stored or trained, reducing both addi-
tional time and space cost. Second, it is evident from Fig. 3
that attackers can combine Liu et al. (2017) and longitudi-
nal ensemble of ghost networks. Finally, it is easy to extend
longitudinal ensemble to multi-model attack by treating each
base model as a branch (details are in experimental evalua-
tions).

Experiments

In this section, we give a comprehensive experimental eval-
uation of the proposed Ghost Networks. In order to dis-
tinguish models trained from scratch and the ghost net-
works we generate, we call the former one the base net-
work or base model in the rest of this paper. We release
source code and provide additional experimental results in
https://github.com/LiYingwei/ghost-network.

Experimental Setup

Base Networks. 9 base models are used in our exper-
iments, including 6 normally trained models, i.e., Resnet
v2-{50, 101, 152} (Res-{50, 101, 152}) (He et al. 2016b),
Inception v3 (Inc-v3) (Szegedy et al. 2017), Inception v4
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Methods Settings Res-50 Res-101 Res-152 IncRes-v2 Inc-v3 Inc-v4 CCMT #S #L #I I- MI- I- MI- I- MI- I- MI- I- MI- I- MI-
Exp. S1 B 1 1 1 16.3 29.4 17.8 31.3 16.7 29.6 8.3 20.0 5.3 13.7 7.3 18.4 1
Exp. S2 M 1 1 1 8.4 17.4 6.1 19.9 6.4 17.9 5.7 15.2 1.7 5.6 1.9 7.2 1
Exp. S3 M 1 10 10 23.4 39.4 23.7 40.1 21.1 38.0 11.2 26.8 6.3 17.6 10.0 22.4 1
Exp. S4 M 10 1 10 28.8 44.5 29.9 43.2 25.6 41.9 13.1 30.4 6.3 17.9 9.3 25.6 10
Exp. S5 M 10 10 100 35.9 50.6 35.9 51.4 60.1 64.9 14.6 33.3 12.3 28.3 19.4 37.4 10

Table 1: The average black-box attack rate (%) comparison of different methods over two iterative methods, “I-” for I-FGSM
and “MI-” for MI-FGSM. MT denotes model type (either B for the base model, or M for ghost networks), #I denotes the
number of intrinsic models, and #S (or #L) denotes the number of models for standard (or longitudinal) ensemble in each
iteration (branch). CC denotes the computational cost, which is a relative value and we set the CC of Exp. S1 as 1. We marked
all highest attack success rate under the same CC in boldface.
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Figure 6: The attack rate (%) comparison when attacking Res-50 (a)(b) and Inc-v3 (c)(d) with I-FGSM (a)(c) and MI-FGSM
(b)(d).

Methods Settings Attack Rate CCMT #B #S #L #I I- MI-
Exp. M1 B 1 1 1 1 25.5 37.2 1
Exp. M2 B 3 3 1 3 33.6 46.8 3
Exp. M3 M 1 3 1 3 28.9 37.2 3
Exp. M4 M 3 3 1 3 26.3 40.8 3
Exp. M5 M 1 3 10 30 38.3 52.5 3
Exp. M6 M 3 3 10 30 41.1 54.3 3

Table 2: The comparison of attack rate (%) of multi-model
attack. “I-”, “MI-”, MT, #S, #L, #I and CC have the same
meaning as in Table 1. #B denotes the number of base mod-
els. We test on the 9 networks described in the Experimen-
tal Setup section and report the average performances.

(Inc-v4) and Inception Resnet v2 (IncRes-v2) (Szegedy et
al. 2016), and 3 adversarially-trained models (Tramèr et al.
2018) , i.e., Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens.

Datasets. Because it is less meaningful to attack images
that are originally misclassified, following Xie et al. (2019),
we select 5000 images from the ILSVRC 2012 validation
set, which can be correctly classified by all the 9 base mod-
els.

Attacking Methods. We employ two iteration-based at-
tack methods mentioned in the Backgrounds section to
evaluate the adversarial robustness, i.e., I-FGSM and MI-
FGSM.

Parameter Specification. If not specified otherwise, we
follow the default settings in Kurakin, Goodfellow, and Ben-

gio (2017a), i.e., step size α = 1 and the total iteration num-
ber N = min(ε+ 4, 1.25ε). We set the maximum perturba-
tion ε = 8 (the iteration number N = 10 in this case). For
the momentum term, the decay factor μ is set to be 1 as in
Dong et al. (2018).

Analysis of Ghost Networks

In order to learn adversarial examples with good transfer-
ability, there are generally two requirements for the intrinsic
models. First, each model should have a low test error. Sec-
ond, different models should be diverse (i.e., converge at dif-
ferent local minima). To show the generated ghost networks
are qualified for adversarial attack, we experiment with the
whole ILSVRC 2012 validation set.

Descriptive Capacity. In order to quantitatively measure
the descriptive capacity of the generated ghost networks, we
plot the relationship between the magnitude of erosion Λ and
top-1 classification accuracy.

We apply dropout erosion to non-residual networks (Inc-
v3 and Inc-v4) and skip connection erosion to residual net-
works (Res-50, Res-101, Res-152 and IncRes-v2). Fig. 4 (a)
and (b) present the accuracy curves of the dropout erosion
and skip connection erosion, respectively.

The classification accuracies of different models are nega-
tively correlated to the magnitude of erosion Λ as expected.
By choosing the performance drop approximately equal to
10% as a threshold, we can determine the value of Λ in-
dividually for each network. Specifically, in our following
experiments, Λs are 0.006, 0.012, 0.22, 0.16, 0.12 and 0.08
for Inc-v3, Inc-v4, Res-50, Res-101, Res-152, and IncRes-
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v2 respectively unless otherwise specified. As emphasized
throughout this paper, it is extremely cheap to generate a
huge number of ghost networks that still preserve relative
low error rates.

Model Diversity. To measure diversity, we use Res-50 as
the backbone model. We denote the base Res-50 described
in the Experimental Setup section as Res-50-A, and inde-
pendently train two additional models with the same archi-
tecture, denoted by Res-50-B and Res-50-C. Meanwhile, we
apply skip connection erosion to Res-50-A, then obtain three
ghost networks denoted as Res-50S-A, Res-50S-B, and Res-
50S-C, respectively.

We employ the Jensen-Shannon Divergence (JSD) as the
evaluation metric for model diversity. Concretely, we com-
pute the pairwise similarity of the output probability distri-
bution (i.e., the predictions after softmax layer) for each pair
of networks as in Huang et al. (2017). Given any image, let
X and Y denote the softmax outputs of two networks, then

JSD(X||Y ) =
1

2
D(X‖Z) +

1

2
D(Y ‖Z), (12)

where Z is the average of X and Y , i.e., Z = (X + Y )/2.
D(·) is the Kullback-Leibler divergence.

In Fig. 5, we report the averaged JSD for all pairs of
networks over the ILSVRC 2012 validation set. As can be
drawn, the diversity among ghost networks is comparable or
even more significant than independently trained networks.

Based on the analysis of descriptive capacity and model
diversity, we can see that generated ghost networks can pro-
vide accurate yet diverse descriptions of the data manifold,
which is beneficial to learn transferable adversarial exam-
ples as we will experimentally prove below.

Single-model Attack

Firstly, we evaluate the ghost networks in single-model at-
tack, where attackers can only access one base model B
trained from scratch. To demonstrate the effectiveness of our
method, we design five experimental comparisons. The set-
ting, black-box attack success rate, and properties are shown
in Table 1. The difference among five experiments is the type
of model to attack, the number of models ensembled by stan-
dard ensemble (Liu et al. 2017) in each iteration, and the
number of models ensembled by longitudinal ensemble in
each branch of the standard ensemble. For example, Exp. S5
combines two ensemble methods, that is, we do a standard
ensemble of 10 models for each iteration of attack and a lon-
gitudinal ensemble of 10 models. Therefore, in Exp. S5, the
intrinsic number of models is 100.

We attack 6 normally-trained networks and test on all the
9 networks (include 3 adversarially-trained networks). The
attack rate is shown in Table 1. To save space, we report the
average attack rate for black-box models. Individual cases
are shown in Fig. 6.

As can be drawn from Table 1, a single ghost network
is worse than the base network (Exp. S2 vs. Exp. S1), be-
cause the descriptive power of ghost networks is inferior
to base networks. However, by leveraging the longitudinal
ensemble, our work achieves a much higher attack rate in

most settings (Exp. S3 vs. Exp. S1). This observation firmly
demonstrates the effectiveness of ghost networks in learning
transferable adversarial examples. It should be mentioned
that the computational cost of Exp. S3 almost remains the
same as Exp. S1 for two reasons. First, the 10 ghost net-
works used in Exp. S3 are not trained but eroded from the
base model and used on-the-fly. Second, multiple ghost net-
works are fused via the longitudinal ensemble, instead of the
standard ensemble method in Liu et al. (2017).

The proposed ghost networks can also be fused via the
standard ensemble method, as shown in Exp. S4. In this case,
we achieve a higher attack rate at the sacrifice of computa-
tional efficiency. This observation inspires us to combine the
standard ensemble and the longitudinal ensemble as shown
in Exp. S5. As we can see, Exp. S5 consistently beats all the
compared methods in all the black-box settings. Of course,
Exp. S5 is as computational expensive as Exp. S4. However,
the additional computational overhead stems from the stan-
dard ensemble rather than longitudinal ensemble.

Note that in all the experiments presented in Table 1,
we use only one individual base model. Even in the case
of Exp. S3, all the to-be-fused models are ghost networks.
However, the generated ghost networks are never stored or
trained, meaning no extra space complexity. Therefore, the
benefit of ghost networks is obvious. Especially when com-
paring Exp. S5 and Exp. S1, ghost networks can achieve a
substantial improvement in black-box attack.

Based on the experimental results above, we arrive at a
similar conclusion as Liu et al. (2017): the number of intrin-
sic models is essential to improve the transferability of ad-
versarial examples. However, a different conclusion is that it
is less necessary to train different models independently. In-
stead, ghost networks is a computationally cheap alternative
enabling good performance. When the number of intrinsic
models increases, the attack rate will increase. We will fur-
ther exploit this phenomenon in multi-model attack.

In Fig. 6, we select two base models, i.e., Res-50, and Inc-
v3, to attack and present their performances when testing on
all the 9 base models. It is easy to observe the improvement
of transferability by adopting ghost networks.

Multi-model Attack

We evaluate ghost networks in multi-model setting, where
attackers have access to multiple base models.

Same Architecture and Different Parameters We firstly
evaluate a simple setting of multi-model attack, where base
models share the same network architecture but have differ-
ent weights. The same three Res-50 models as in the Anal-
ysis of Ghost Networks section are used. The settings of 6
experiments are shown in Table 2. Besides a new parameter
#B (the number of trained-from-scratch models), others are
the same as the single model attack setting. When #B is 1,
we will use Res-50-A as the only one base model, and set-
tings are the same as single-model attack. When #B is 3, #S
is always 3, and each branch of the standard ensemble is as-
signed to a different base model. In Exp. M4 and Exp. M6,
the ghost network(s) in each standard ensemble branch will
be generated by the base model assigned to that branch.
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Methods Hold-out Ensemble
-Res-50 -Res-101 -Res-152 -IncRes-v2 -Inc-v3 -Inc-v4 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

I-FGSM 71.08 71.16 67.92 46.60 59.98 50.86 15.94 8.54 13.72
I-FGSM + ours 80.22 79.80 77.02 60.20 73.18 67.84 25.80 13.56 21.42
MI-FGSM 79.32 79.14 77.26 64.24 72.22 66.64 29.98 16.66 26.16
MI-FGSM + ours 87.14 86.14 84.64 74.18 82.06 79.18 39.56 21.24 32.68

Table 3: The attack rate (%) comparison of multi-model attack. “Ensemble” means attack all 6 naturally-trained models. “Hold-
out” means attack 5 out of 6 models. The sign “-” indicates the name of the hold-out model.

Methods Black-box Attack White-box Attack
TsAIL iyswim Anil Thomas Average Inc-v3 adv IncRes-v2 ens Inc-v3 Average

No.1 Submission 13.60 43.20 43.90 33.57 94.40 93.00 97.30 94.90
No.1 Submission+ours 14.80 52.28 51.68 39.59 97.62 96.00 95.48 96.37

Table 4: The attack rate (%) comparison in the NeurIPS 2017 Adversarial Challenge.

The adversarial examples generated by each method are
used to test on all the 9 models. We report the average attack
rates in Table 2. It is easy to understand that Exp. M2 per-
forms better than Exp. M1, Exp. M3, and Exp. M4 as it has
three independently trained models. However, by comparing
Exp. M5 with Exp. M2, we observe a significant improve-
ment of attack rate. For example, By using MI-FGSM as the
attack method, Exp. M5 beats Exp. M2 by 6.70. Although
Exp. M5 only has 1 base model and Exp. M2 has 3, Exp. M5
actually fuses 30 intrinsic models. Such a result further sup-
ports our previous claim that the number of intrinsic models
is essential, but it is less necessary to obtain them by train-
ing from scratch independently. Similarly, Exp. M6 yields
the best performance as it has 3 independently trained mod-
els and 30 intrinsic models.

Different Architectures Besides the baseline comparison
above, we then evaluate ghost networks in the multi-model
setting following Liu et al. (2017). We attack an ensemble of
5 out of 6 normally-trained models in this experiment, then
test the hold-out network (black-box setting). We also attack
an ensemble of 6 normally-trained models and test on the 3
adversarially-trained networks to evaluate the transferability
of the generated adversarial examples in black-box attack.

The results are summarized in Table 3, the performances
in black-box attack are significantly improved. For exam-
ple, when holding out Res-50, our method improves the
performance of I-FGSM from 71.08 to 80.22, and that of
MI-FGSM from 79.32 to 87.14. When testing on the three
adversarially-trained networks, the improvement is more no-
table. These results further testify the ability of ghost net-
works to learn transferable adversarial examples.

NeurIPS 2017 Adversarial Challenge

Finally, we evaluate our method in a benchmark test of
the NeurIPS 2017 Adversarial Challenge (Kurakin et al.
2018). For performance evaluation, we use the top-3 defense
submissions (black-box models), i.e., TsAIL1, iyswim2 and

1https://github.com/lfz/Guided-Denoise
2https://github.com/cihangxie/NIPS2017 adv challenge

defense

Anil Thomas3, and three official baselines (white-box mod-
els), i.e., Inc-v3adv, IncRes-v2ens and Inc-v3. The test dataset
contains 5000 images with the same 1000-class labels as Im-
ageNet (Deng et al. 2009).

Following the experimental setting of the No.1 attack sub-
mission (Dong et al. 2018), we attack on an ensemble of
Inc-v3, IncRes-v2, Inc-v4, Res-152, Inc-v3ens3, Inc-v3ens4,
IncRes-v2ens and Inc-v3adv (Kurakin, Goodfellow, and Ben-
gio 2017b). The ensemble weights are set to 1/7.25 equally
for the first seven networks and 0.25/7.25 for Inc-v3adv. The
total iteration number is set to 10, and the maximum pertur-
bation ε is randomly selected from {4, 8, 12, 16}. The step
size α = ε/10. The results are summarized in Table 4. Con-
sistent with previous experiments, we observe that by apply-
ing ghost networks, the performance of the No. 1 submission
can be significantly improved, especially with black-box at-
tack. For example, the average performance of black-box
attack is changed from 33.57 to 39.59, an improvement of
6.02. The most remarkable improvement is achieved when
testing on iyswim, where ghost networks leads to an im-
provement of 9.08. This suggests that our proposed method
can generalize well to other defense mechanisms.

Conclusion

This paper focuses on learning transferable adversarial ex-
amples for adversarial attacks. We propose, for the first
time, to exploit network erosion to generate a kind of vir-
tual models called ghost networks. Ghost networks, together
with the coupled longitudinal ensemble strategy, is an ef-
fective and efficient tool to improve existing methods in
learning transferable adversarial examples. Extensive ex-
periments have firmly demonstrated the efficacy of ghost
networks. Meanwhile, one can potentially apply erosion to
residual unit by other methods or densely erode other typ-
ical layers (e.g., batch norm (Ioffe and Szegedy 2015) and
relu (Nair and Hinton 2010)) through a neural network. We
suppose these methods could improve the transferability as
well, and leave these issues as future work.
Acknowledgements This paper is supported by ONR award
N00014-15-1-2356.

3https://github.com/anlthms/nips-2017/tree/master/mmd

11464



References

Bai, S.; Li, Y.; Zhou, Y.; Li, Q.; and Torr, P. H. 2019. Adver-
sarial metric attack for person re-identification. arXiv preprint
arXiv:1901.10650.
Baluja, S., and Fischer, I. 2018. Learning to attack: Adversarial
transformation networks. In AAAI.
Bhagoji, A. N.; He, W.; Li, B.; and Song, D. 2018. Practical
black-box attacks on deep neural networks using efficient query
mechanisms. In ECCV.
Carlini, N., and Wagner, D. 2017a. Adversarial examples are
not easily detected: Bypassing ten detection methods. In AISec.
Carlini, N., and Wagner, D. 2017b. Towards evaluating the
robustness of neural networks. In IEEE S&P.
Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; and Hsieh, C.-J.
2017. Zoo: Zeroth order optimization based black-box attacks
to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2018. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully con-
nected crfs. TPAMI 40(4):834–848.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
CVPR.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Hu, X.; Li, J.; and Zhu, J.
2018. Boosting adversarial attacks with momentum. In CVPR.
Girshick, R. 2015. Fast r-cnn. In ICCV.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explaining
and harnessing adversarial examples. In ICLR.
Guo, C.; Frank, J. S.; and Weinberger, K. Q. 2018.
Low frequency adversarial perturbation. arXiv preprint
arXiv:1809.08758.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep residual
learning for image recognition. In CVPR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In ECCV.
Huang, G.; Li, Y.; Pleiss, G.; Liu, Z.; Hopcroft, J. E.; and Wein-
berger, K. Q. 2017. Snapshot ensembles: Train 1, get m for
free. In ICLR.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.
In ICML.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural networks.
In NIPS.
Kurakin, A.; Goodfellow, I.; Bengio, S.; Dong, Y.; Liao, F.;
Liang, M.; Pang, T.; Zhu, J.; Hu, X.; Xie, C.; et al. 2018.
Adversarial attacks and defences competition. arXiv preprint
arXiv:1804.00097.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2017a. Adversarial
examples in the physical world. In ICLR Workshop.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2017b. Adversarial
machine learning at scale. In ICLR.
Li, Y.; Zhu, Z.; Zhou, Y.; Xia, Y.; Shen, W.; Fishman, E.; and
Yuille, A. 2019. Volumetric Medical Image Segmentation: A

3D Deep Coarse-to-Fine Framework and Its Adversarial Ex-
amples. 69–91.
Liu, Y.; Chen, X.; Liu, C.; and Song, D. 2017. Delving into
transferable adversarial examples and black-box attacks. In
ICLR.
Nair, V., and Hinton, G. E. 2010. Rectified linear units improve
restricted boltzmann machines. In ICML.
Papernot, N.; McDaniel, P.; and Goodfellow, I. 2016. Trans-
ferability in machine learning: from phenomena to black-
box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277.
Poursaeed, O.; Katsman, I.; Gao, B.; and Belongie, S. 2017.
Generative adversarial perturbations. In CVPR.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn: To-
wards real-time object detection with region proposal networks.
In NIPS.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. JMLR 15(1):1929–1958.
Sun, Y.; Wang, S.; Tang, X.; Hsieh, T.-Y.; and Honavar, V. 2019.
Node injection attacks on graphs via reinforcement learning.
arXiv preprint arXiv:1909.06543.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2014. Intriguing properties of
neural networks. In ICLR.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In CVPR.
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. A. 2017.
Inception-v4, inception-resnet and the impact of residual con-
nections on learning. In AAAI.
Tang, X.; Li, Y.; Sun, Y.; Yao, H.; Mitra, P.; and Wang, S.
2019. Robust graph neural network against poisoning attacks
via transfer learning. arXiv preprint arXiv:1908.07558.
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