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Abstract

The hubness problem widely exists in high-dimensional em-
bedding space and is a fundamental source of error for cross-
modal matching tasks. In this work, we study the emergence
of hubs in Visual Semantic Embeddings (VSE) with applica-
tion to text-image matching. We analyze the pros and cons of
two widely adopted optimization objectives for training VSE
and propose a novel hubness-aware loss function (HAL) that
addresses previous methods’ defects. Unlike (Faghri et al.
2018) which simply takes the hardest sample within a mini-
batch, HAL takes all samples into account, using both local
and global statistics to scale up the weights of “hubs”. We
experiment our method with various configurations of model
architectures and datasets. The method exhibits exceptionally
good robustness and brings consistent improvement on the
task of text-image matching across all settings. Specifically,
under the same model architectures as (Faghri et al. 2018) and
(Lee et al. 2018), by switching only the learning objective, we
report a maximum R@1 improvement of 7.4% on MS-COCO
and 8.3% on Flickr30k.1

Introduction

The hubness problem is a general phenomenon in high-
dimensional space where a small set of source vectors,
dubbed hubs, appear too frequently in the neighborhood
of target vectors (Radovanović, Nanopoulos, and Ivanović
2010). As embedding learning goes deeper, it has been
a concern in various contexts including object classifica-
tion (Tomašev et al. 2011), image feature matching (Je-
gou et al. 2008) in Computer Vision and word embed-
ding evaluation (Schnabel et al. 2015; Faruqui et al. 2016),
word translation (Dinu, Lazaridou, and Baroni 2015; Lazari-
dou, Dinu, and Baroni 2015) in NLP. It is described as “a
new aspect of the dimensionality curse” (Bellman 1961;
Schnitzer et al. 2012).

In this work, we study the hubness problem in the task
of text-image matching. In recent years, deep neural models
have gained a significant edge over non-neural methods in
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Figure 1: Visualization of our proposed objective, which is
to leverage both local and global negative samples to iden-
tify hubs in high-dimensional embeddings and learn to avoid
them. Local negatives are the ones within mini-batch while
global ones are sampled from the whole training set.

cross-modal matching tasks (Wang et al. 2016). Text-image
matching has been one of the most popular ones among
them. Most deep methods involve two phases: 1) training:
two neural encoders (one for image and one for text) are
learned end-to-end, mapping texts and images into a joint
space, where items (either texts or images) with similar
meanings are close to each other; 2) inference: for a query
vector in modality A, a nearest neighbor search is performed
to match the query vector against all item vectors in modality
B. As the embedding space is learned through jointly mod-
eling vision and language, it is often referred as Visual Se-
mantic Embeddings (VSE). Recent work on VSE has shown
a clear trend of growing dimensions in order to obtain bet-
ter embedding quality (Wehrmann 2018). With deeper em-
beddings, visual semantic hubs increase dramatically. Such
property is undesired as the data is structured in the form
of text-image pairs and a one-to-one mapping firmly exists
among all text and image points.

However, the hubness problem is neither well noticed
nor well addressed by current methods of training VSE.
Since the start of this line of work (Frome et al. 2013;
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Kiros, Salakhutdinov, and Zemel 2015), VSE models use
either sum-margin (SUM, Eq. (2)) or max-margin (MAX,
Eq. (3)) ranking loss (both are triplet based) to cluster the
positive pairs and push away the negative pairs. SUM is
robust across various settings but treats all triplets equiva-
lently and utilizes no information from hard samples, thus
does not address the hubness problem at all. MAX ex-
cels at mining hard samples and achieved state-of-the-art
on MS-COCO (Faghri et al. 2018). However, it does not
explicitly consider the hubness problem, nor does it resist
noise well. New models on training VSE have been con-
sistently brought up in recent years. They include incorpo-
rating extra knowledge to augment original data, eg. gen-
erating adversarial samples (Shi et al. 2018), and design-
ing high-level objective that utilizes pre-trained models to
align salient entities across modalities (Lee et al. 2018;
Wu et al. 2019). However, ever since (Faghri et al. 2018),
the basic scheme of training VSE has not been enhanced.
In this work we show that exploiting the data per se has yet
reached its limit.

To fully extract the information buried within, we com-
bine robustness with hard sample mining, proposing a self-
adjustable hubness-aware loss called HAL. HAL takes both
global (sampled from the whole training set) and local statis-
tics (obtained from mini-batch) into account, leveraging in-
formation of hubs to automatically adjust weights of sam-
ples. It learns from hard samples and is robust to noise at the
same time by taking multiple samples into account. Specifi-
cally, we exploit a sample’s relationship to 1) other samples
within the mini-batch; 2) its k-nearest neighbor queries in
a memory bank, to decide its weight. The larger a hub is,
the more it should contribute to the loss, resulting in a mit-
igation of hubs and an improvement of embedding quality.
Through a thorough empirical comparison, we show that our
method outperforms SUM and MAX loss on various datasets
and architectures by large margins.

The major contribution of this work is a novel training ob-
jective (HAL) that utilizes both local and global statistics to
identify hubs in high-dimensional embeddings. Compared
with strong baselines (Faghri et al. 2018) and (Lee et al.
2018), HAL improves R@1 by a maximum of 7.4% on MS-
COCO and 8.3% on Flickr30k.

Method

We first introduce the basic formulation of VSE model; then
review widely-adopted methods that we will compare to; in
the end, propose our intended loss function.

Basic Formulation

The bidirectional text-image matching framework consists
of a text encoder and an image encoder. The text en-
coder is composed of word embeddings, a GRU (Chung
et al. 2014) (or other sequential models) layer and a tem-
poral pooling layer. The image encoder is usually a deep
CNN and a linear layer. We use ResNet152 (He et al.
2016), Inception-ResNet-v2 (IRv2) (Szegedy et al. 2017)
and VGG19 (Simonyan and Zisserman 2014) pre-trained on
ImageNet (Deng et al. 2009) in our models. We denote them

as functions f and g, which map text and image to some
vectors of size d respectively.

For a text-image pair (t, i), the similarity of t and i is mea-
sured by cosine similarity:

Sit =

〈
f(t)

‖f(t)‖2 ,
g(i)

‖g(i)‖2

〉
: Rd × R

d → R. (1)

During training, a margin based triplet ranking loss is
usually adopted to cluster positive pairs and push negative
pairs away from each other. There are mainly two prevalent
choices which are SUM and MAX. We introduce them in
the next section along with our newly proposed non-triplet-
based loss HAL.

Revisit Two Triplet-based Loss Functions

In this section we review the two popular loss functions that
have been adopted for training VSE and analyze their pros
and cons.

Sum-margin Loss (SUM). SUM is a standard triplet loss
adopted from the metric learning literature and has been
used for training VSE since the start of this line of work
(Frome et al. 2013; Kiros, Salakhutdinov, and Zemel 2015).
Its early form can be found in (Weston, Bengio, and Usunier
2010) which was used for training joint word-image embed-
dings. Formally, SUM is defined as:

LSUM =
∑
i∈I

∑
t̄∈T\{t}

[ α− Sit + Sit̄ ]+

+
∑
t∈T

∑
ī∈I\{i}

[ α− Sti + St̄i ]+,
(2)

where [·]+ = max(0, ·); α is a preset margin; T and I are
text and image encodings in a mini-batch; t is the descriptive
text for image i and vice versa; t̄ denotes non-descriptive
texts for i while ī denotes non-descriptive images for t.

The major shortcoming of SUM lies in the fact that it
views all valid triplets within a mini-batch as equal and as-
signs identical weights to all, leading to a failure of iden-
tifying informative pairs. As we will detail in the follow-
ing, a simple “hard” weighting by taking only the hardest
triplet can greatly enhance a triplet-based loss’s performance
in training VSE.

Max-margin Loss (MAX). Faghri et al. (2018) proposed
MAX fairly recently (2018). MAX differs from SUM by con-
sidering only the largest violation of margin within the mini-
batch instead of summing over all margins:

LMAX =
∑
i∈I

max
t̄∈T\{t}

[ α− Sit + Sit̄ ]+

+
∑
t∈T

max
ī∈I\{i}

[ α− Sti + St̄i ]+.
(3)

We refer to MAX as a “hard” weighting strategy as it im-
plicitly assigns a weight of 1 to the hardest triplet and 0 to all
other triplets. Though MAX was not used in the context of
VSE before, it was thoroughly exploited in other embedding
learning tasks (Wu et al. 2017). As analyzed by (Wu et al.
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2017), a rigid stress on hard negatives like MAX makes its
gradient easily dominated by noise, being a result of either
deficiency of the model architecture or data’s structure per
se. Through error analysis, we notice that the existence of
pseudo hardest negatives in training data is a major source
of noise for MAX. During training, only the hardest negative
in a mini-batch is considered. If that sample contained hap-
pens to be incorrectly labeled or inaccurate, misleading gra-
dients would be imposed on the network. Notice that SUM
eases such noise in labels by taking all mini-batch’s sam-
ples into account. When a small set of samples are with
false labels, their false gradients would be canceled out by
other correct negatives within the mini-batch, preventing the
model from an optimization failure or overfitting to incorrect
labels. That being said, SUM fails to make use of hard sam-
ples and does not address the hubness problem at all. It thus
performs poorly on a well-labeled dataset like MS-COCO.

Besides, both SUM and MAX are triplet based, consider-
ing only one positive pair and one negative pair at a time.
Such sampling manner isolates each triplet and disregards
the overall distribution of data points. What’s more, the
triplet-style heuristics is easy for selected triplets to satisfy
after the early stage of training, leaving very little informa-
tion in gradients in the late stage (Yu et al. 2018). As op-
posed to triplet loss, our proposed NCA-based loss, to be
introduced in the next section, characterizes the whole lo-
cal neighborhood and take the affinities among all pairs into
consideration.

The Hubness-Aware Loss (HAL)

On the one hand, we obtain the greatest possible robust-
ness through considering multiple samples; on the other
hand, we try to make sure the samples being considered
are hard enough - so that the training is effective. We tackle
this problem by leveraging information from visual seman-
tic hubs. Inspired by Neighborhood Component Analysis
(NCA) (Goldberger et al. 2005) used for classification task,
we propose a self-adaptive Hubness-Aware Loss (HAL) that
weights samples within a mini-batch according to both local
and global statistics. More specifically, HAL assigns more
weights to samples which appear to be hubs (being close
neighbors to multiple queries), judging from both the cur-
rent mini-batch and a memory bank sampled from the whole
training set.

How global and local information are used will be de-
tailed shortly. Before that, we briefly explain NCA and dis-
cuss why it is a natural choice for addressing hubness prob-
lem. In the classification context, NCA is formulated as:

LNCA =

N∑
i=1

(
log

∑
yi=yj

eSij − log

N∑
k=1

eSik

)
, (4)

where N is the number of samples. And the gradient of LNCA

w.r.t. positive and negative samples are computed as:

w+ =

∣∣∣∣∂LNCA

∂Sij
+

∣∣∣∣ = eSij∑
yi=yj

eSij
− eSij∑N

k=1 e
Sik

,

w− =

∣∣∣∣∂LNCA

∂Sij
−

∣∣∣∣ = eSij∑N
k=1 e

Sik

.

(5)

For a sample Sij , when it is a close neighbor to multiple
items in the search space, ie. being a hub, its weight as a
positive is reduced and that as a negative is scaled up, mean-
ing that it receives more attention during training. This basic
philosophy of NCA will be used in both the local and global
weighting schemes in the following.

a) Global weighting through Memory Bank (MB). One
of the most desired property of an NCA-based loss is that it
automatically assigns weights to all samples in one batch of
back-propagation through computing gradients as suggested
above. The more data points we have, the more reliable a
hub can be identified. The most ideal approach of lever-
aging hubs is utilizing the idea of NCA and searching for
hubs across the whole training set, so that all samples are
compared against each other and information is made fully
use of. However, it is computationally infeasible to mini-
mize such objective function on a global scale - especially
when it comes to computing gradients for all training sam-
ples (Wu, Efros, and Yu 2018). We thus design hand-crafted
criteria that follows the NCA’s idea to explicitly compute
weight of samples but does not require gradient computa-
tion. Specifically, at the beginning of each epoch, we sample
all over training set and compute their embeddings to cre-
ate a memory bank M that approximates the global distri-
bution of training data. Then we utilize relationships among
mini-batch and memory bank to compute a global weight for
each sample in the batch, highlighting hubs and passing the
weight to the next stage of local weighting.

We define a function kNN(x,M, k) to return the k closest
points (measured by l2 distance) in point set M to x and the
global weighting of HAL can be formulated as:

Wii = 1− eα(Sii−ε1)/(
eα(Sii−ε1) +

∑
t̄∈K1

eα(Sit̄−ε2) +
∑
j̄∈K2

eα(Sj̄i−ε2)

)
,

Wit =

( ∑
t̄∈K1

eβ(Sit̄−ε2) +
∑
ī∈K2

eβ(Sīt−ε2)

)
/

(
eβ(Sii−ε1) + eβ(Stt−ε1) +

∑
t̄∈K1

eβ(Sit̄−ε2) +
∑
ī∈K2

eβ(Sīt−ε2)

)
,

(6)

where Wii,Wit represent weight of positive and negative
samples respectively; K1 = kNN(i,MT \{t}, k),K2 =
kNN(t,MI\{i}, k); α, β are temperature scales and ε1, ε2
are margins. For positive weighting, when the anchor’s
neighborhood is dense, the denominator of the second term
gets larger and so does Wii. As will be shown in gradient
computation (Eq. (8)), a large Wii scales up positive sam-
ple’s gradient. Analogously, for negative weighting, a dense
neighborhood leads to a large Wit and increases the gradient
of that negative sample in local weighting.
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Table 1: Quantitative results on Flickr30k (Young et al. 2014). “ours” means our own implementation.

# architecture loss
image→text text→image

R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r rsum

1.1
GRU+VGG19

SUM 30.0 59.6 67.7 4.0 34.7 22.8 49.4 61.4 6.0 47.5 291.0
1.2 MAX 30.1 56.3 67.9 4.0 30.5 21.3 47.1 58.7 6.0 40.2 281.4
1.3 HAL 38.4 63.3 73.4 3.0 20.1 26.7 53.3 64.9 5.0 32.1 320.0

1.4 Order (VGG19, ours)
(Vendrov et al. 2016)

SUM 31.4 58.3 69.4 4.0 26.9 24.2 50.9 62.9 5.0 34.3 297.1
1.5 MAX 32.1 58.0 69.9 4.0 23.1 22.7 49.4 61.3 6.0 32.9 293.4
1.6 HAL 36.4 62.2 73.0 3.0 20.4 26.6 54.4 65.6 4.0 31.0 318.3

1.7 SCAN
(Lee et al. 2018)

MAX 67.9 89.0 94.4 - - 43.9 74.2 82.8 - - 452.2
1.8 HAL 68.6 89.9 94.7 1.0 3.3 46.0 74.0 82.3 2.0 14.3 455.5

b) Local weighting through loss function. Here we adapt
the NCA loss for classification for our context of producing
a matching among two sets of points:

LHAL =
1

N

N∑
i=1

( 1

γ
log(1 +

∑
m �=i

eγWmi(Smi−ε))

+
1

γ
log(1 +

∑
n �=i

eγWin(Sin−ε))

− log(1 +WiiSii)
)
,

(7)

where γ is a temperature scale; ε is a margin; N is number
of samples within the mini-batch. And the gradients with
respect to negative and positive samples are computed as:

w+ =

∣∣∣∣∂LHAL

∂Sij
+

∣∣∣∣ = Wij

1 +WijSij
if i = j,

w− =

∣∣∣∣∂LHAL

∂Sij
−

∣∣∣∣ = Wije
γWij(Sij−ε)

1 +
∑

m �=j e
γWmj(Smj−ε)︸ ︷︷ ︸

weighted by image modality

+
Wije

γWij(Sij−ε)

1 +
∑

n �=i e
γWin(Sin−ε)︸ ︷︷ ︸

weighted by text modality

.

(8)

Unlike a naive NCA aiming for classifying samples in only
one direction, the first and second term of LHAL punish mis-
takes made during searching targets among the two modal-
ities in both directions. As shown in gradients, the sample
is weighted according to its significance as a hub in both
modalities.

HAL vs MAX. As pointed out by (Lazaridou, Dinu, and
Baroni 2015), MAX actually implicitly mitigates the hub-
ness problem by targeting the hardest triplet only. A hub, by
definition, is a close (potentially nearest) neighbor to multi-
ple queries and would thus be punished by MAX for multi-
ple times (in different batches). (Lazaridou, Dinu, and Ba-
roni 2015)’s experiments also verified such theory empiri-
cally. However, it is a risky choice as the hardest sample
within a mini-batch can easily be a pseudo hardest nega-
tive as analyzed above. As we would show in experiments,
HAL prevails in a broader range of data and model config-
urations while MAX only performs well on some specific

circumstances where both training data and encoders are of
ideal quality. Also, HAL is essentially leveraging more in-
formation than MAX. In MAX, only hub that violates margin
the most gets to impose a gradient on network’s parameters
while HAL softly considers all hubs, big or small, by assign-
ing them weights.

Experiments

This section is divided into 1) Experimental Setups and 2)
Main Results, where detailed configurations of experiments
are introduced in 1) and comparison & analysis of main re-
sults are in 2).

Experimental Setups

Dataset. We use MS-COCO (Lin et al. 2014) and Flickr30k
(Young et al. 2014) as our experimental datasets. For MS-
COCO, there have been several different splitting protocols
being used in the community. We use the same split as
(Karpathy and Fei-Fei 2015): 113,287 images for training,
5,000 for validation and 5,000 for testing.2 During testing,
scores are computed as the average of 5 folds of 1k images.
As many of the previous works report test results on a 1k test
set (a subset of the 5k one), we would experiment with both
protocols. We refer to the 1k test set as c1 and the 5k test set
as c2. Flickr30k has 30,000 images for training; 1,000 for
validation; 1,000 for testing.

Evaluation metrics. We use R@Ks (recall at K), Med r,
Mean r and rsum to evaluate the results. R@K: the ratio of
“# of queries that the ground-truth item is ranked in top K”
to “total # of queries” (we use K ∈ {1, 5, 10}); Med r: the
median of the ground-truth ranking; Mean r: the mean of the
ground-truth ranking; rsum: the sum of R@{1, 5, 10} for
both text→image and image→text. R@Ks and rsum are
the higher the better while Med r and Mean r are the lower
the better. We compute all metrics for both text→image and
image→text retrieval. During training, we follow the con-
vention of taking the model with the maximum rsum on
validation set as the best model for testing.

Model and training details. We use 300-d word embed-
dings and 1024 internal states for GRU text encoder (all
randomly initialized with Xavier init. (Glorot and Bengio

2Note that 1 image in MS-COCO and Flickr30k has 5 captions,
so 5 text-image pairs are used for every image.
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2010)); all image encodings are obtained from image en-
coders pre-trained on ImageNet (for fair comparison, we
don’t finetune any image encoders); d = 1024 for both text
and image embeddings. For more details about hyperparam-
eters and training configurations please refer to Table 3 and
code release: https://github.com/hardyqr/HAL.

Main Results

Here we present the major quantitative and qualitative find-
ings with analysis regarding HAL’s performance, hyperpa-
rameters’ choice and hubs’ distributions.

Comparing HAL, SUM and MAX. Table 1 and 2 present
our quantitative results on Flickr30k and MS-COCO respec-
tively. On Flickr30k, we experiment three models and HAL
achieves significantly better performance than MAX and
SUM on the first two configurations.3 On MS-COCO, HAL
also beats both triplet loss functions. Interestingly, while
MAX fails badly on Flickr30k, it becomes very competitive
on MS-COCO. This serves as an evidence of MAX easily
overfitting to small datasets.4 In conclusion, HAL maintains
its edge over MAX and SUM across regardless of data and
architecture configurations. Even without global weighting
(memory bank), HAL still beats the two triplet losses by a
large margin. The equipment of memory bank can usually
further boosts rsum by another 3−5. Also, it is worth notic-
ing that HAL converges significantly faster than MAX and
SUM. HAL stabilizes after approximately 5 epochs while
MAX and SUM take roughly 10 epochs.

Figure 2: Plotting epoch against rsum on validation set
for comparing convergence time. All models are using
GRU+ResNet152, trained & validated on MS-COCO.

HAL vs. State-of-the-art. Table 2 line 2.13-2.24 list
quantitative results of both our proposed method (2.23, 2.24)
and numbers reported in previous works (2.13-2.22). For
fair comparison with (Faghri et al. 2018), we only use rou-
tine encoder architectures (GRU+ResNet152). Unlike (Shi
et al. 2018; Wu et al. 2019), we also do not bring in any

3We do not include HAL+MB for (Vendrov et al. 2016) as it
demands GPU memory exceeding 11GB, which is the limit of our
used GTX 2080Ti. Same reason applies to SCAN+HAL+MB.

4(Faghri et al. 2018) showed that data augmentation techniques
like random crop applied on input images can improve MAX’s per-
formance over small datasets.

extra information to help training. With a trivial configu-
ration of model & data, our method is still ahead of the
state-of-the-art on MS-COCO (Wu et al. 2019) by a de-
cent margin for most metrics. Notice that we are com-
paring against works that use frozen image encoder (as
we do). For the ones that finetuning image features, bet-
ter performance is achievable (Song and Soleymani 2019;
Shuster et al. 2019). In Table 2 line 2.25, 2.26, we list SCAN
(Lee et al. 2018) alone as it incorporates additional knowl-
edge, i.e. bottom-up attention information, from a Faster R-
CNN (Ren et al. 2015) to refine the visual-semantic align-
ment. With such prior, it is a well-established state-of-the-
art on the Text-Image matching task, having much higher
rsums than previous works. For SCAN, we pick configura-
tions with the best rsums on both MS-COCO and Flikr30k,
switching its learning objective from MAX to HAL.5 On
Flikr30k, MAX and HAL deliver comparable results. On
MS-COCO, HAL is significantly stronger - rsum is further
improved to 512.7 with R@1 improved by 7.4 and 3.7 for
image→text and text→image respectively. We did not ex-
periment with MB due to GPU memory limits.

The impact of batch size. In contrast to loss functions
that treat each sample equivalently, batch size does mat-
ter to HAL as it defines the neighborhood size where rel-
ative similarity is considered during local weighting. And
HAL does benefit from a larger batch size as it means an
expanded neighborhood. As suggested in Figure 2, on MS-
COCO, HAL reaches a maximum rsum with a batch size of
512. Note that in the NCA context, batch size is a relative
concept. For Flickr30k, which is only of roughly 1

4 the size
of MS-COCO, we maintain the original batch size of 128 to
cover roughly the same range of neighborhood.

Figure 3: Plotting batch size used by HAL against rsum. All
models are using GRU+ResNet152, trained & tested on MS-
COCO c2.

The impact of size of memory bank. The MB in HAL
has two hyperparameters: 1) k, which characterizes the
scope of neighborhood being considered for global statis-
tics, and 2) memory bank’s size. Their relative scales matter
for mining informative samples in the top-k neighborhood.
When k is fixed, we search the most appropriate memory

5An ensemble model is able to achieve even higher rsum but
for clear comparison we do not discuss the ensemble case.
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Table 2: Quantitative results on MS-COCO (Lin et al. 2014). First three blocks (line 2.1-2.12) are using protocol c2 (5k test
set); the last two blocks (line 2.13-2.24) is using c1 (1k test set) in convenience of comparing with results reported in previous
works. MB means memory bank.

# architecture loss
image→text text→image

R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r rsum

2.1

GRU+VGG19

SUM 46.9 79.7 89.5 2.0 5.9 37.0 73.1 85.3 2.0 11.1 411.5
2.2 MAX 51.8 82.1 90.5 1.0 5.1 39.0 73.9 84.7 2.0 12.0 421.9
2.3 HAL 55.5 84.3 92.3 1.0 4.2 41.9 75.6 86.7 2.0 7.8 436.1
2.4 HAL+MB 56.7 84.9 93.0 1.0 4.0 41.9 75.9 87.1 2.0 7.2 439.5

2.5

GRU+IRv2

SUM 50.9 82.7 92.2 1.4 4.1 39.5 75.8 87.2 2.0 9.4 428.3
2.6 MAX 57.0 86.2 93.8 1.0 3.5 43.3 77.9 87.9 2.0 8.6 446.0
2.7 HAL 60.2 87.3 94.4 1.0 3.3 44.8 78.2 88.3 2.0 7.7 453.2
2.8 HAL+MB 62.7 88.0 94.6 1.0 3.1 45.3 78.8 89.0 2.0 6.3 458.5

2.9

GRU+ResNet152

SUM 53.2 85.0 93.0 1.0 3.9 41.9 77.2 88.0 2.0 8.7 438.3
2.10 MAX 58.7 88.2 94.8 1.0 3.2 45.0 78.9 88.6 2.0 8.6 454.2
2.11 HAL 64.4 89.2 94.9 1.0 3.0 46.3 78.8 88.3 2.0 7.9 462.0
2.12 HAL+MB 64.0 89.9 95.7 1.0 2.8 46.9 80.4 89.9 2.0 6.1 466.7

2.13 (Kiros, Salakhutdinov, and Zemel 2015) (ours) 49.9 79.4 90.1 2.0 5.2 37.3 74.3 85.9 2.0 10.8 416.8
2.14 (Vendrov et al. 2016) 46.7 - 88.9 2.0 5.7 37.9 - 85.9 2.0 8.1 -
2.15 (Huang, Wang, and Wang 2017) 53.2 83.1 91.5 1.0 - 40.7 75.8 87.4 2.0 - 431.8
2.16 (Liu et al. 2017) 56.4 85.3 91.5 - - 43.9 78.1 88.6 - - 443.8
2.17 (You, Zhang, and Luo 2018) 56.3 84.4 92.2 1.0 - 45.7 81.2 90.6 2.0 - 450.4
2.18 (Wehrmann 2018) (d=1024) 57.8 87.9 95.6 1.0 3.3 44.2 80.4 90.7 2.0 5.4 456.6
2.19 (Faghri et al. 2018) 58.3 86.1 93.3 1.0 - 43.6 77.6 87.8 2.0 - 446.7
2.20 (Faghri et al. 2018) (ours) 60.5 89.6 94.9 1.0 3.1 46.1 79.5 88.7 2.0 8.5 459.3
2.21 (Liu and Ye 2019) 58.3 89.2 95.4 1.0 3.1 45.0 80.4 89.6 2.0 7.2 457.9
2.22 (Wu et al. 2019) 64.3 89.2 94.8 1.0 - 48.3 81.7 91.2 2.0 - 469.5
2.23 GRU+ResNet152 + HAL 65.4 90.4 96.4 1.0 2.5 47.4 80.6 89.0 2.0 7.3 469.2
2.24 GRU+ResNet152 + HAL + MB 66.3 91.7 97.0 1.0 2.4 48.7 82.1 90.8 2.0 5.6 476.6

2.25 (Lee et al. 2018) (t-i AVG) 70.9 94.5 97.8 - - 56.4 87.0 93.9 - - 500.5
2.26 (Lee et al. 2018) (t-i AVG) + HAL 78.3 96.3 98.5 1.0 2.6 60.1 86.7 92.8 1.0 5.8 512.7

bank size and find that 5% of training data is ideal as sug-
gested in Figure 4. The top-k neighborhood of a too large
memory bank might be filled with noisy samples (potentially
being incorrectly labeled).

Figure 4: Plotting rsum against HAL’s memory bank size.
HAL without memory bank is also provided as a baseline.
All data points are produced with GRU+IRv2 as the base
model and are trained & tested on MS-COCO c2.

Related Work

In this section, we introduce works from three fields that
are highly-related to our work: 1) text-image matching and

VSE; 2) deep metric learning; 3) tackling the hubness prob-
lem in various contexts.

Text-image Matching and VSE. Since the dawn of deep
learning, works have emerged using a two-branch architec-
ture to connect language and vision. Weston, Bengio, and
Usunier (2010) trained a shallow neural network to map
word-image pairs into a joint space for image annotation.
In 2013, Frome et al. (2013) brought up the term VSE and
trained joint embeddings for sentence-image pairs. Later
works extended VSE for the task of text-image matching
(Hodosh, Young, and Hockenmaier 2013; Kiros, Salakhutdi-
nov, and Zemel 2015; Gong et al. 2014; Vendrov et al. 2016;
Hubert Tsai, Huang, and Salakhutdinov 2017; Faghri et al.
2018; Wang et al. 2019a), which is also our task of interest.
Notice that text-image matching is different from generating
novel captions for images (Lebret, Pinheiro, and Collobert
2015; Karpathy and Fei-Fei 2015) but is to retrieve existing
descriptive texts or images in a database.

While many of these works improve model architectures
for training VSE, few have tackled the shortcomings in
learning objectives. Faghri et al. (2018) made the latest at-
tempt to reform the long being used SUM loss. Their pro-
posed MAX loss is indeed a much stronger baseline than
SUM in most data and model configurations. But it fails sig-
nificantly when the dataset is small or noise is contained.
Liu and Ye (2019) eased such deficiency by relaxing MAX
into a top-K triplet loss. Shekhar et al.; Shi et al. (2017;
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Table 3: Experiment configurations.
# Datasets models hyperparameters

3.1

MS-COCO

2.1, 2.5, 2.9, 2.13 margin=0.2, lr=0.001, lr update=10, bs=128, epoch=30
3.2 2.2, 2.6, 2.10, 2.20 margin=0.2, lr=0.0002, lr update=10, bs=128, epoch=30
3.3 2.11, 2.23 γ=30, ε=0.3, lr=0.001, lr update=10, bs=512, epoch=15

3.4 2.12, 2.24 γ=30, ε=0.3, α=40, β=40, ε1=0.2, ε2=0.1
lr=0.001, lr update=10, bs=512, epoch=15

3.5 2.26 γ=100, ε=1.0, lr=0.0005, lr update=10, bs=256, epoch=20

3.6

Flickr30k

1.1, 1.4 margin=0.05, lr=0.001, lr update=10, bs=128, epoch=30
3.7 1.2, 1.5 margin=0.05, lr=0.0002, lr update=15, bs=128, epoch=30
3.8 1.3 γ=60, ε=0.7, lr=0.001, lr update=10, bs=128, epoch=15
3.9 1.8 γ=70, ε=0.6, lr=0.0005, lr update=10, bs=128, epoch=30

2018) raised similar concerns. They mainly focused on cre-
ating better training data while we target the training objec-
tive itself.

Deep Metric Learning. Text-image matching is an open-
set task where matching results are identified based on sim-
ilarity of pairs, instead of assigning probabilities to spe-
cific labels in a closed set. Such property coincides with
the idea of metric learning, which utilizes relative similar-
ities among pairs to cluster samples of same class in em-
bedding space. Entering the deep learning age, deep neu-
ral net based metric learning is widely applied in various
tasks including image retrieval (Oh Song et al. 2016; Wang
et al. 2019b), face recognition (Schroff, Kalenichenko, and
Philbin 2015), person re-identification (Yi et al. 2014), etc..
We use kindred philosophy in our context of matching two
sets of data points. Works on deep metric learning that in-
spired our model are discussed here.

Neighborhood Component Analysis (NCA) (Goldberger
et al. 2005) introduced the foundational philosophy for
metric learning where a stochastic variant of K-Nearest-
Neighbor score is directly maximized. (Yi et al. 2014;
Oh Song et al. 2016; Sohn 2016; Wang et al. 2019b) further
developed the idea, leveraging the gradient of NCA-based
loss to discriminatively learn from samples of different im-
portance. (Wu, Efros, and Yu 2018) proposed a method that
computes only part of NCA-based loss’s gradient, so that
NCA on a large scale is computationally feasible.

Tackling the Hubness Problem. We have stated what the
hubness problem is in the introduction. Now we introduce
several efforts tackling the hubness problem in various con-
texts. (Zhang, Xiang, and Gong 2017) pointed out the wide
existence of hubs in text-image embeddings but did not ad-
dress them. Though not receiving enough attention in VSE
literature, hubness problem has recently been extensively
explored in Bilingual Lexicon Induction (BLI). BLI is the
task of inducing word translations from monolingual cor-
pora in two languages (Irvine and Callison-Burch 2017). In
terms of finding correspondence between two sets of vec-
tors, it is analogous to our task of interest. (Smith et al. 2017;
Lample et al. 2018) proposed to first conduct a direct Pro-
crustes Analysis and then use criteria that heavily punish
hubs during inference to reduce the hubness problem. While

it is indeed efficient in finding a better matching, the actual
quality of embedding is not improved. Joulin et al. (2018)
integrated the inference criterion CSLS from (Lample et al.
2018) into a least-square loss and trained a transformation
matrix end-to-end to mitigate hubness problem. Though this
work has a similar philosophy to ours, it is specifically de-
signed for BLI and only trains one linear layer over two sets
of word vectors. When CSLS is appended to a triplet loss,
it is merely a resampling of hard samples, making it non-
special in terms of both form and intuition.

Conclusion

We introduce a novel loss HAL for mitigating visual seman-
tic hubs during training text-image matching models. The
self-adaptive loss HAL leverages the inherit nature of Neigh-
borhood Component Analysis (NCA) to identify informa-
tion of hubs, from both a global and local perspective, giving
considerations to robustness and hard sample mining at the
same time. Our method beats two prevalent triplet-based ob-
jectives across different datasets and model architectures by
large margins. Though our methods have only experimented
on the task of text-image matching, there remains to be other
cross-modal mapping tasks requiring obtaining a matching,
e.g. content-based image retrieval, document retrieval, docu-
ment semantic relevance, Bilingual Lexicon Induction, etc..
HAL can presumably be used in such settings as well.
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