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Abstract

Spatiotemporal prediction is challenging due to the com-
plex dynamic motion and appearance changes. Existing work
concentrates on embedding additional cells into the standard
ConvLSTM to memorize spatial appearances during the pre-
diction. These models always rely on the convolution layers
to capture the spatial dependence, which are local and inef-
ficient. However, long-range spatial dependencies are signif-
icant for spatial applications. To extract spatial features with
both global and local dependencies, we introduce the self-
attention mechanism into ConvLSTM. Specifically, a novel
self-attention memory (SAM) is proposed to memorize fea-
tures with long-range dependencies in terms of spatial and
temporal domains. Based on the self-attention, SAM can pro-
duce features by aggregating features across all positions of
both the input itself and memory features with pair-wise sim-
ilarity scores. Moreover, the additional memory is updated
by a gating mechanism on aggregated features and an estab-
lished highway with the memory of the previous time step.
Therefore, through SAM, we can extract features with long-
range spatiotemporal dependencies. Furthermore, we embed
the SAM into a standard ConvLSTM to construct a self-
attention ConvLSTM (SA-ConvLSTM) for the spatiotempo-
ral prediction. In experiments, we apply the SA-ConvLSTM
to perform frame prediction on the MovingMNIST and KTH
datasets and traffic flow prediction on the TexiBJ dataset.
Our SA-ConvLSTM achieves state-of-the-art results on both
datasets with fewer parameters and higher time efficiency
than previous state-of-the-art method.

1 Introduction

Spatiotemporal predictive learning has emerged as an im-
portant and foundational research problem for a wide range
of computer vision and artificial intelligence and received
growing interests in the research communities (Shi et al.
2015; Zhang et al. 2017; Shi et al. 2017a; Kalchbrenner
et al. 2017; Wang et al. 2017a; 2018b; Xu et al. 2018;
Wang et al. 2019). It deserves to be studied in depth to
serve the practical applications, such as traffic flows predic-
tion (Zhang et al. 2017; Xu et al. 2018), precipitation fore-
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casting (Shi et al. 2015; 2017b; Wang et al. 2017b) and phys-
ical interactions simulation (Lerer, Gross, and Fergus 2016;
Finn, Goodfellow, and Levine 2016). Spatiotemporal predic-
tion is challenging due to the complex dynamics and appear-
ance changes, which requires dependencies on both tempo-
ral and spatial domains.

ConvLSTM (Shi et al. 2015) replaces all the linear oper-
ations in it with convolution layers to capture spatial depen-
dencies besides the long-short term modeling, and many of
its variants (Wang et al. 2017a; 2018b; 2019) have achieved
impressive results on spatiotemporal prediction. However,
although long-range spatial dependencies can be captured
by stacked convolution layers, the effective receptive field
is much smaller than the theoretical receptive field (Luo et
al. 2016). Besides, features far away from a specific location
have to pass through a stack of layers before affecting the
location for both forward propagation and backward prop-
agation, which would add the optimization difficulties dur-
ing the training (Chen et al. 2018). Therefore, ConvLSTM
and its previous variants tend to suffer from the limited abil-
ity to capture long-range spatial dependencies. To amelio-
rate this, TrajGRU (Shi et al. 2017b) adopts a convolution
layer to learn offsets of each position in the hidden state of
a GRU block. It works in a similar way to the deformable
convolution (Dai et al. 2017), which enhances it in model-
ing complex object deformations. Nevertheless, these offsets
only provide sparse spatial dependencies and are estimated
with the local receptive field. Here comes to a question that
how to make the ConvLSTM capture effective long-range
dependencies.

Compared to the convolution operation, the self-attention
module (Vaswani et al. 2017; Wang et al. 2018a) is capable
of obtaining the global spatial context with a single layer,
which is more efficient. Besides, we argue that features at
the current time step can benefit from aggregating relevant
features in the past. Therefore, we propose the self-attention
memory module for ConvLSTM, or SAM in short. SAM uti-
lizes the feature aggregation mechanism of the self-attention
to fuse both the current and memorized features through cal-
culating pair-wise similarity scores. Here, we use an addi-
tional memory cell M to memorize previous features which
contains global spatial receptive field. Besides in the spa-
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tial domain, M can capture long-range temporal dependen-
cies through a gating mechanism, which is similar to that in
LSTM. The SAM is embedded into ConvLSTM to construct
the self-attention ConvLSTM, or SA-ConvLSTM in short.
We evaluate the above models on MovingMNIST and KTH
for multi-frame prediction, and TexiBJ for traffic flow pre-
diction. Ablation experiments demonstrate the effectiveness
of self-attention and additional memory on different types
of data. Moreover, SA-ConvLSTM achieves the best results
on all datasets with fewer parameters and higher efficiency
than previous state-of-the-art methods. Our contribution can
be summarized as follows:

• We propose a novel variant of ConvLSTM, named SA-
ConvLSTM to perform spatiotemporal prediction, which
can successfully capture long-range spatial dependencies.

• We design a memory-based self-attention module (SAM)
to memorize the global spatiotemporal dependencies dur-
ing the prediction.

• We evaluate SA-ConvLSTM on MovingMNIST and KTH
for multi-frame prediction and TexiBJ for traffic flow pre-
diction. It achieves the best results in all datasets with
fewer parameters and higher efficiency than the current
state-of-the-art model MIM.

2 Related Work

Spatiotemporal Prediction with ConvRNNs. Variants of
ConvLSTM (Shi et al. 2015) have been proposed to conduct
spatiotemporal prediction. PredRNN (Wang et al. 2017b) in-
troduced an additional spatiotemporal memory cell to prop-
agate information across both horizontal and vertical di-
rections with the highway connection, which is helpful to
model spatial dynamics. PredRNN++ (Wang et al. 2018b)
increases the transition depth by re-organizing the memo-
ries of PredRNN in a cascade fashion. To enhance the abil-
ity of PredRNN on modeling high-order dynamics, Mem-
ory in Memory (MIM) (Wang et al. 2019) introduces more
memory cells to process non-stationary and stationary infor-
mation, which achieves the current SOTA performance in
spatiotemporal prediction while result in a multiplication of
computation and memory usage. All of them stack convolu-
tion layers to obtain spatial dependences since deeper net-
works can be exponentially more efficient in capturing both
spatial and temporal dependences (Bianchini and Scarselli
2014; Pascanu, Mikolov, and Bengio 2013). However, it is
easy for them to suffer from the vanishing gradient prob-
lem (Bengio et al. 1994; Pascanu, Mikolov, and Bengio
2013). Besides, although the above additional cells for mem-
orizing spatial appearance improve the model capacity of
ConvLSTM models, their memory cells tend to focus on lo-
cal spatial dependences. In this paper, we propose a self-
attention memory cell for ConvLSTM, which can not only
obtain the long-term temporal dependence through the adap-
tive updating in the highway but also efficiently extract the
global spatial dependence through self-attention.
Self-Attention Modules. The self-attention mechanism is
first proposed to draw global dependencies of inputs and ap-
plied in machine translation (Vaswani et al. 2017). As for

computer vision tasks, self-attention is able to capture long-
range spatial-temporal dependencies by calculating the pair-
wise relations among the different position of feature maps
during a binary relation function. Then the attended features
can be calculated through these relations (Zhang et al. 2019).
Then, several variants (Fu et al. 2019; Chen et al. 2018;
Huang et al. 2019) were proposed for more efficient comput-
ing or more diverse attention types. The successes of self-
attention on pixel-level tasks (Huang et al. 2019; Fu et al.
2019; Zhang et al. 2019) demonstrate its effectiveness on
aggregating salient features among all spatial positions. In
this paper, We utilize the property of self-attention to con-
struct a self-attention memory module and embed it into the
ConvLSTM as SA-ConvLSTM, which is capable of bring-
ing global dependency effectively.

3 Methods

In order to evaluate the effectiveness of self-attention in spa-
tiotemporal prediction, we construct a basic self-attention
ConvLSTM model by cascading self-attention module and
the standard ConvLSTM, which is detailed in Section 3.1.
Afterwards, a more advanced and sophisticated model SA-
ConvLSTM is built based on the proposed self-attention
memory module, which is introduced in Section 3.3.

3.1 Base Model

The base model is a simple combination of self-attention and
ConvLSTM; that is, the base model is built by the direct cas-
cade of two parts. This base model is formulated as follows:

X̂t = SA(Xt), Ĥt−1 = SA(Ht−1)

it = σ(Wxi ∗ X̂t +Whi ∗ Ĥt−1 + bi)

ft = σ(Wxf ∗ X̂t +Whf ∗ Ĥt−1 + bf )

gt = tanh(Wxc ∗ X̂t +Whc ∗ Ĥt−1 + bc)

Ct = ft ◦ Ct−1 + it ◦ gt
ot = σ(Wxo ∗ X̂t +Who ∗ Ĥt−1 + bo)

Ht = ot ◦ tanh(Ct),

(1)

where SA denotes the self-attention module. X̂ and Ĥ are
aggregated features through self-attention modules. Specif-
ically, at each time step, the position at attention mod-
ule selectively aggregates the input feature at each posi-
tion by a weighted sum of the feature at all positions. This
makes the global spatial dependencies can be captured dur-
ing propagation cross stacked RNN layers vertically and
through all RNN states horizontally. However, self-attention
has very high computational complexity in high-resolution
input since it needs to calculate the correlation among all
positions. In this work, the size of images is small such that
the complexity of SA can be ignored to a certain extent.

Self-Attention. Figure 1 shows the pipeline of the stan-
dard self-attention module. The original feature maps Ht are
mapped into different feature spaces as the query: Qh =

WqHt ∈ R
Ĉ×N , the key: Kh = WkHt ∈ R

Ĉ×N and the
value: Vh = WvHt ∈ R

C×N , where {Wq,Wk,Wv} is a
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Figure 1: The illustration of the standard self-attention module and the proposed self-attention memory module, or SAM in
short. In the self-attention module, Ht is the hidden state in ConvLSTM at the time step t, Qh is the query, Kh indicates the
key, Vh represents the value based on the 1 × 1 convolution on the feature, and Ĥt is the output. As for the proposed SAM,
the aggregated feature Zh is obtained by applying self-attention on Ht and another feature Zm, where Zm is calculated by
querying on Km and visiting Vm. Here, both of Km and Vm are mappings of the memory Mt−1. Zh and Zm are fused as Z
by 1× 1 convolution. Then Z and original input Ht is used to update the memory with a gating mechanism. The final output is
a dot product between the output gate value and the updated memory Mt.

set of weights for 1 × 1 convolutions, C and Ĉ are number
of channels, and where N = H ×W .

The similarity scores of each pair of points are calculated
by applying the matrix production as:

e = QT
hKh ∈ R

N×N . (2)

The similarity between the i-th point and the j-th point
can be indexed as ei,j = (HT

t,iW
T
q )(WkHt,j) where the

Ht,i and the Ht,j are feature vectors with the shape C × 1.
Then, the similarity scores are normalized along columns:

αi,j =
exp ei,j∑N
k=1 exp ei,k

, i, j ∈ {1, 2, ..., N}. (3)

The aggregated feature of the i-th location is calculated
with a weighted sum across all locations:

Zi =

N∑

j=1

αi,j(WvHt;j), (4)

where WvHt,j ∈ R
C×1 is the j-th column of the value

Vh. The output is obtained with a shortcut connection Ĥt =
WfZ+Ht. Here, the residual mechanism stables the model
training and ensures the module is flexible to be embedded
into other deep models.

3.2 Self-Attention Memory Module

We argue that the prediction of the current time step can
benefit from the past relevant features. Therefore, we pro-
pose a self-attention memory module by constructing a new-
designed memory unit M with the self-attention mecha-
nism. We use the proposed memory unit to represent the
general spatiotemporal information which has the global
spatial and temporal receptive field.

The structure of the proposed self-attention memory is il-
lustrated in Figure 1. Our self-attention memory block re-
ceives two inputs, the input feature Ht at the current time
step and the memory Mt−1 at the last step. The whole
pipeline can be separated into three parts, the feature aggre-
gation to obtain the global context information, the memory
updating and the output.
Feature Aggregation. At each time step, the aggregated fea-
ture Z is the fusion of Zh and Zm. Zh is acquired in the same
way as the self-attention described in the section 3.1. Zm

is aggregated by querying on memory at the last time step
Mt−1. The memory is mapped into key Km ∈ R

Ĉ×N and
value Vm ∈ R

C×N by 1× 1 convolutions through weights
Wmk and Wmv . Then, similarity scores between the input
and the memory are calculated by the matrix multiplication
between the query Qh and the key Km:

em = QT
hKm ∈ R

N×N . (5)

Similar to Equation 3, all weights which are used for aggre-
gating features are obtained by applying SoftMax function
along each row, same as the Eq. 3:

αm;i,j =
exp em;i,j∑N
k=1 exp em;i,k

, i, j ∈ {1, 2, ..., N}. (6)

Then, the ‘pixel’ of i-th location in feature Zm is calcu-
lated by a weighted sum across all N locations in value Vm.

Zm;i =

N∑

j=1

αm;i,jVm;j =
N∑

j=1

αm;i,jWmvMt−1;j , (7)

where Mt−1;j is the j-the column of the memory. Fi-
nally, the aggregated feature Z can be obtained with Z =
Wz[Zh;Zm].
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Memory Updating. We adopt a gating mechanism to update
the memory M adaptively, such that the SAM can capture
long-range dependencies in terms of spatial and temporal
domains. The aggregated feature Z and the original input Ht

are used to produce values of the input gate i
′
t and the fused

feature g
′
t. Besides, the forget gate is replaced as 1 − i

′
t to

reduce parameters. The updating progress can be formulated
as follows:

i
′
t = σ(Wm;zi ∗ Z+Wm;hi ∗ Ht + bm;i)

g
′
t = tanh(Wm;zg ∗ Z+Wm;hg ∗ Ht + bm;g)

Mt = (1− i
′
t) ◦Mt−1 + i

′
t ◦ g

′
t

(8)

Here, to further reduce parameters and computation, we re-
place the standard operation with depth-wise separable con-
volution (Chollet 2017). Compared with the original mem-
ory cell C in the ConvLSTM which is updated by convolu-
tion operations only, the proposed memory M is updated by
not only convolution operations but also aggregated features
Zt, obtaining the global spatial dependency timely. There-
fore, we argue that Mt−1 is able to contain global past spa-
tiotemporal information.
Output. Finally, the output feature Ĥt of the self-attention
memory module is a dot product between the output gate
o
′
t and updated memory Mt, which can be formulated as

follows:
o
′
t = σ(Wm;zo ∗ Z+Wm;ho ∗ Ht + bm;o)

Ĥt = o
′
t ◦Mt

(9)

3.3 Self-Attention ConvLSTM

σ

Xt

σ

� �

Ct−1 Ct

Ht

Wi

tanh

�

WgWf

�

� σ
Wo

Mt−1

tanh

�� Mt

: Element-Wise Addition: Element-Wise Product

: Duplication � : Channel Concat

���������	
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Figure 2: The self-attention ConvLSTM (SA-ConvLSTM)
block. The SAM is the self-attention memory which is de-
tailed in Figure 1.

We embed the self-attention memory module into the
ConvLSTM to construct the SA-ConvLSTM, as illustrated
in Figure 2. If we remove the SAM module, the SA-
ConvLSTM will degenerate into the standard ConvLSTM.
Besides, it is flexible to embedded in other models.

4 Experiments
We make the spatiotemporal prediction on three commonly
used datasets, including the MovingMNIST and KTH for

multi-frame prediction, and the TexiBJ for the traffic flow
prediction. To demonstrate the effect of the proposed mem-
ory unit and the self-attention mechanisms, we first carry
out an ablation study on the MovingMNIST and the TexiBJ,
which is detailed in Section 4.3. Then, we show the quanti-
tative results on each dataset in Section 4.4. We also provide
the visualization examples to demonstrate the superiority of
proposed SA-ConvLSTM on the spatiotemporal prediction.
Moreover, to explain the effect of self-attention mechanism
in the proposed SA-ConvLSTM, we visualize the attention
maps from the first and last layers.

4.1 Implementation

To make fair comparisons with previous work (Shi et al.
2015; Wang et al. 2017b; 2018b; 2019; Xu et al. 2018),
we apply almost the same experiment setting, that is, a 4-
layer architecture with 64 hidden states in each layer for ev-
ery model. The scheduled sampling strategy (Bengio et al.
2015) and LayerNorm (Ba, Kiros, and Hinton 2016) are also
adopted in the training process. Each model is trained with
an ADAM optimizer and a beginning learning rate of 0.001.
During training, the mini-batch is set to 8, and the training
process is stopped after 80,000 iterations. We use L2 loss for
the MovingMNIST and the TaxiBJ datasets, while L1 + L2
loss for the KTH dataset.

4.2 Datasets

MovingMNIST is a commonly used dataset contains a va-
riety of sequences generated by the method mentioned in
(Srivastava et al. 2015), depicting two potentially overlap-
ping digits moving with constant velocity and bouncing off
the image edges. Image size is 64×64×1, and each sequence
contains 20 frames with 10 inputs and 10 for prediction.
TaxiBJ is collected from the chaotic real-world environ-
ment and contains traffic flow images collected consecu-
tively from the GPS monitors of taxicabs in Beijing. Each
frame in TaxiBJ is a 32 × 32 × 2 grid of image. Two chan-
nels represent the traffic flow entering and leaving the same
district at this time. We use 4 known frames to predict the
next 4 frames (traffic conditions for the next two hours).
KTH (Schuldt et al. 2004) contains 6 categories of hu-
man actions, including boxing, hand waving, hand clap-
ping, walking, jogging and running, completed by 25 peo-
ple in 4 different scenarios. We follow the setup in previ-
ous works (Oliu et al. 2018; Zhang et al. 2016; Wang et
al. 2017a; 2018b; 2019) to construct the training and testing
sets. Image size are resized from 320×240 to 128×128. 10
frames are used to predict the next 10 frames during training
and 20 frames at inference.

4.3 Ablation Study

We perform an ablation study on the MovingMNIST and
the TexiBJ to evaluate models on the different types of data.
The motion change in the MovingMNIST is smooth; there-
fore, performing predictions on this dataset requires accurate
modeling of local dynamics. In contrast, the TexiBJ uses the
evolution of pixel value to represent traffic flow variation.
Thus, the TexiBJ has more long-range spatial dependencies
than the MovingMNIST.
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Table 1: Ablation study on the MovingMNIST and the TexiBJ datasets. We use SSIM, MSE, MAE to measure the prediction
quality. ConvLSTM is the baseline model, and four variants are evaluated, including the base model in Section 3.1, ConvLSTM
with additional memory, and SA-ConvLSTM with or without Zm in Figure 1.

Datasets MovingMNIST TexiBJ
Models SSIM↑ Δ MSE↓ Δ MAE↓ Δ SSIM↑ Δ MSE↓ Δ MAE↓ Δ

ConvLSTM 0.852 – 63.98 – 133.34 – 0.979 – 0.527 – 4.253 –
w SA, w/o Mem 0.869 +0.017 58.25 -5.73 118.08 -15.26 0.982 +0.003 0.410 -0.117 3.881 -0.372
w/o SA, w Mem 0.872 +0.020 56.17 -7.81 114.02 -19.32 0.982 +0.003 0.431 -0.096 3.948 -0.305
w SA, w Mem, w/o Zm 0.884 +0.032 55.60 -8.38 113.19 -20.15 0.982 +0.003 0.408 -0.119 3.872 -0.381
w SA, w Mem, w Zm 0.913 +0.061 43.92 -20.06 94.73 -38.61 0.984 +0.005 0.390 -0.137 3.822 -0.431

To verify the effectiveness of the self-attention and the ad-
ditional memory M, we apply five different models, includ-
ing 1) the standard 4-layer ConvLSTM, 2) the base model
which is constructed as in Figure 2 with self-attention, 3)
the ConvLSTM with additional memory cell M but without
the self-attention part, and 4) the SA-ConvLSTM without
Zm in Figure 1, 5) the complete SA-ConvLSTM, as illus-
trated as in Figure 2. We Adopt the SSIM (structural similar-
ity Index Measure) (Wang et al. 2004), MSE (Mean Square
Error) and MAE (Mean Absolute Error) as metrics, where
MSE and MAE measure the pixel-level differences, which
are more suitable for synthetic data.

Experimental results are shown in Table 1. Self-attention
relatively reduces MSE by 9.0% and 22.2% on MovingM-
NIST and TexiBJ separately. As for the additional mem-
ory M, the relative reductions are 12.2% and 18.2%. Ad-
ditional memory is more effective on data with smooth dy-
namics, while self-attention is more suitable for traffic or
network flow prediction since it can extract long-range spa-
tial dependencies. SA-ConvLSTM (w/o Zm) achieves MSE
reductions by 13.1% and 22.6% on the MovingMNIST and
the TexiBJ separately. The whole SA-ConvLSTM combines
both the advantages, which reduces MSE by 32.2% and
26.0% on these two types of data. Aggregating past features
from the additional memory with global spatial and tempo-
ral dependencies is very crucial for SA-ConvLSTM.

4.4 Quantitative and Qualitative Comparison

MovingMNIST. Quantitative comparisons among different
models are detailed in Table 2, where the averaged results
are reported. We apply the PredRNN (Wang et al. 2017a),
PredRNN++ (Wang et al. 2018b), MIM (Wang et al. 2019)
and other models as the comparison, where MIM achieves
the state-of-the-art methods in recent years. All models pre-
dict the next 10 frames based on 10 previous frames. We
follow the experiment settings and hyper-parameters of the
PredRNN, PredRNN++, and MIM for a fair comparison.

Compared to the PredRNN, our base model has fewer pa-
rameters and achieves comparable results, which shows the
self-attention boost ConvLSTM to a large extent. Our SA-
ConvLSTM has a smaller model scale than PredRNN or Pre-
dRNN++. The parameters of SA-ConvLSTM are even less
than half of that in the SOTA model MIM or MIM*, where
MIM* is based on the CausalLSTM (Wang et al. 2018b), in-
stead of the ConvLSTM. The smaller model scale is due to
the adoption of depth-wise separable convolution (Chollet

T=2 4 6 8 10

Input

T=12 14 16 18 20

G.T.

PredRNN++

ConvLSTM

MIM

PredRNN

FRNN

SA-ConvLSTM
(Ours)

Base Model 
(Ours)

Figure 3: Qualitative comparison of different models on the
MovingMNIST test set. All models predict 10 frames into
the future by observing 10 previous frames.

2017) in the proposed self-attention memory, reducing the
trainable parameters. All of the PredRNN, PredRNN++, and
MIM rely on convolutions to extract spatial dependencies,
which is limited and inefficient. In contrast, SA-ConvLSTM
achieves the best results on all measurements. In particular,
our model reduces the MAE by 6.4 than MIM*, obtaining
more accurate and sharper predictions. We also evaluated the
efficiency of each model based on a GTX 1080TI GPU and
the TensorFlow framework. ConvLSTM costs 0.42s for one
forward-backward iteration, PredRNN spends 0.66s, MIM
costs 1.14s, while PredRNN++ and MIM* take longer. Our
base model costs 0.54s and SA-ConvLSTM costs 0.72s,
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Table 2: Qualitative Comparison of different models on the MovingMNIST. All models predict 10 frames into the future by
observing 10 previous frames. The output frames are shown at two-frame intervals.

Models #Params SSIM↑ Δ MSE↓ Δ MAE↓ Δ

FC-LSTM (Srivastava et al. 2015) – 0.690 – 118.3 – 209.4 –
ConvLSTM (Shi et al. 2015) – 0.707 +0.017 103.3 -15.0 182.9 -26.5
TrajGRU (Shi et al. 2017b) – 0.713 +0.023 106.9 -11.4 190.1 -19.3
DFN (Jia et al. 2016) – 0.726 +0.036 89.0 -28.3 172.8 -36.6
FRNN (Oliu et al. 2018) – 0.813 +0.123 69.7 -48.6 150.3 -59.1
VPN baseline (Kalchbrenner et al. 2017) – 0.870 +0.180 64.1 -54.2 131.0 -78.4
PredRNN (Wang et al. 2017a) 13.799M 0.867 +0.177 56.8 -61.5 126.1 -83.3
MIM (Wang et al. 2019) 28.533M 0.874 +0.184 52.0 -66.3 116.5 -92.9
PredRNN++ (Wang et al. 2018b) 13.237M 0.898 +0.208 46.5 -71.8 106.8 -102.6
MIM* 27.971M 0.910 +0.220 44.2 -74.1 101.1 -108.3

Base Model (Ours) 10.102M 0.869 +0.179 58.3 -60.0 118.1 -91.3
SA-ConvLSTM (Ours) 10.471M 0.913 +0.223 43.9 -74.4 94.7 -114.7

|G
.T. - Pred|

|G
.T. - Pred|

|G
.T. - Pred|

|G
.T. - Pred|

Input
G

.T
.

M
IM

C
onvL

ST
M

|G
.T. - Pred|

B
ase M

odel
(O

urs)

PredR
N

N
SA

-C
onvL

ST
M

(O
urs)

Figure 4: Visualization samples of on the TaxiBJ test set. All models output next 4 frames conditioned on the last 4 frames. The
absolute differences between predictions and ground truths are shown. The brighter the color, the higher of the absolute errors.

which is around 37% faster than MIM.
The qualitative comparison of each model is visualized in

Figure 3. The FRNN (Oliu et al. 2018) and ConvLSTM pro-
duce vaguest results. Results of PredRNN, PredRNN++, and
MIM are still too blurry to distinguish the digits ’4’ and ’7’.
Our base model achieves sharp but not very precise predic-
tions. SA-ConvLSTM achieves the best predictions in terms
of accuracy and image quality.
TaxiBJ. Quantitative comparisons on the TaxiBJ test set
is detailed in Table 3a. Each model predicts the next 4
frames (traffic conditions for the next two hours) by 4 known
frames. We adopt the frame-wise MSE as the metric. The vi-
sualized comparisons are shown in Figure 4, which includes
both frame and the absolute difference between prediction
results and the ground truth frame. Besides, the proposed
SA-ConvLSTM reduces the averaged MSE error by around
9.3% than the MIM.
KTH. Table 3b shows quantitative comparisons among pre-
vious state-of-the-art methods and SA-ConvLSTM on the
KTH dataset. We use 10 last frames to predict the next 20
frames. SA-ConvLSTM shows its high efficiency and the

flexibility on the KTH dataset. It improves the PSNR of the
state-of-the-art model by 0.86 and SSIM by 0.026. Our base
model still achieves comparable results with PredRNN.

The prediction samples on KTH are visualized in Fig-
ure 5. It is difficult for ConvLSTM to make high-quality pre-
dictions. The ConvLSTM with self-attention (base model)
achieves a similar prediction performance as PredRNN.
Compared to PredRNN, SA-ConvLSTM can provide more
texture information, such as black pants and a white coat
in the Figure 5. The prediction errors marked by cir-
cles and blurry human bodies indicate that ConvLSTM
and PredRNN cannot maintain accuracy and image qual-
ity when carrying out long-term prediction. In contrast, SA-
ConvLSTM can not only keep more texture information but
also improve prediction accuracy.

4.5 Attention Visualization

In order to explain the effect of the self-attention mechanism
in the proposed SA-ConvLSTM, we randomly choose some
examples from the test set of MovingMNIST and visualize
the attention maps in Figure 6, where the attention maps are
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Table 3: Comparisons to state-of-the-art methods on the TaxiBJ test set (a) and the KTH test set (b) separately.

(a) Per-frame MSE on the TaxiBJ test set. All models predict the next 4 images
(traffic conditions for the next two hours) via 4 historical traffic flow images.

Models Frame 1↓ Frame 2↓ Frame 3↓ Frame 4↓
ST-ResNet (Zhang et al. 2017) 0.460 0.571 0.670 0.762
VPN (Kalchbrenner et al. 2017) 0.427 0.548 0.645 0.721
FRNN (Oliu et al. 2018) 0.331 0.416 0.518 0.619
PredRNN (Wang et al. 2017a) 0.318 0.427 0.516 0.595
PredRNN++ (Wang et al. 2018b) 0.319 0.399 0.500 0.573
MIM (Wang et al. 2019) 0.309 0.390 0.475 0.542

Base Model (Ours) 0.291 0.367 0.460 0.524
SA-ConvLSTM (Ours) 0.269 0.356 0.426 0.507

(b) Comparison of the next 20-frame prediction on the
KTH test set. PSNR and SSIM are adopted.

Models PSNR↑ SSIM↑
ConvLSTM (Shi et al. 2015) 23.58 0.712
TrajGRU (Shi et al. 2017b) 26.97 0.790
DFN (Jia et al. 2016) 27.26 0.794
MCNet (Villegas et al. 2017) 25.95 0.804
PredRNN (Wang et al. 2017a) 27.55 0.839
PredRNN++ (Wang et al. 2018b) 28.47 0.865

Base Model (Ours) 27.25 0.837
SA-ConvLSTM (Ours) 29.33 0.891

T=2 4 6 8 10

Input

T=12 15 18 21 24 27 30

G.T.

ConvLSTM

Base Model
(Ours)

SA-ConvLSTM
(Ours)

PredRNN

T=2 4 6 8 10

T=12 15 18 21 24 27 30

Figure 5: Visualization examples on the KTH test set. Each model predicts the next 20 frames by observing 10 frames. Our
SA-ConvLSTM can generate the sharpest and the most precise prediction.

from the first and last layers by querying a specific point
”+”. The area with warmer color has a more relevant rela-
tionship with the query point. When the ”+” is on the digits,
the attention is concentrated on the foreground, as shown in
the “T=13”, “T=19” of the second row and “T=10” of the
third row. On the contrary, when the query point is on the
background, most of the weights focus on the background,
as demonstrate in the “T=1” of the second row and “T=16”
of the fourth row. The low-level (layer 1) features are shift-
invariant, such that the background features are basically the
same, and layer 1 can uniformly attends the background pix-
els. In contrast, the features of layer 4 have more semantic
information. Here, the probability of numbers appearing in
corners is very low in Moving-MNIST. This kind of statis-
tical prior can be learned by the network. Our SAM learns
to transform features at corners to background filters, which
can be used to construct more accurate foreground or back-
ground features.

5 Conclusion

In this paper, we propose the SA-ConvLSTM for spatiotem-
poral prediction. Since the prediction of the current time
step can benefit from the past relevant features, we construct
a self-attention memory module to capture long-range de-
pendencies in terms of spatial and temporal dimensions. We
evaluated our models on MovingMNIST and KTH datasets

for the multi-frame prediction and TaxiBJ for the traffic flow
prediction. Ablation experiments demonstrate the effective-
ness of self-attention and the additional memory M on dif-
ferent types of data. The proposed SA-ConvLSTM achieves
the best results on all datasets with much fewer parame-
ters and higher efficiency than the previous state-of-the-art
model MIM.

T=1 4 7 10 13 16 19

Layer 1

Layer 4

Layer 1

Layer 4

Figure 6: Visualization of attention maps on the MovingM-
NIST test set. Attention maps in the 1st and the 4th layers
are visualized, where ”+” is the querying point. Best view in
color and warmer color represents the higher correlation.
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