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Abstract

Delicate attention of the discriminative regions plays a criti-
cal role in Fine-Grained Visual Categorization (FGVC). Un-
fortunately, most of the existing attention models perform
poorly in FGVC, due to the pivotal limitations in discrimina-
tive regions proposing and region-based feature learning. 1)
The discriminative regions are predominantly located based
on the filter responses over the images, which can not be
directly optimized with a performance metric. 2) Existing
methods train the region-based feature extractor as a one-hot
classification task individually, while neglecting the knowl-
edge from the entire object. To address the above issues, in
this paper, we propose a novel “Filtration and Distillation
Learning” (FDL) model to enhance the region attention of
discriminate parts for FGVC. Firstly, a Filtration Learning
(FL) method is put forward for discriminative part regions
proposing based on the matchability between proposing and
predicting. Specifically, we utilize the proposing-predicting
matchability as the performance metric of Region Proposal
Network (RPN), thus enable a direct optimization of RPN to
filtrate most discriminative regions. Go in detail, the object-
based feature learning and region-based feature learning are
formulated as “teacher” and “student”, which can furnish
better supervision for region-based feature learning. Accord-
ingly, our FDL can enhance the region attention effectively,
and the overall framework can be trained end-to-end without
neither object nor parts annotations. Extensive experiments
verify that FDL yields state-of-the-art performance under the
same backbone with the most competitive approaches on sev-
eral FGVC tasks.

Introduction

Fine-grained visual categorization (FGVC) attracts exten-
sive research attention in Artificial Intelligence (He and
Peng 2017)(Liu et al. 2017), which aims to distinguish ob-
jects from different subordinate-level categories within a
general category, such as bird species (Wah et al. 2011), dog
breeds (Khosla et al. 2011), car models (Krause et al. 2013),
air-craft models (Maji et al. 2013), flowers categories, etc.
Due to the visual similarity in object appearances, the cat-
egorization highly relies on the differences hidden in sub-
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Figure 1: Illustrations of our proposed Filtration and Dis-
tillation Learning framework. Our FDL model creates ef-
fective supervision for discriminative regions proposing and
region-based feature learning, thus enhance region attention
for FGVC. [Best viewed in color with zoom-in]

tle and local regions. Therefore, the delicate attention of the
discriminative regions plays a critical role in FGVC. Cor-
respondingly, it brings challenges in discriminative regions
proposing and region-based feature learning (Figure 1).

The delicate region attention first relays on accurate dis-
criminative regions proposing. Over the past few years,
a variety of regions proposing methods have been pro-
posed relying on human-annotated bounding box/part an-
notations(Zhang et al. 2014)(Wang et al. 2016)(Krause et
al. 2015)(Lin et al. 2015). However, it requires specialized
knowledge and a large amount of annotation time during
labeling, making those methods less applicable in practice.
To overcome these problems, researchers begin focusing on
weakly supervised regions proposing without human bound-
ing box/part annotations. These methods usually utilize fil-
ter response to detect the corresponding discriminative re-
gion (Zhang et al. 2016)(Fu, Zheng, and Mei 2017)(Zheng et
al. 2017)(Zheng et al. 2019). Therefore, the regions propos-
ing can only get indirect optimization accompanied by the
improvement of feature extractor. Although promising re-
sults have been reported, the performance metric of region
proposing is still a blank area in researches. And the absence
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of the directly optimizing paradigm in region proposing lim-
its the further improvement of FGVC.

Learning discriminative region-based features is another
crucial task for FGVC. Existing methods (Fu, Zheng, and
Mei 2017)(Zheng et al. 2017)(Yang et al. 2018) train the
region-based feature extractors individually, which neglects
the knowledge from the entire object and may see the forest
for the trees. Although some search further considering the
object-region relation by concatenating features vectors after
extracted from object and part, their region-based feature ex-
tractors are still trained by a one-hot classification task. Con-
sequently, the learning on region-based feature neglects the
supervision from entire object. The inefficient feature learn-
ing method brings another limitation for FGVC.

To address the above conundrums, in this paper, we pro-
pose a novel “Filtration and Distillation Learning” (FDL)
model (Figure 1) to enhance the region attention with
proposing-predicting discrimination matching and object-
part knowledge transforming. Firstly, a Filtration Learning
(FL) method is put forward for discriminate part regions
proposing based on the matchability between proposing and
predicting. Specifically, we employ a Region Proposal Net-
work (RPN) to produce a list of rectangle regions each with
a confidence score, which indicates the discrimination of
the proposed region. The proposing-predicting matchabil-
ity refers to that, if a discriminative region brings a clear
categorization result with higher probability being ground-
truth, it should match a high confidence score produced by
RPN. Consequently, the confidence scores S and probabili-
ties being ground-truth P of regions should keep consistent
ranking (Chen et al. 2009) in pair-wise order and point-wise
value. We adopt the matching degree of S and P as the per-
formance metric of region proposing, and directly optimize
the RPN according to their ranking loss. Therefore the RPN
can correctly and effectively filtrate the most discriminative
regions with our Filtration Learning.

Secondly, we proposed a Distillation Learning (DL)
method to fuse the knowledge from the entire object into
region-based feature learning by knowledge distilling (Hin-
ton, Vinyals, and Dean 2015). Intuitively, the region-based
feature learning may see the forest for the trees, and cap-
ture fine-grained but biased representation. The object-based
feature learning, in contrast, can capture rounded repre-
sentation over the entire image, and produce credible la-
bel distribution knowledge. In order to eliminate the “prej-
udice” of region-base feature extractor, we further formu-
late the object-based feature learning and region-based fea-
ture learning as “teacher” and “student”. By transferring the
learned knowledge from object to part regions, the region-
base feature learning can get better supervision with object-
region constraint in our Distillation Learning.

Our contributions can be summarized as follows:

• We put forward a Filtration Learning (FL) method for dis-
criminative part regions proposing. Based on the discrim-
ination matching between proposing and predicting, the
region proposing can get directly optimized without the
need of bounding box/part annotations by FL.

• We propose a Distillation Learning (DL) method to en-

hance the region-based feature learning. By knowledge
distillation from entire object, the region-base feature
learning can get better supervision with object-region
constraint.

• Our FDL is highly flexible and can be easily imple-
mented with various convolutional neural network, e.g.
VGG, ResNet, DenseNet. Extensive experiments verify
that FDL yields state-of-the-art performance under the
same settings with the most competitive approaches on
multiple FGVC tasks.

• Our FDL is highly interpretable to human perception and
exhibits competitive performance in Weakly Supervised
Object Localization (WSOL).

The remaining of this paper is organized as follows. Sec.
2 reviews the related work. Sec. 3 presents the generation of
our FDL model. Sec. 4 introduces our experimental results
and analysis on public benchmark datasets, followed by the
conclusions in Sec. 5.

Related Work

In this section, we will introduce the most related work to
our approach, including region proposing, information rank-
ing, and knowledge distilling.

2.1 Discriminative Region Proposing

Since discriminative local region details play an important
role for FGVC, learning to propose the discriminative re-
gions possesses high importance in recent researches(Xie
et al. 2019)(Liu et al. 2019a). A series of methods have
been proposed by utilizing filter response to detect the cor-
responding discriminative region. Fu et al. (Fu, Zheng, and
Mei 2017) propose a multi-step attention network to obtain
discriminating regions by searching regions with the high-
est response value in the last convolutional layer. Zheng et
al. (Zheng et al. 2017) take one-step attention network to
generate multiple attention regions by designing a channel
grouping module. Zhang et al. (Zhang et al. 2017) propose
a picking strategy to elaborately select distinctive and con-
sistent patches based on the responses of CNN filter banks.
Zheng et al. (Zheng et al. 2019) adaptively sample the atten-
tion region to obtain the detail-preserved image according to
the feature map response. Although promising results have
been reported, the performance metric of region proposing
is still a blank area in researches, which limits the further
improvement of FGVC.

In this paper, we introduce RPN to propose discriminative
region for FGVC, and creatively optimize RPN according to
the proposing-predicting matchability.

2.2 Information Ranking

Information ranking is a task to automatically construct
a ranking model to sort new objects according to their
degrees of relevance, preference, or importance(Chen et
al. 2009)(Xie et al. 2018). Zhang et al. (Zhang and
Rusinkiewicz 2018) propose an appropriately ranking
method to detect keypoints by their matchability. Yang et al.
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Figure 2: Illustrations of our FDL attention model. A Filtration Learning (FL) method is put forward based on the discrimina-
tion matching between proposing and predicting, and a Distillation Learning (DL) method is proposed to transfer the learned
knowledge from object to part regions. [Best viewed in color with zoom-in]

(Yang et al. 2018) introduce an intrinsic consistency ranking
agent to detect informative regions in an image.

In this paper, we propose a filtration learning method that
utilizes the matchability between proposing and predicting
to optimize region proposal. Different from the above meth-
ods which only consider the pair-wise order consistency, we
further introduce the point-wise value consistency in the op-
timization. Extensive experiments verify the effectiveness of
our filtration learning with significant improvement in accu-
racy.

2.3 Knowledge Distilling

Knowledge distilling is firstly proposed by Hinton et al.
(Hinton, Vinyals, and Dean 2015) to transfer knowledge
from an ensemble or from a large highly regularized model
into a smaller, distilled model in a teacher-student manner.
The main idea is using soft targets (i.e., the predicted dis-
tribution of ensemble/large model) to optimize the small
model, for it contains more label distribution information
than the one-hot label. In FGVC, the region-based feature
learning may capture fine-grained but biased representation,
while the object-based feature learning can capture rounded
representation over the entire image and produce credible la-
bel distribution knowledge. The object-region feature learn-
ing can also be viewed as a circumstance of knowledge dis-
tilling.

In this paper, we formulate the object-based feature learn-
ing and region-based feature learning as “teacher” and “stu-
dent”. By transferring the learned knowledge from object to
part regions, the region-base feature learning can get better
supervision with object-region constraint.

Approach

In this section, we will introduce the proposed Filtration
and Distillation Learning (FDL) model for FGVC. Our FDL
model is designed with discriminative regions proposing,
object-based feature learning, region-base feature learning
and recognition ensemble, as shown in Figure 2. A Fil-
tration Learning (FL) method is put forward based on the
matchability between proposing and predicting, which en-
ables an effective and direct optimization for region propos-
ing. Moreover, we propose a Distillation Learning (DL)
to transfer the learned knowledge from object to part re-
gions, which enhances the region-based feature learning
with object-region constraint. To the end, we assemble all
the recognition results and make a final prediction.

3.1 Discriminative Regions Proposing

Inspired by the success of Region Proposal Network (RPN)
in object detection (Ren et al. 2015)(Fu et al. 2017)(Liu et
al. 2019b)(Wang et al. 2019), we employ RPN for discrimi-
native region proposing in our FDL model. Specifically, the
RPN takes an image as input and produces a list of rect-
angle regions {R′

1, R
′
2, ...R

′
A}, each with a confidence score

S(R′
i) of the region. Here we resize the input object image O

with the size of 448, and choose anchors with scales of{48,
96, 192} and ratios of {1:1, 3:2, 2:3}. The list is sorted in
order of the score from high to low as in Eqn. 1, where A
is the number of anchors, and S(Ri) is the i-th element in
sorted score list.

S(R1) ≥ S(R2) ≥ ... ≥ S(RA) (1)

To reduce redundancy, we adopt non-maximum sup-
pression (NMS) based on their confidence scores. After
NMS, the FDL chooses top-M discriminative part regions
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{R1, R2, ...RM} according to the score S(Ri). Then the re-
gions are cropped from the input image and resized to pre-
defined size for further feature learning.

3.2 Feature Learning and Recognition Ensemble

After being resized to the predefined size, the top-M re-
gions are fed into feature extractor to generate feature vec-
tors v(Ri), each with length L. Then the feature vectors are
fed into a fully-connected layer, which has L neurons, and
a softmax layer to generate the probability {P j(Ri)}, here
P j(Ri) denotes the probability of predicting region Ri as
the j-th class. The input object image O is also fed into the
classifier and we generate its feature vector as v(O) and pre-
diction result as {P j(O)}.

To further leverage the benefit of part feature ensemble,
we get the object-region concatenated feature vector v(C),
by concatenating the feature vectors of the input object v(O)

and the top-K regions {v (Ri)}Ki=1.

v(C) = [v(O) : v(R1) : · · · : v(RK)]. (2)

The concatenated feature vector v(C) is fed into a fully-
connected layer, which has L(K+1) neurons, and a softmax
layer to generate the probability {P j(C)} . Then we average
{P j(C)} , {P j(O)} , {P j(R1)}, {P j(R2)},... ,{P j(RK)}
and get the assembling probability {P j

ass} as Eqn. 3.

P j
ass =

1

K + 2
{P j(C) + P j(O) +

K∑
i=1

P j(Ri)} (3)

3.3 Filtration Learning with Discrimination
Matching

To enable an end-to-end optimization for region proposing,
we creatively propose a Filtration Learning method which
utilize the proposing-predicting discrimination match-
ability as the performance metric of RPN. Specifi-
cally, the PRN produces a list of discriminative part
regions {R1, R2, ...RM} and their confidence scores
{S(R1), S(R2), ...S(RM )}. The regions will be fed to fea-
ture learning and recognition. For each region Ri, the prob-
ability being ground-truth class P (Ri) is fed back to RPN.
The P (Ri) can be easily extracted from {P j(Ri)} as Eqn.
4 shows.

P (Ri) = P gt(Ri) (gt = index of ground−truth) (4)

The proposing-predicting matchability refers to that, if
a discriminative region is proposed with higher confidence
score S(Ri), it should match clear categorization result with
higher probability being ground-truth P (Ri). Consequently,
the confidence scores and probabilities being ground-truth
of regions should keep consistent ranking (Chen et al. 2009)
in pair-wise order and point-wise value.

The pair-wise order consistency requires the confidence
score S(Ri) and probability being ground-truth P (Ri)
should be sorted with a same order, as in Eqn. 5{

S (Ri) > S (Rj) and P (Ri) > P (Rj)
S (Ri) < S (Rj) and P (Ri) < P (Rj)

(5)

Correspondingly the pair-wise order loss function Lpair

is defined as Eqn. 6

Lpair(S, P ) =
∑

(i,j):P (Ri)<P (Rj)

fpair(S(Rj)− S(Ri)),

(6)
where the function f is hinge loss function fpair(x) =
max{1− x, 0} in our experiment.

The point-wise value consistency requires the confidence
score S(Ri) and probability being ground-truth P (Ri)
should possess approximate value, as in Eqn. 7

argminS

M∑
i=1

‖S(Ri)− P (Ri)‖ (7)

Correspondingly the point-wise order loss function Lpoint is
defined as Eqn. 8

Lpoint(S, P ) =

M∑
i=1

fpoint(S(Ri)− P (Ri)), (8)

where the function f is L1 loss function fpoint(x) = |x| in
our experiment.

To sum up, the loss function for Filtration Learning is il-
lustrated as Eqn. 9:

LFL = Lpair(S, P ) + λLpoint(S, P ). (9)
During training, we directly optimize RPN to make S(Ri)

and P (Ri) having the same ranking by Filtration Learning.
An accurate RPN can propose and filtrate high discrimina-
tive regions, which can benefit the region attention learning
for FGVC .

3.4 Distillation Learning with Knowledge
Transferring

In order to obtain label distribution and intra-class rela-
tion knowledge, we propose a Distillation Learning method
to fuse the knowledge from the entire object into region-
based feature learning by knowledge distilling. Specifically,
we formulate the object-based feature learning and region-
based feature learning as “teacher” and “student”, and trans-
fer the learned knowledge from object to regions-based fea-
ture learning. It is worth mentioning that our motivation of
knowledge distilling is totally different from TASN(Zheng
et al. 2019). While TASN transfers fine-grained knowledge
into object-based feature learning, our FDL aims to fuse the
knowledge from the entire object into region-based feature
learning.

We convert the logit output from each local regions z(R)
into a soft probability distribution qs(R) over classes with
Eqn.10:

q(i)s (R) =
exp(z(i)(R)/T )∑
j exp(z

(j)(R)/T )
, (10)

where T is a parameter namely temperature to produce a
soft probability distribution over classes. We obtain the soft
target cross entropy for the Distillation Learning as Eqn. 11:

LDL(q(O), q(R)) = −
n∑

j=1

q(j)(O)logq(j)s (R), (11)

where n denotes the class number.
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3.5 Filtration and Distillation Learning

In our framework, the classification, filtration and distilla-
tion are trained in an end-to-end and joint manner. Specifi-
cally, we minimize the following objective:

L = αLCLS + βLFL + γLDL. (12)

Where the Lcls is the sum of classification loss based on
input object, local regions and their concatenated feature:

LCLS = fcls(P
j(O), gt) +

M∑
i=1

fcls(P
j(Ri), gt)

+ fcls(P
j(C), gt),

(13)

where the fcls is the cross entropy loss function for classifi-
cation. During the jointly training of optimization, our FDL
can effectively improve the region proposing and region-
based feature leaning for FGVC.

Experiments

We present performance evaluations and analysis of
our proposed FDL attention model on four challenging
tasks, including CUB-200-2011(Wah et al. 2011), FGVC-
Aircraft(Maji et al. 2013), Stanford Cars(Krause et al. 2013)
and Stanford Dogs(Khosla et al. 2011).

4.1 Implementation Details

Our FDL is highly flexible and can be easily implemented
with various convolutional neural network, and we validate
its performance on different backbones (VGG19, ResNet50,
DenseNet161) with sufficient experiments. To make fair
comparison, input images and part regions are resized to
448×448 and 224×224 respectively. The NMS threshold in
region proposing is set to 0.25. Momentum SGD is chosen
as the optimizer with initial learning rate 0.001 and weight
decay 0.0001. And the learning rate is multiplied by 0.1 after
every 80 epochs.

The hyper-parameters α, β, γ is simply set as 1, the hyper-
parameter λ for list-wise ranking is set as 0.1. and the tem-
perature T in knowledge distilling is set as 10. We fix M =
6 in region proposing, which means 6 regions are extracted
to optimize the RPN in Filtration Learning. Comparative ex-
periments are carried out on the number of attention regions
for classification, where K ranges from 1 to 5. The code and
pre-trained model are released for public research.1

4.2 Performance Comparison

The experiment results of our FDL on CUB-200-2011,
Stanford Cars, FGVC-Aircraft and Stanford Dog are pre-
sented in Table .1 We compare FDL with the most compet-
itive approaches in our experiment, including RACNN (Fu,
Zheng, and Mei 2017), MACNN (Zheng et al. 2017), PC
(Dubey et al. 2018a), MaxEnt (Dubey et al. 2018b), NTS
(Yang et al. 2018), MAMC (Sun et al. 2018), TSAN (Zheng

1https://github.com/liuboss1992/FDL

et al. 2019) and DCL (Chen et al. 2019). For fair compar-
ison, we conduct extensive experiment with different back-
bone.

As we can capture in the table, our FDL exhibits competi-
tive performance with a series of state-of-the-art accuracy on
different FGVC tasks. Moreover, the proposed FDL outper-
forms all previous methods on CUB-200-2011 tasks. Com-
pared with RA-CNN which zooms one attention region in
different scales, FDL proposes four discriminative regions
for classification. A clear improvement of 1.6% is obtained
by FDL over RA-CNN on CUB-200-2011 tasks. The com-
parative experiments indicate that multiple attention regions
should be captured in FGVC. Compared with MA-CNN
which proposes multiple attention regions according to fil-
ter response, the region proposing in FDL can be directly
optimized with the matchability between proposing and pre-
dicting. Correspondingly, FDL achieves a relative improve-
ment of 0.3% on CUB-200-2011 tasks, which indicate the
superiority of region proposing with Filtration Learning.

Compared with DCL which enhance the region-based fea-
ture learning by destructing the object structure, our FDL
can learn not only learn fine-grained region feature but also
the object-structure feature, and achieves an accuracy gain
of 0.6% with the same backbone. While the TASN design
an attention-based sampler for fine-grained feature learning,
FDL directly filtrates and extracts the attention region for
feature learning, which brings an accuracy gain of 0.7%.

4.3 Ablation Studies

Number of Attention Regions: Comparative experiments
are first carried out on the number of attention regions,
where K ranges from 1 to 5. Since there exists multiple at-
tention region in FGVC, determining how many discrimina-
tive regions are necessary to achieve the best performance.
As shown in Figure 3, FDL achieves best accuracy with
K = 4 on CUB-200-2011, FGVC-Aircraft and Stanford
Dog task, meanwhile it achieves best accuracy on Stanford
Cars with K = 3. Different from other fine-grained cate-
gories like bird and aircraft, the car usually possess simpler
structure and clearer marker, therefore the number of atten-
tion regions is smaller than other tasks.

Figure 3: Ablation studies on the number of attention re-
gions.

Filtration and Distillation Learning: We then conduct
ablation studies to understand different components in our
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Method Backbone Accuracy (%)
CUB-200-2011 Stanford Cars FGVC-Aircrafts Stanford Dog

RACNN VGG19 85.2 92.5 - -
MACNN VGG19 86.5 92.8 89.9 -

TASN VGG19 86.1 92.4 - -
FDL VGG19 86.84 91.52 88.51 -
PC ResNet50 80.21 93.43 83.40 73.35

MaxEnt ResNet50 80.37 93.85 83.86 73.56
NTS ResNet50 87.5 93.9 91.4 -

MAMC ResNet50 86.2 93.0 - 84.8
TASN ResNet50 87.9 93.8 - -
DCL ResNet50 87.8 94.5 93.0 -
FDL ResNet50 88.59 94.27 93.37 85.00

PC DenseNet161 86.87 92.86 89.24 83.75
MaxEnt DenseNet161 86.54 93.01 89.76 83.63

FDL DenseNet161 89.09 94.02 91.27 84.86

Table 1: Comparison results on four different standard FGVC dataset.

proposed FDL. Using ResNet50 as the backbone network on
CUB-200-2011 task, the proposed FDL boosts the perfor-
mance significantly as shown in Table 2. The performance
improvement 4.47% obtained by FL proves the effectiveness
of FL in optimizing RPN, moreover, it indicates the critical
significance of region proposing in FGVC. At the same time,
the DL bring a clear improvement of 1.29% in accuracy,
which indicates that the knowledge learned in entire object
is beneficial to the region-based feature learning. Combin-
ing Filtration Learning and Distillation Learning, our FDL
model achieves state-of-the-art performance of 88.59% in
accuracy.

Method Lcls LFL LDL Accuracy (%)
ResNet50 � 83.54
+ FL � � 88.07
+ DL � � 84.83
+ FDL � � � 88.59

Table 2: Ablation study on different components in our pro-
posed FDL.

Pair-wise and Point-wise Ranking: Moreover, we con-
duct ablation studies on the performance of Pair-wise order
loss and Point-wise value loss in Filtration learning. As we
can see in Table 3, both the Lpair and Lpoint can improve
the model accuracy significantly. And we achieve the best
accuracy of 88.59% when combing Lpair and Lpoint in Fil-
tration learning.

Lpair Lpoint Accuracy (%)
84.83

� 88.14
� 88.01

� � 88.59

Table 3: Ablation study on pair-wise and point-wise ranking
in Filtration learning.

4.4 Visualization Experiments

Feature Representation Learning: To investigate the fea-
ture representation learning ability of FDL, we conduct ex-
tensive comparison experiments on different FGVC task
with original backbone. For fair comparison, we only extract
the recognition result based on input object P j(O), instead
of recognition ensemble. As shown in Table 4, our FDL can
bring significant improvement over the ResNet50 baseline
with a small overhead during training. This indicates that,
owing to the sharing of feature extractor in object-based
feature learning and part-based feature learning, FDL can
also enhance the object-based recognition with fine-grained
representation learning. Please note that, no computational
overhead is introduced at testing time in the object-based
recognition.

Task ResNet50 Parameter Acc. (%)

CUB-200-2011 Baseline 23.92M 85.49
DFL 28.51M 88.35

FGVC-Aircrafts Baseline 23.71M 89.86
DFL 26.87M 93.04

Stanford Dog Baseline 23.75M 83.07
DFL 27.36M 84.45

Stanford Cars Baseline 23.91M 91.74
DFL 28.45M 93.71

Table 4: Comparisons between FDL model and baseline
model in training parameter and model performance.

As shown in Figure 4, we further conduct visualization
experiments to investigate the attention map by Grad-CAM
(Selvaraju et al. 2017). The original classification model
tends to identify only the most discriminative part of the tar-
get object, incapable of focusing multiple attention regions
for FGVC. As a contrast, FDL generates multiple peak re-
sponses on different discriminative parts. The visualization
experiments verify that FDL enables a better feature rep-
resentation learning over serval discriminative regions than
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Figure 4: Visualization Experiments of attention map. The
first row shows input image, the second row shows attention
map of baseline model, and the third row shows the attention
map of our FDL model. The red color stands for high at-
tention. FDL enables a better feature representation learning
over serval discriminative regions than original backbone.
[Best viewed in color with zoom-in]

original backbone, which is essential for FGVC.
Weakly Supervised Object Localization: Due to the

balanced attention on different part of objects, the attention
map of our FDL can better cover the entire mask and iden-
tify the localization of object than original backbone net-
work. Figure 5 illustrates the visualization of WSOL result
of FDL. Simply set the attention threshold as 0.125, we de-
termine the bounding box as the minimum enclosing rect-
angle of the mask. A competitive localization accuracy of
80.2% is achieved by FDL in GT-known Loc, which judges
the answer as correct when the intersection over union (IoU)
between the ground truth and estimated bounding box for the
ground truth class is 50% or more. As we can see in the fig-
ure, the localization result is pretty close to the ground-truth.
The experiments demonstrate that our FDL is high extensi-
ble to other computer vision tasks.

Figure 5: Visualization of WSOL result of FDL. The first
row shows the ground-truth bounding box (in green) and
our localization result (in red). The second row shows the
attention map of FDL. [Best viewed in color with zoom-in]

Attention Region Proposing: As shown in Figure 6, we
use rectangles in different color to denote the attention re-
gions proposed by RPN. The proposed regions provide clear
and significant visual cues for classification. In CUB-200-
2011, the head, wings and main body of a bird are captured
by FDL attention model, which is consistent with the human
perception. Meanwhile, the tail and talons are rarely pro-

posed. The reason is that these regions usually hold less in-
formation than the head, wings of a bird. In FGVC-Aircraft,
the attention mostly focuses on the head, wings, main body
and tail of the airplane. In Stanford Dogs, our FDL mostly
focuses on the eyes, nose, face and ear of a dog. In Stan-
ford Cars, consistently with human perception, the regions
proposed from cars are car lights, front view, side view.

Overall, our FDL shares consistent attention with human
and exhibits a strong interpretability.

Figure 6: Region proposing results for individual examples.
FDL shares consistent attention with human and exhibits
a strong interpretability. The first row shows the results in
CUB-200-2011, the second row shows the results in FGVC-
Aircraft, the third row shows the results in Stanford Dog
and the fourth row shows the results in Stanford Cars.[Best
viewed in color with zoom-in]

Conclusion

In this paper, we present a novel Filtration and Distillation
Learning (FDL) attention model to enhance region attention
for fine-grained visual categorization. We creativity enable a
direct optimization for region proposing with the matchabil-
ity between proposing and predicting, and transfer the object
knowledge to the region-based feature learning. Extensive
experiments verify the superior performances of our FDL
on various FGVC tasks. Moreover, the FDL exhibits strong
interpretability and competitive performance in Weakly Su-
pervised Object Localization.

The success of FDL reveals the pivotal role of region at-
tention in FGVC, which can be an enlightening reference for
future research.
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