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Abstract

Unsupervised domain translation has recently achieved im-
pressive performance with Generative Adversarial Network
(GAN) and sufficient (unpaired) training data. However, exist-
ing domain translation frameworks form in a disposable way
where the learning experiences are ignored and the obtained
model cannot be adapted to a new coming domain. In this
work, we take on unsupervised domain translation problems
from a meta-learning perspective. We propose a model called
Meta-Translation GAN (MT-GAN) to find good initialization
of translation models. In the meta-training procedure, MT-
GAN is explicitly trained with a primary translation task and
a synthesized dual translation task. A cycle-consistency meta-
optimization objective is designed to ensure the generalization
ability. We demonstrate effectiveness of our model on ten di-
verse two-domain translation tasks and multiple face identity
translation tasks. We show that our proposed approach signifi-
cantly outperforms the existing domain translation methods
when each domain contains no more than ten training samples.

1 Introduction

Unsupervised domain translation tasks (Zhu et al. 2017;
Choi et al. 2018), which aim at learning a mapping that
can transfer images from a source domain to a target domain
using unpaired training data only, have been widely inves-
tigated in recent years. However, current literature focuses
on learning a model for a specific translation task without
considering the generalization ability to other tasks. In com-
parison, human intelligence has the ability to quickly learn
new concepts with the prior experiences. Taking painting
as an example, after being taught how to paint in Monet’s
style, people have learned the basic skills of painting with
usage of painting brush, palette, etc. When being required
to learn painting in Van Gogh’s style, we do not need to
learn from scratch for all these skills. Instead, we can quickly
adapt to this new task by viewing only a few Van Gogh’s
paintings, extracting his painting style, combining the basic
painting knowledge we learned before with the new style and
eventually know how to draw in Van Gogh’s way.
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In this paper, we take a step towards unsupervised domain
translation (UDT) problems from a meta-learning perspec-
tive, aiming to effectively leverage learning experiences from
previous domain translation tasks. Briefly, the problem is
that we have several domain translation tasks where each
tasks only consists of limited samples. We have to learn a
meta-model from these tasks, that can be quickly adapted to
unseen domain translation tasks. To tackle this problem, we
propose a method called Meta-Translation Generative Adver-
sarial Network (MT-GAN) that are robust to different task
contexts. The proposed model contains two meta-learners: a
meta-generator G which keeps the memory of prior transla-
tion experiences and a meta-discriminator D which teaches G
how to quickly generalize to a new task. Our approach lever-
ages both model-agnostic meta-learning algorithm (MAML)
(Finn, Abbeel, and Levine 2017) and Generative Adversar-
ial Network (GAN) (Goodfellow et al. 2014) to iteratively
update G and D. To achieve that, within a meta-training it-
eration, for a specific translation task, we synthesize its dual
translation task with current states of MT-GAN and train
these two tasks in a dual learning form (Zhu et al. 2017;
He et al. 2016a). Then we design a meta-optimization objec-
tive to evaluate the performance of fine-tuned MT-GAN, and
minimize the expected losses on the meta-testing samples
with respect to parameters of MT-GAN, which ensures that
the direction taken to fine-tuning leads to a good generaliza-
tion performance.

We extensively evaluate the effectiveness and general-
izing ability of the proposed MT-GAN algorithm on two
kinds of translation task distributions. The first one con-
tains 10 diverse two-domain translation tasks covering a wide
range of scenarios, including labels↔photos, horses↔zebras,
summer↔winter, etc. The second one is established by re-
peatedly sampling two arbitrary identities, which forms a
two-domain translation task, from a multiple identity dataset
(Ng and Winkler 2014). For a translation task T , we take
the other 9 different tasks as the training dataset and test the
meta-learned parameter initialization on task T . Our exper-
iments only use 10 samples at most in an image domain of
a translation task and show that the proposed meta-learning
approach outperforms ordinary domain translation models,
such as CycleGAN (Zhu et al. 2017) and StarGAN (Choi et
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al. 2018).
We summarize our contributions as follow: 1) We approach

the unsupervised domain translation problem from a meta-
learning perspective, which allows effective usage of learning
experiences from previous domain translation tasks when
taking up a new domain translation task; 2) We propose
a method (MT-GAN) that jointly trains two meta-learners
in an adversarial and dual form, which to the best of our
knowledge has not been explored; 3) We extensively verify
the effectiveness of our meta-learning based approach on a
wide range of translation tasks.

2 Related works
Generative Adversarial Network In recent years, the gen-
erative adversarial network (GAN) model (Goodfellow et
al. 2014) has gained a wide range of interests in genera-
tive modeling. In a GAN, a generator is trained to produce
fake but plausible images, while a discriminator is trained
to distinguish difference between real and fake images. The
conditional version of a GAN, called a conditional generative
adversarial network (CGAN) (Mirza and Osindero 2014), is
a model in which the generator is feeded with noise vector to-
gether with additional data (e.g., class labels) that conditions
on both the generator and discriminator. Deep convolutional
generative adversarial network (DCGAN) (Radford, Metz,
and Chintala 2015) is an extensive exploration of convolu-
tion neural network architectures in GANs and contributes
to improve the quality of image synthesis. GANs have been
successfully leveraged in many image generation applica-
tions (Pumarola et al. 2018; Wang et al. 2018; Wu et al. 2016;
Yu et al. 2018). Our method adopts the adversarial loss to
render images from the generators to be close to real in the
target domain and make meta-training performance improve
meta-learners’ generalization.

Unsupervised Domain Translation Domain translation
has also achieved impressive performance thanks to recent
development of GANs and availability of sufficient training
data. (Isola et al. 2017) proposed a general conditional GAN
(Pix2Pix) framework for a wide range of supervised domain
translation tasks. Since obtaining an amount of paired train-
ing data can be difficult and impractical for many domain
translation tasks, DualGAN (Yi et al. 2017), DiscoGAN (Kim
et al. 2017) and CycleGAN (Zhu et al. 2017) were proposed
to learn two cross-domain translation models that obey the
cycle consistent rule from unpaired data. (Choi et al. 2018)
further proposed a unified unpaired domain translation model
(StarGAN) to perform domain translation for multiple do-
mains. (Liu et al. 2018) also proposed a method called UFDN
to learn domain-invariant representation for multiple domain
translation and can perform diverse domain translation and
manipulation. A related work similar to our work may be
(Benaim and Wolf 2018), in which they proposed a one-shot
cross-domain translation which transfers one and only one
image in a source domain to a target domain with sufficient
data in the target domain. However, all these existing unsu-
pervised domain translation models mainly rely on training
data of current translation task, and omit to utilize the meta-
knowledge from prior learning experiences like humans. In
this work, we focus on image translation that incorporates

the prior learning experiences from other translation tasks for
new translation tasks’ learning.

Meta-Learning Meta-learning, which aims to learn a par-
ticular process to adjust meta-learners that perform well on
a new task, can be traced back to early works (Schmidhu-
ber 1987; Bengio, Bengio, and Cloutier 1990; Bengio et
al. 1992). Some recent meta-learning studies have focused
on learning a shared metric by comparing similarity among
data samples. Specifically, (Vinyals et al. 2016) proposed
Matching Networks that learns an embedding function and
measures similarity using the cosine distance in an attention
kernel. (Snell, Swersky, and Zemel 2017) also proposed to
compare new examples in a learned metric space but used the
Euclidean distance with a linear classifier. Another popular
approach to meta-learning is to learn a shared initialization of
network parameters. For example, (Finn, Abbeel, and Levine
2017) presented model-agnostic meta-learning (MAML) to
optimize the parameters of a meta-learner with the objective
of maximizing its performance on a new task after a small
number of gradient steps. Several other methods (Andrychow-
icz et al. 2016; Mishra et al. 2017) utilized an additional
memory-based network (e.g., LSTM) as the meta-learner.
Observing that meta-learning methods usually require la-
beled datasets, recent works (Hsu, Levine, and Finn 2018;
Metz et al. 2018) also proposed to tackle the unsupervised
meta-learning. In this paper, we extend the concept of meta-
learning to image translation. Specifically, we jointly train
two meta-learners in an adversarial and dual form, which to
the best of our knowledge has not been done before.

3 Unsupervised Domain Translation via

Meta-Learning

3.1 Problem Formulation

Domain Translation is the problem of finding a meaningful
correspondence between two domains. Since paired super-
vision is not available in a majority of settings, many works
focus on Unsupervised Domain Translation (UDT) where
data samples from each domain are unpaired (de Bézenac,
Ayed, and Gallinari 2019). Existing unsupervised domain
translation models mainly rely on training data of a specific
translation task, lacking the ability of utilizing the knowledge
from prior learning experiences when taking up alternative
translation tasks. To tackle this problem, we approach the un-
supervised domain translation problem from a meta-learning
perspective, which allows effective usage of learning experi-
ences from previous domain translation tasks. The goal of our
method is to first leverage unpaired data for efficient training,
and then the obtained model can be applied on a wide range
of new domain translation tasks.

Formally, in our meta-learning scenario, assuming that
there are a series of tasks following distribution P (T ) over
the task space T . For a specific task T ∼ P (T ), intuitively
task T aims at finding a meaningful correspondence between
two domains. Specifically, both domains can be expressed
as probability distributions PT (x) and PT (y) supported over
domain spaces XT and YT . A task consists in finding a map-
ping: XT → YT such that the mapping yields semantically
meaningful pairings.
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Since we aims at utilizing the learning experience from
previous domain translation tasks when take up new transla-
tion tasks, in our meta-learning scenario, the training sample
consists of a finite set of tasks {Tn}Nn=1 drawn from P (T ),
where N denotes the number of training tasks. Concretely,
each training task Tn is a tuple Tn = (STn

, QTn
), where STn

denotes the support set and QTn
denotes the query set. Specif-

ically, the support set STn
= {{xk}Kk=1 ∈ XTn

, {yk}Kk=1 ∈
YTn
} contains 2K unpaired samples from two different do-

mains XTn and YTn . QTn = {{xl}Ll=1 ∈ XTn , {yl}Ll=1 ∈
YTn} is the query set that contains 2L unpaired samples
from the same two domains. STn and QTn are disjoint. Our
algorithm takes {Tn}Nn=1 as inputs and produces a learning
strategy for two meta-learners, i.e., G and D. In general,
the meta-learners iteratively adjust the parameters on data
from support set and assess their generalization performance
by calculating meta-objective with data from query set. The
meta-learners are then improved by considering how the test
error changes with respect to the parameters. In effect, the
test error on sampled tasks Tn serves as the training error of
the meta-learning process. At inference time, suppose that we
have a new translation task TN+1 = (STN+1

, QTN+1
), where

STN+1
= {{xk}Kk=1 ∈ XTN+1

, {yk}Kk=1 ∈ YTN+1
} and

QTN+1
= {{xl}Ll=1 ∈ XTN+1

, {yl}Ll=1 ∈ YTN+1
} (STN+1

and QTN+1
are disjoint.), the learning strategy should learn

a fine-tuned G and a fine-tuned D with STN+1
and accom-

plishes the translation X → Y on QTN+1
. That is, the meta-

performance is measured by the meta-learners’ performance
after learning from K samples in each domain. We denote
the above process as K-shot domain translation.

3.2 Our Approach

We introduce the formulation of MT-GAN as following: for a
K-shot domain translation problem and dataset {Tn}Nn=1, our
goal is to find a meta-generator G that keeps the memory of
prior translation experiences and a meta-discriminator D that
teaches G how to quickly generalize to a new task. Unlike
CycleGAN or StarGAN that utilizes multiple generators (and
discriminators) or multiple domain codes to tackle different
translation tasks, we only develop one meta-generator G and
one meta-discriminator D for different tasks. This is because
a initialization is responsible to the learning strategy of all
translation tasks and is independent with a specific task. The
full algorithm of MT-GAN is outlined in Algorithm 1 in a
general case.

Formally, the generator G and discriminator D are param-
eterized by θg and θd respectively. In each meta-batch, we
sample J tasks for training. For a specific translation task
T ∼ P (T ) in one meta-batch, T = (ST , QT ), there are two
image domains XT and YT . Our primary target is to learn a
mapping F : XT → YT that is derived from G. Since there is
no paired data for training, observing that there is naturally a
dual task which learns another mapping H: YT → XT in the
reverse direction, we utilize these two translation tasks as a
two-agent game for fine-tuning in the meta-training period.
Specifically, two discriminators DY and DX are used to ren-
der images from the generators to be real in corresponding
domain.

Algorithm 1 MT-GAN training process
Require: : Distribution P (T ) over domain translation tasks
Require: : Hyperparameters α, β, λcyc, λidt, K, J

1: Randomly initialize parameters θg of G and θd of D
2: while not converged do
3: Sample batch of tasks {Tj}Jj=1 ∼ P (T ), where J is

the meta-batch size.
4: Split support set and query set: STj and QTj ← Tj

5: for all STj do
6: Meta-training:
7: Compute initialized parameters θ′dX ,0, θ′dY ,0,
8: θ′f,0, θ′h,0 with gradient descent by Eqn.(1)
9: and Eqn.(2)

10: for i in iterations I do
11: Compute fine-tuned parameters θ′dX ,i+1,
12: θ′dY ,i+1, θ′f,i+1, θ′h,i+1 with gradient descent
13: by Eqn.(7) and Eqn.(8)
14: end for
15: Meta-testing:
16: Compute meta-objective Lq

Tj ,I+1 on QTj

17: according to Eqn.(12)
18: end for
19: Meta-Optimization:
20: Update θd = θd + β∇θd

∑
Tj∈{Tj}J

j=1
Lq
Tj ,I+1

21: Update θg = θg − β∇θg

∑
Tj∈{Tj}J

n=1
Lq
Tj ,I+1

22: end while

In the initialization step, we initialize the parameters of
discriminators and generators as:

θ′dY ,0 = θd + α∇θdLT,0;

θ′dX ,0 = θd,wc + α∇θd,wc
LT,0,

(1)

θ′f,0 = θg − α∇θgLT,0;

θ′h,0 = θg,wc − α∇θg,wc
LT,0,

(2)

where α is the learning rate during the meta-training period;
θ′dY ,0, θ′f,0, θ′dX ,0 and θ′h,0 are the parameters of DY , F ,
DX and H respectively after initialization; θd,wc and θg,wc

are the parameters of wc(D) and wc(G), where wc is the net-
work weights copy operation that detaches back-propagation
gradient from meta-optimization objectives. G and D can be
parameter initialization for any translation task in practice.
However, in a specific task T , using G for fine-tuning of both
F and H is ambiguous since the meta-optimization objective
would become to require G and D to be well adapted for
both XT → YT and YT → XT at the same time. Therefore,
we update G and D only for XT → YT translation with wc
operation, and utilize YT → XT translation as a dual task.
The overall objective LT,0 for training the discriminators and
generators at initialization step is given as:
LT,0(G,D,XT ,YT ) =Ladv(G,D,XT ,YT )

+Ladv(wc(G), wc(D),YT ,XT )

+λcycLcyc(G,wc(G),XT ,YT )
+λidtLidt(G,wc(G),XT ,YT ),

(3)

where the factors λcyc and λidt are used to balance differ-
ent loss terms Ladv, Lcyc and Lidt. Specifically, the loss
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terms Ladv, Lcyc and Lidt are the adversarial loss, the cycle-
consistency loss and the identity loss respectively, which are
defined as follows:
Ladv(G,D,XT ,YT ) =Ey∼PT (y)[logD(y)]

+Ex∼PT (x)[log(1−D(G(x)))],
(4)

Lcyc(G1, G2,XT ,YT ) =Ex∼PT (x)[‖G2(G1(x))− x‖1]
+Ey∼PT (y)[‖G1(G2(y))− y‖1],

(5)
Lidt(G1, G2,XT ,YT ) =Ex∼PT (x)[‖G2(x)− x‖1]

+Ey∼PT (y)[‖G1(y)− y‖1],
(6)

where PT (x) and PT (y) are the distributions of samples in
domain spaces XT and YT respectively. Then, we estimate
the expectation terms in above equations using the samples
in support set ST .

At iteration i ≥ 0, we follow the popular unsupervised
domain translation model, e.g., CycleGAN, to fine-tune the
initialized DX , DY , F and H to quickly adapt to the task T .
Formally, we update the parameters as follow:

θ′dY ,i+1 = θ′dY ,i + α∇θ′
dY ,i
LT,i+1;

θ′dX ,i+1 = θ′dX ,i + α∇θ′
dX ,i
LT,i+1,

(7)

θ′f,i+1 = θ′f,i − α∇θ′
f,i
LT,i+1;

θ′h,i+1 = θ′h,i − α∇θ′
h,i
LT,i+1.

(8)

The training objective LT,i+1 to fine-tune the generators and
discriminators is given as:

LT,i+1(Fi, Hi, DX ,i, DY,i,XT ,YT )
=Ladv(Fi, DY,i,XT ,YT ) + Ladv(Hi, DX ,i,YT ,XT )

+λcycLcyc(Fi, Hi,XT ,YT ) + λidtLidt(Fi, Hi,XT ,YT ),
(9)

where DY,i, Fi, DX ,i and Hi are the state of the DY , F , DX
and H at meta-training iteration i. We estimate the expecta-
tion terms in LT,i+1 also using the samples in support set
ST .

For meta-optimization, we minimize the expected loss on
query set QT with updated discriminators and generators
across the task T to train the initial parameters of D and G.
Our MT-GAN model can be trained as follows:

θd = θd + β∇θdL
q
T,I+1, (10)

θg = θg − β∇θgL
q
T,I+1, (11)

where β is the learning rate for the meta-optimization, and I
is the overall iteration number of meta-training. The overall
meta-optimization objective Lq

T,I+1 for the meta-generator
and meta-discriminator is given as:

Lq
T,I+1(FI , HI , DX ,I , DY,I ,XT ,YT )

=Ladv(FI , DY,I ,XT ,YT ) + Ladv(HI , DX ,I ,YT ,XT )

+λcycLcyc(FI , HI ,XT ,YT ) + λidtLidt(FI , HI ,XT ,YT ),
(12)

where we estimate the expectation terms in Lq
T,I+1 using the

samples in query set QT .

At inference time, for an unseen translation task
TN+1 = (STN+1

, QTN+1
), where STN+1

= {{xk}Kk=1 ∈
XTN+1

, {yk}Kk=1 ∈ YTN+1
} and QTN+1

= {{xl}Ll=1 ∈
XTN+1

, {yl}Ll=1 ∈ YTN+1
}, we iteratively fine-tune the ob-

tained G and D with meta-training steps from Eqn.(1) to
Eqn.(9) to obtain an F that transfers {xk}Ll=1 to YTN+1

do-
main and an H that transfers {yk}Ll=1 to XTN+1

domain.

4 Experiments

4.1 Experimental Setup

We extensively evaluate the effectiveness and generalizing
ability of the proposed MT-GAN algorithm for UDT problem
on two kinds of translation task distributions. The first one
(denoted as P1(T )) contains 10 diverse translation tasks col-
lected by (Zhu et al. 2017): labels↔photos, horses↔zebras,
summer↔winter, apple↔orange, monet↔photo,
cezanne↔photo, ukiyoe↔photo, vangogh↔photo,
photos↔maps and labels↔facades. In addition, the Face-
scrub dataset (Ng and Winkler 2014), which comprises
531 different celebrities, is utilized as another collection of
domain translation tasks (denoted as P2(T )) that are less
diverse, in which different identities are viewed as different
domains. Then we can sample arbitrary two identities to
form a two-domain translation task that aims to transfer
the identity of face images while preserving original face
orientation and expression.

In our experiments, for both P1(T ) and P2(T ), we sim-
ulate the meta domain translation scenarios by randomly
select N = 9 tasks as a training dataset and select the other 1
task as the testing dataset/task. This procedure could be seen
as task-level 10 fold cross-validation. We establish 10 train-
ing datasets and 10 corresponding testing datasets for both
P1(T ) and P2(T ). For each training dataset, we randomly
select overall 2000 meta batches from the 9 tasks for model
training. We set the meta-batch size J to 2 to fit the memory
limit of the GPU. Following the common settings of few-
shot learning, we mainly focus on 5-shot domain translation
and 10-shot domain translation in all experiments. Moreover,
we set the query set’s size L to 10. For the testing task, we
randomly select 5 meta batches from the 1 task for model
testing.

For each meta-training period, we use stochastic gradient
descent (SGD) with learning rate α = 0.0001 to fine-tune the
generators and discriminators. At meta-optimization time, we
use the Adam optimizer (Kingma and Ba 2014) with learning
rate β = 0.0002 to update both meta-generator and meta-
discriminator. For model fine-tuning on the testing tasks, we
also use the Adam optimizer with learning rate β = 0.0002
to fine-tune both meta-generator and meta-discriminator. The
overall iteration number of meta-training T is set to 100. We
set the loss function balance parameters λcyc and λidt to be
10 and 5.

For each K-shot domain translation task, we fine-tune the
trained MT-GAN on each meta batch of the testing dataset,
and report the average score and its standard deviation. The
Frechet Inception Distance (FID) (Heusel et al. 2017) that
measures similarity between generated image dataset and real
image dataset is used to evaluate translation results’ quality.
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Figure 1: Translation results of various testing tasks using CycleGAN, StarGAN and our MT-GAN. Left part: 5-shot domain
translation. Right part: 10-shot domain translation. From left to right, the columns represent inputs from the source domain,
CycleGAN’s results, StarGAN’s results, our results and examples in the target domain respectively.

The lower the FID is, the better the translation results are. In
addition, we perform face classification experiments on face
identity translation tasks. We re-trained VGG-16 network (Si-
monyan and Zisserman 2014) on Facescrub, and compute the
top-1 and top-5 classification accuracy rates of the translation
results.

4.2 Model configuration

We follow (Zhu et al. 2017) to configure the models. The
meta-generator G network consists of two convolution lay-
ers with stride 2 and kernel size 3 × 3, six residual blocks
(He et al. 2016b) with kernel size 3× 3 and two transposed
convolution layers with stride 0.5 and kernel size 3× 3. For
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Table 1: Average FID scores (×10) of various 10-shot testing tasks. ← represents the reverse translation direction, such as
labels←photos, and→ represents the forward translation direction, such as labels→photos. For each translation direction, the
best FID scores are in bold.

CycleGAN (Zhu et al. 2017) StarGAN (Choi et al. 2018) Ours
← → ← → ← →

labels↔photos 15.10 ± 1.72 28.69 ± 1.54 22.56 ± 1.55 39.27 ± 1.48 12.16 ± 1.19 26.08 ± 1.25

horses↔zebras 31.96 ± 1.63 31.45 ± 2.29 34.94 ± 1.72 35.83 ± 1.81 31.80 ± 1.28 30.68 ± 2.09

summer↔winter 23.43 ± 2.12 19.24 ± 2.02 32.18 ± 1.98 34.95 ± 1.89 21.50 ± 1.71 17.95 ± 1.93

apple↔orange 33.16± 1.83 34.30 ± 1.51 38.93 ± 1.69 43.58 ± 1.87 31.34 ± 1.57 31.93 ± 1.92

monet↔photo 18.97 ± 1.75 19.93 ± 2.21 33.38 ± 2.27 35.95 ± 2.18 18.42 ± 2.11 19.73 ± 2.08

cezanne↔photo 22.85 ± 1.71 23.24 ± 1.89 29.23 ± 1.85 31.37 ± 1.97 22.00 ± 1.66 22.57 ± 1.78

ukiyoe↔photo 22.90 ± 2.05 21.16 ± 2.14 24.87 ± 2.25 28.99 ± 2.23 21.88 ± 2.18 20.86± 1.96

vangogh↔photo 22.65 ± 2.29 19.26 ± 2.18 34.91 ± 2.26 36.68 ± 2.32 21.57 ± 2.14 18.42 ± 2.05

photos↔maps 25.57 ± 1.96 27.17 ± 1.72 35.61 ± 1.88 31.36 ± 1.95 19.64 ± 1.64 23.44 ± 1.72

labels↔facades 23.06 ± 1.86 26.35 ± 1.73 26.55 ± 2.03 32.80 ± 2.11 21.72 ± 2.09 25.34 ± 1.96

Table 2: Average classification accuracy of 5-shot and 10-shot face identity translation tasks. The best top-1 and top-5 classification
accuracy are in bold.

CycleGAN (Zhu et al. 2017) StarGAN (Choi et al. 2018) Ours

5-shot Top-1 11.21 ± 0.91% 4.36 ± 0.89% 13.05 ± 1.06%
Top-5 37.12 ± 1.63% 15.35 ± 1.11% 40.02 ± 1.22%

10-shot Top-1 19.04 ± 1.21% 10.38 ± 0.78% 21.12 ± 1.03%
Top-5 45.56 ± 1.56% 37.34 ± 1.43% 48.27 ± 1.54%

meta-discriminator D, we use PatchGANs (Isola et al. 2017)
that consists of five convolution layers with stride 2 and ker-
nel size 4×4. For both G and D, we use batch normalization
(Ioffe and Szegedy 2015) among network layers.

4.3 Results

Qualitative and Quantitative Evaluation We compare
our method with two baseline domain translation models, i.e.,
CycleGAN (Zhu et al. 2017) and StarGAN (Choi et al. 2018).
We retrain both CycleGAN and StarGAN on each meta-batch
in testing dataset of a given K-shot domain translation task,
and report their average performance with the retrained mod-
els. We show qualitative comparison results of the testing
tasks in Figure 1. We observe that StarGAN typically pro-
duces quite blurry and noisy outputs, and obviously suffers
from the limited training samples. CycleGAN maintains the
main structure of the source inputs in most cases and transfers
some domain-specific features of the target domains in the
translation results. However, CycleGAN still fails to locate
the accurate regions that domain-specific features should be
transferred in, and produces unnatural images. For example,
the translated apple by CycleGAN in 10-shot orange→apple
is surrounded by inaccurate apple features, and the trans-
lated map by CycleGAN in 10-shot photos→maps mistak-
enly transfers the land and houses to water label. On the con-
trary, most of our results well preserve the domain-invariant
features (Lin et al. 2018; Huang et al. 2018) and accu-
rately transfer the domain-specific features (Lin et al. 2018;
Huang et al. 2018) in the translation results. It should be
noticed that, even with limited unpaired training samples, our
model is still able to detect semantic regions of source inputs.
For instance, our model successfully detects the water area
and land in 10-shot domain translation of the Figure 1 (f) and
(g).

For the quantitative evaluation, we present the FID score
results of various testing tasks in Table 1. For face identity
translation, we report the top-1 and top-5 face recognition
accuracy of generated images from CycleGAN, StarGAN
and our model in Table 2. We observe that the quantitative
results are quite related to the qualitative results in Figure
1, in which our model consistently outperforms CycleGAN
and StarGAN. We also find that improvement brought by
our model on some natural image generation tasks, such
as four painting↔photo tasks, is less significant than other
tasks, such as photos↔maps and labels↔photos. Such result
is not surprising because only limited samples are hard to
include all patterns for natural image generation, while the
patterns of photos↔maps or labels↔photos are more simple
and regularized.

Comparing the performance of MT-GAN on 5-shot and 10-
shot domain translation tasks, we can see that the proposed
meta-learning approach is quite robust to the drop in the
amount of training samples. With only 5 training samples,
MT-GAN still successfully transfers source inputs to target
domains in most cases. With the increase of training samples,
MT-GAN steadily improves performance on 10-shot domain
translation tasks compared with CycleGAN and StarGAN.

Convergence Rate Our meta-learning based approach has
demonstrated that, with several domain translation tasks, it
can incorporate the prior learning experiences on these tasks
and generalize to a new task with better performance than
ordinary translation models in the above experiments. We
show that meta-learning brings another benefit, i.e., faster
convergence rate in a training process. We show the train-
ing curves of cycle-consistency loss with respect to training
steps on the different testing tasks in Figure 2. We choose
cycle-consistency loss to reflect the convergence rate because
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Figure 2: The training curves of cycle-consistency loss with respect to training step on the different testing tasks.

a smaller cycle-consistency loss indicates that the two trans-
lation models well relate two domains. Comparing training
curves of CycleGAN and our model, we observe that our
model rapidly minimizes the cycle-consistency loss in the
first several steps. In addition, our model achieves lower
cycle-consistency loss than CycleGAN after numerous it-
eration steps in most cases. When training abnormality of
GAN occurs, we see that our model can recover to original
training states more quickly than CycleGAN. These results
demonstrate that our model indeed learns adaptation strate-
gies from previous translation tasks, and helps to converge
more quickly in current tasks.

Saturation Study In order to investigate when our model
will saturate with the increasing shots, we compare our model
with CycleGAN which has shown superior performance in
many-shot domain translation. We conduct the experiment on
the face identity translation task. As shown in Table 3, we find
that our model consistently outperforms CycleGAN in all
shots, and performance of two models becomes closer with
more shots. This is because with more training samples, a
model is able to learn from scratch without prior experiences.

5 Conclusions

In this work, we manage the unsupervised domain transla-
tion (UDT) problem from a meta-learning perspective which

Table 3: Average top-1 classification accuracy of face identity
translation tasks with different shots.

10-shot 15-shot 20-shot 25-shot
CycleGAN 19.04% 25.95% 31.84% 35.62%

Ours 21.12% 27.63% 32.96% 36.03%
Improvement 2.08% 1.68% 1.12% 0.41%

aims to effectively incorporate prior domain translation expe-
riences. Accordingly, we propose a model called MT-GAN
to find the initialization of a meta-generator and a meta-
discriminator that can be used for initialization of any transla-
tion task. We jointly train two meta-learners in an adversarial
and dual form. We demonstrate our model on ten diverse
domain translation tasks and face identity translation tasks.
Both qualitative and quantitative results show that the meta-
learning based approach significantly outperforms ordinary
translation models. In addition, we show that our model can
achieve faster convergence rate than CycleGAN, which fur-
ther demonstrates MT-GAN indeed learns adaptation strate-
gies from previous learning experiences.

For future works, it would be interesting to extend the
training paradigm of MT-GAN to other image generation
or domain transfer learning tasks. In addition, how to learn
the adaptation strategies from many-shot domain translation
tasks will be worthy to explore.

11513



Acknowledgments
This work was supported in part by NSFC under Grant
61571413, 61632001.

References
Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.; Pfau,
D.; Schaul, T.; Shillingford, B.; and De Freitas, N. 2016. Learning
to learn by gradient descent by gradient descent. In Advances in
Neural Information Processing Systems, 3981–3989.
Benaim, S., and Wolf, L. 2018. One-shot unsupervised cross domain
translation. In Advances in Neural Information Processing Systems,
2104–2114.
Bengio, Y.; Bengio, S.; and Cloutier, J. 1990. Learning a synaptic
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