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Abstract

3D point cloud completion, the task of inferring the com-
plete geometric shape from a partial point cloud, has been
attracting attention in the community. For acquiring high-
fidelity dense point clouds and avoiding uneven distribution,
blurred details, or structural loss of existing methods’ results,
we propose a novel approach to complete the partial point
cloud in two stages. Specifically, in the first stage, the ap-
proach predicts a complete but coarse-grained point cloud
with a collection of parametric surface elements. Then, in the
second stage, it merges the coarse-grained prediction with
the input point cloud by a novel sampling algorithm. Our
method utilizes a joint loss function to guide the distribution
of the points. Extensive experiments verify the effectiveness
of our method and demonstrate that it outperforms the exist-
ing methods in both the Earth Mover’s Distance (EMD) and
the Chamfer Distance (CD).

Introduction
Acquiring high-fidelity 3D models from real-world scans
is challenging, which not only depends on the capability
of sensors but also relies on sufficient views for scanning.
Based on such restricted raw data, shape completion is re-
quired to compensate for the structural loss and enhance the
quality, in order to benefit subsequent applications, such as
shape classification (Sarmad, Lee, and Kim 2019) and point
cloud registration (Yuan et al. 2018).

Existing learning-based methods represent 3D shapes as
volumetric grids (Dai, Ruizhongtai Qi, and Nießner 2017;
Han et al. 2017; Stutz and Geiger 2018) or view-based pro-
jection (Park et al. 2017) and then leverage 3D/2D convo-
lution operations. These methods suffer from high compu-
tational cost or loss of geometric information. With the ad-
vances in deep learning for point cloud analysis and gen-
eration, some reasonable works on 3D point cloud comple-
tion have been presented (Yuan et al. 2018; Gurumurthy and
Agrawal 2019; Sarmad, Lee, and Kim 2019; Tchapmi et al.
2019), which prevents high memory footprints and artifacts
caused by discretization.
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for helpful comments.
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Intelligence (www.aaai.org). All rights reserved.

Figure 1: Our network predicts realistic structures from par-
tial views and completes the point clouds evenly. Each pair
(before and after completion) is visualized in the same color,
with 32,768 points after completion.

However, due to the limited capability of analyzing and
generating point clouds, these works sometimes produce
distorted results or even fail to preserve some of the actual
structures which have been revealed in the input. For ex-
ample, they may be able to complete the overall shape of a
chair, but may neglect the connectors between the chair legs
although they appear in the input point cloud. On the other
hand, the similarity metric for point cloud comparison plays
an important role. The widely used Chamfer Distance (CD)
tends to cause uneven density distribution and blurred de-
tails (Achlioptas et al. 2018). As an alternative, the Earth
Mover’s Distance (EMD) is more sensitive to details and
the density distribution, yet suffers from high computational
cost and thus have not been applied to dense point clouds.

To tackle these problems, we propose a novel network
which completes the partial point cloud in two stages. In the
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first stage, we follow the auto-encoder architecture, and uti-
lize a collection of 2-manifold like surface elements, which
can be 2D parameterized, to assemble a complete point
cloud. In order to prevent surface elements from overlap-
ping, we propose an expansion penalty which motivates each
surface element to be concentrated in a local area. Although
we can predict a complete point cloud with only such an
auto-encoder, the surface generation may be coarse-grained,
and the prediction may also neglect some structures within
the input. To this end, in the second stage, we combine the
coarse-grained prediction with the input point cloud and em-
ploy a novel sampling algorithm to obtain an evenly dis-
tributed subset point cloud from the combination. A point-
wise residual is then learned for the point cloud which en-
ables fine-grained details. We use EMD to compare with
the ground truth and utilize an auction algorithm (Bertsekas
1992) for the EMD approximation, which can be applied to
dense point clouds.

Extensive experiments verify the effectiveness of our nov-
elties. Our method outperforms the existing methods with
regard to both EMD and CD. Figure 1 shows some comple-
tion results. The contribution of our work mainly includes:

• a novel approach for dense point cloud completion, which
preserves known structures and generates continuous and
smooth details;

• expansion penalty for preventing overlaps between the
surface elements;

• a novel sampling algorithm for obtaining an evenly dis-
tributed subset point cloud;

• an implementation of the EMD approximation, which can
be applied to dense point clouds.

Related Work

3D Shape Completion Conventional methods for 3D shape
completion mainly includes geometry-based approaches and
example-based approaches. Geometry-based approaches
may interpolate smooth surfaces based on existing struc-
tures (Davis et al. 2002; Zhao, Gao, and Lin 2007) or rely on
some geometric assumptions, such as symmetry (Thrun and
Wegbreit 2005; Sipiran, Gregor, and Schreck 2014). How-
ever, interpolation-based methods do not apply to the cases
with large-scale incompleteness, and geometric assumptions
do not always hold true for real-world 3D data. Example-
based approaches (Pauly et al. 2005; Sung et al. 2015;
Shen et al. 2012) first retrieve some similar models in a large
shape database, and then deform and assemble the retrieved
models to complete the partial shape. The shape database
plays an important role in example-based approaches, mak-
ing them impractical for completing rare-seen novel shapes.

Learning-based approaches utilize a parametric model
(e.g., neural network) to learn a mapping between the par-
tial shape and its completion. Lots of works resort to vol-
umetric grids and leverage 3D convolution networks (Dai,
Ruizhongtai Qi, and Nießner 2017; Han et al. 2017; Stutz
and Geiger 2018). 3D shapes can be projected into 2D views
and some methods use 2D convolution operations for novel
view generation (Tatarchenko, Dosovitskiy, and Brox 2016;

Park et al. 2017). Representing 3D shapes as polygon
meshes, Litany et al. completes the partial human body and
face meshes with the help of graph convolution and the
reference mesh models. There are also some recent meth-
ods exploring continuous implicit filed for representing 3D
shape (Chen and Zhang 2019; Park et al. 2019). However,
these methods have their own limitations, such as high com-
putational cost, loss of geometric details, and applicability
to only certain shape categories.

Point Cloud Analysis Without the loss of geometric
information and the artifact from the discretization, point
clouds can be a more efficient representation. However,
since point clouds are unordered and may have varying den-
sities, deep learning on irregular point clouds faces many
challenges and we cannot apply traditional convolution on
point clouds directly. PointNet (Qi et al. 2017a) uses sym-
metric functions to aggregate information from individual
points, followed by some improvements on local feature
learning (Qi et al. 2017b; Shen et al. 2018). Some methods
project point clouds to regular structures, which allows tradi-
tional convolution (Su et al. 2018; Tatarchenko et al. 2018).
By constructing graphs for point clouds, some approaches
employ graph-based analysis (Hu, Cai, and Lai 2018; Lan-
drieu and Simonovsky 2018; Wang et al. 2019b). There are
also lots of works exploring specialized convolution opera-
tion for point clouds (Jiang, Wu, and Lu 2018; Li et al. 2018;
Liu et al. 2019).

Point Cloud Generation Decoding point clouds from
latent features has not been fully explored. Fan, Su, and
Guibas generate point cloud coordinates using a fully-
connected branch and a 2D deconvolution branch. Fold-
ingNet (Yang et al. 2018) deforms a 2D plane into a
3D shape, which favors continuous and smooth structures.
Combining the merits of the fully-connected layer and Fold-
ingNet, PCN (Yuan et al. 2018) proposes a coarse-to-fine
point cloud generator. AlasNet (Groueix et al. 2018) further
represents 3D shape as a collection of parametric surface el-
ements and learns the mappings from the 2D square to 3D
surface elements, which enables generating complex shapes.

Approach

Given a point cloud lying on the partial surface of an object,
our approach is expected to predict a point cloud indicat-
ing the complete shape of the object. The output point cloud
should be dense enough and evenly distributed so that it can
capture the details of the shape. Our approach leverages su-
pervised learning and is trained end-to-end.

As shown in Figure 2, our approach takes a partial point
cloud as input and completes it in two stages. In the first
stage, the auto-encoder predicts a complete point cloud by
morphing the unit squares into a collection of surface el-
ements. The expansion penalty is proposed to prevent the
overlaps between the surface elements. In the second stage,
we merge the coarse output with the input point cloud.
Through a special sampling algorithm, we obtain an evenly
distributed subset point cloud from the combination, and
then feed it into a residual network for point-wise residual
prediction. By adding the residual, our approach outputs the
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Figure 2: Architecture of our approach. “GFV” denotes the generalized feature vector, Lexpansion and LEMD denotes the
expansion penalty and Earth Mover’s Distance respectively. “[0, 1]2 Sampling” denotes sampling 2D points on a unit square.
The morphing-based decoder morphs the unit squares into a collection of surface elements, which are assembled into the coarse
output. The minimum density sampling outputs an evenly distributed subset point cloud.

final point cloud. Unlike many existing approaches, we em-
ploy EMD for dense point cloud comparison.

Morphing-Based Prediction

In the first stage, we hope to predict a point cloud, which
captures the overall shape of the object, with an auto-
encoder. For efficiency, the encoder is designed following
the idea of PointNet (Qi et al. 2017a), though we could use
other networks for feature extracting as well. Inspired by the
AtlasNet (Groueix et al. 2018), we then feed the extracted
features into a morphing-based decoder for predicting con-
tinuous and smooth shapes.

As shown in the bottom left of Figure 2, the decoder em-
ploys K (16 in experiments) surface elements to form a
complex shape. Each surface element is expected to focus
on a local area which is relatively simple, making the gener-
ation of local surfaces easier. For each element, the decoder
learns a mapping from the unit square [0, 1]2 to the 3D sur-
face using a multilayer perceptron (MLP), which mimics the
morphing of a 2D square into a 3D surface. In each forward
pass, we randomly sample N (512 in experiments) points
in the unit square. The encoded feature vector, which de-
scribes the prediction, is then concatenated with the sam-
pled point coordinates, before passing them as input to the
K MLPs. Each sampled 2D point will be mapped to K 3D
points lying on the K different surface elements. As a re-
sult, each forward pass outputs KN (8,192 in experiments)
points describing the predicted shape. Since the MLPs learn
continuous mappings from 2D to 3D, the decoder can gener-
ate smooth surfaces by dense sampling on 2D. While many
approaches, like the fully-connected layer, output fix-sized
discrete point coordinates, our approach can combine the re-
sults from multiple forward passes to generate point clouds
with arbitrary resolution. For instance, Figure 1 shows dense
point clouds generated by 4 forward passes.

Although we will use similarity metrics (e.g., EMD) to

Figure 3: The figure shows pairs of point clouds. Points from
the same surface elements are in the same color. In each pair,
the left one is the result without the expansion penalty, where
different surface elements tend to mix with each other. The
right one is the result with the expansion penalty.

guide the union of the MLPs cover the whole shape of the
prediction, the MLPs in the AtlasNet (Groueix et al. 2018)
are not explicitly prevented from generating the same area
of space, which may result in overlaps between the surface
elements. Figure 3 shows such an example, in the left point
cloud of each pair, points from different surface elements
tend to mix with each other. The overlaps may lead to the
uneven density distribution of the point cloud. It may also
cause surface elements to expand and cover larger areas,
which makes it more difficult to morph the 2D square and
capture local details.

To this end, we propose an expansion penalty, which
serves as a regularizer for surface elements. It encourages
each surface element to be compact and concentrated in a
local area. Specifically, in each forward pass, we regard the
generated 3D points from each MLP as a vertex set and con-
struct a minimum spanning tree Ti (Prim 1957) for each of
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Figure 4: The left figure shows the point cloud of a surface
element (2D for clear presentation). The right figure shows
the directed minimum spanning tree, where the green point
indicates the root. For all red edges (u, v), u is motivated to
shrink toward v.

them based on the Euclidean distances between the points.
We then choose the middle vertex of Ti’s diameter (i.e., the
simple path containing the most vertices) as the root vertex
and direct Ti by making all its edges point toward the root.
Figure 4 shows an example of the construction. This way,
we have K directed minimum spanning trees which describe
the distribution of points from each MLP. As shown in Fig-
ure 4, edges with longer length (i.e., the distance between
the pair of points) suggest more sparsely distributed points
which tend to mix with points from other MLPs. The expan-
sion penalty thus makes those points shrink along the edges
toward the more compact areas. It can be formulated as:

Lexpansion=
1

KN

∑
1≤i≤K

∑
(u,v)∈Ti

�{dis(u, v)≥λli}dis(u, v)

where dis(u, v) denotes the Euclidean distance between
vertex u and vertex v, li = (

∑
(u,v)∈Ti

dis(u, v))/(N − 1)

denotes the average length of edges in Ti, and � is the indi-
cator function filtering edges whose length are shorter than
λli (λ is 1.5 in experiments). The expansion penalty is dif-
ferentiable almost everywhere, since the constructed span-
ning tree is invariant under the infinitesimal movement of
the points. For each directed edge (u, v) ∈ Ti, whose length
is longer than λli, we only give u a gradient in the backward
passes. So that u is motivated to shrink toward v, making a
more compact surface element.

As shown in Figure 3, thanks to the expansion penalty, the
overlaps between the surface elements are mitigated. The
MLPs divide the whole shape into K parts and each MLP
covers a local part. The partition even corresponds to the
semantic parts of the object, which shows the potential for
the downstream semantic applications.

Although there may be more intuitive methods to mo-
tivate each surface element to be concentrated (e.g., the
distances to the mean point), we find them over-constrain
the shape of each element. The key idea of our spanning-
tree based method is that we only want to penalize those
points which are sparsely distributed (e.g., those sparsely
distributed points on the boundary of each surface element)
instead of all the points. Our expansion penalty thus allows
each surface element to generate more flexible shapes.

Input FPS PDS MDS

200 400 115 285 119 276 196 204

Figure 5: The figure shows the results of sampling 400 points
from 600 points. The global distribution of MDS’s result is
more uniform than that of FPS and PDS.

Merging and Refining

With the morphing-based auto-encoder, we can generate a
smooth point cloud predicting the overall shape. However,
due to the limited capabilities, the auto-encoder may neglect
some structures, which have been revealed in the input point
cloud. Also, the fixed-sized surface elements are not flexible
enough for fine-grained local details. Therefore, we merge
the coarse output from the auto-encoder with the input and
then learn a point-wise residual for the combination.

Since the density of the two point clouds may be differ-
ent and there may be overlapping between them, the merged
point cloud is probably unevenly distributed. We thus hope
to sample a subset point cloud, which has a uniform distri-
bution, from the combination. Existing sampling algorithms
for point clouds, such as the farthest point sampling (FPS)
and Poisson disk sampling (PDS) (Wei 2008), cannot guar-
antee the global density distribution of the results. Figure 5
shows such an example: the input point cloud consists of
two parts, with the right part being twice as dense as the left
part. The sampling results of FPS and PDS are unevenly dis-
tributed. Although the area is the same, the number of points
on the right side is much larger than the number of points on
the left side. Inspired by the point cloud uniformization al-
gorithm using graph Laplacian (Luo, Ge, and Wang 2018),
we employ the summation of Gaussian weights to estimate
the “density” of a point and thus propose a novel sampling
algorithm namely minimum density sampling (MDS). We
denote the ith sampled point as pi and the set of first i sam-
pled points as Pi = {pj |1 ≤ j ≤ i}. Unlike FPS returning
the farthest point from Pi−1 as pi, in each iteration, MDS
returns a point that has the minimum “density”:

pi = argmin
x/∈Pi−1

∑
pj∈Pi−1

exp(−‖x− pj‖2/(2σ2))

where the parameter σ is a positive quantity, which corre-
sponds to the size of the neighborhood considered. As shown
in Figure 5, MDS outputs a subset point cloud whose global
distribution is more uniform than that of FPS and PDS.

Taking the evenly distributed subset point cloud as input,
we then learn a point-wise residual for refinement, which
enables the generation of fine-grained structures. Since the
points from the input are more reliable, in addition to the
channels of the point coordinates, we add another binary
channel to the input to distinguish the source of each point,
where “0” stands for the input point cloud and “1” for the
coarse output. The architecture of the residual network re-
sembles PointNet (Qi et al. 2017a), which consumes a point
cloud and outputs a three-channel residual. We output the
final point cloud after adding the residual point by point.
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Figure 6: The figure shows the completion results of two
different methods. The EMD is more reliable to distinguish
the visual quality of the results.

Similarity Metric

One of the challenges in point cloud completion is the com-
parison with the ground truth. Existing similarity metrics
mainly include the Chamfer Distance (CD) and the Earth
Mover’s Distance (EMD) (Fan, Su, and Guibas 2017). For
two point clouds S1 and S2, CD measures the mean distance
between each point in one point cloud to its nearest neighbor
in the other point cloud:

LCD(S1,S2)=
1

2

(
1

|S1|
∑
x∈S1

min
y∈S2

‖x−y‖+ 1

|S2|
∑
y∈S2

min
x∈S1

‖x−y‖
)

EMD is only defined when S1 and S2 have the same size:

LEMD (S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2

where φ is a bijection. Most existing works employ CD as
a loss function, since it’s more efficient to compute. How-
ever, CD is blind to some visual inferiority (Achlioptas et al.
2018). Figure 6 shows such an example. In the outputs of
the second method, points tend to over-populate in those lo-
cations where most objects of that category have mass (e.g.,
table tops for tables), and the details of the changeable parts
are always blurred. However, it’s hard for CD to penalize
this type of cheat since one of its summands can be very
small and the other one can also be not so large.

By solving the linear assignment problem, EMD forces
the output to have the same density distribution as the
ground truth and is thus more discriminative to the local
details and the density distribution. Most existing meth-
ods employ an implementation for EMD approximation
which needs O(n2) memory footprints (n denotes the num-
ber of points) and cannot be applied to dense point clouds
due to the memory bottleneck. Therefore, many existing
works (Yuan et al. 2018; Achlioptas et al. 2018; Wang et
al. 2019a) use EMD only for point clouds with about 2,000
points, which is not sufficient to capture many details.

Inspired by the auction algorithm (Bertsekas 1992), a con-
stant approximation for the linear assignment problem, we
implement an approximation for EMD, which only needs
O(n) memory. It can thus be applied to dense point clouds
for comparing more details. Specifically, the algorithm treats
the points from the two point clouds as persons and objects

respectively and finds an economic equilibrium by proceed-
ing the bidding phases and assignment phases iteratively.
The algorithm terminates in finite iterations and outputs an
assignment of points whose the mean distance is within ε of
being optimal. Here, ε is a parameter which balances the er-
ror rate and the speed of convergence. In training processes,
to accelerate the calculation of the loss function, we fix the
number of iterations and assign the remaining points greed-
ily. The whole procedure of our implementation is paral-
lelized enabling deep learning with GPUs.

In fact, there are many other variants of the transporta-
tion distances (Cuturi 2013; Solomon et al. 2015), and it’s
promising to explore whether they can be applied to com-
paring two point clouds in an efficient and effective manner.

Our joint loss function L can thus be calculated as:

L=LEMD(Scoarse, Sgt) + αLexpansion + βLEMD(Sfinal, Sgt)

where Scoarse denotes the coarse output, Sfinal denotes the
final output, and Sgt denotes the ground truth. α and β are
weighting factors (α is 0.1 and β is 1.0 in experiments). The
EMD terms and the expansion penalty work in opposite di-
rections. The former motivates the point cloud to cover the
whole shape of the object, while the latter serves as a reg-
ularizer which encourages each surface elements to shrink.
Their mutual restraint allows each surface element to be cen-
tralized in a local area while the union of the elements is as
close as possible to the ground truth.

Experiments

Data Generation and Model Training

We evaluate our methods on the ShapeNet dataset (Chang
et al. 2015). We choose 30,974 synthetic CAD models from
the dataset, which cover eight categories: table, chair, car,
airplane, sofa, lamp, vessel, and cabinet. For a fair compar-
ison, the train/test split is the same as in PCN (Yuan et al.
2018). We generate 50 pairs of partial and complete point
clouds for each of the CAD model, resulting in 30,974 ×
50 pairs of point clouds for training and test. Specifically,
the CAD models are normalized and located at the origin.
For each of them, we uniformly sample 8,192 points on the
surface, which form the complete point cloud. We then ran-
domly sample 50 camera poses on the unit sphere and lift the
2.5D captured images into 3D partial point clouds, which
mimics obtaining 3D raw data from different views in the
real-world applications. After denoising, for convenience of
training, the partial point clouds are unified into the size of
5,000 points by randomly dropping or replicating points.

We trained our models on 8 Nvidia GPUs for 2.3×105 it-
erations (i.e., 25 epochs) with a batch size of 160. The initial
learning rate is 1e-3 and is decayed by 0.1 per 10 epochs.
Adam is used as the optimizer. All activation functions are
ReLU except for the final tanh layers producing the point co-
ordinates and residuals. The models are trained end-to-end
for all object categories.

Comparison with Existing Methods

We compare our approach to the following methods. FCAE
uses an intuitive auto-encoder where the encoder follows
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Figure 7: The figure shows the completion results of different methods. Each output point cloud consists of 8,192 points.

PointNet (Qi et al. 2017a) and the decoder is a fully con-
nected layer generating the coordinates of 8,192 points di-
rectly. CD is used as the loss function. AtlasNet (Groueix
et al. 2018) employs the similar encoder but generates the
point cloud with a set of parametric surface elements. Since
AtlasNet outputs 2,500 points per forward pass, we combine
the generated points of 4 different passes and then randomly
sample 8,192 points from the combination. PCN (Yuan et
al. 2018) completes the partial point cloud through an auto-
encoder as well. It utilizes a stacked version of PointNet (Qi
et al. 2017a) as the encoder and generates point clouds in
a coarse-to-fine fashion. We randomly sample 8,192 points
from the output for comparison. The Oracle method ran-
domly samples 8,192 points on the complete surface of the
object. The reported distances between the randomly sam-
pled points and the ground truth point cloud provide an esti-
mation of the upper bound of the performance. Ours-CD is
the same as our method except for replacing EMD with CD.

The quantitative results are reported in Table 1. It can be
seen that our methods outperform existing methods with re-
gard to both EMD and CD. As mentioned earlier, compared
to CD, EMD is more discriminative and convincing for point
cloud comparison. Our method achieves the lowest EMD in
all object categories and the average EMD is only 57.9%
and 51.5% to that of AtlasNet and PCN, which demonstrates
the superiority of our method. The EMD differs in various
object categories suggesting the difficulties of completing
different categories varies. Specifically, there are more air-
planes and cars in the dataset and their structures are rela-
tively simple and stable, making them easier to complete. In
contrast, various lamps are relatively isolated in the dataset,

which are more difficult to complete. As for CD, the dis-
crepancies among different methods and object categories
are relatively small. Although “Ours” uses EMD as the loss
function while the existing methods use CD, “Ours” out-
performs them with regard to CD and “Ours-CD” achieves
lower results. However, there is still a huge gap between the
results of completion methods and the “Oracle”, which indi-
cates the completion task is arduous.

Figure 7 shows qualitative results. All methods work well
with simple cases, such as the first airplane, but the discrep-
ancy of the methods appears in complex cases. Specifically,
FCAE and PCN tend to generate blurred details which may
be the results of using the fully connected layers to output
coordinates directly. In contrast, our method predicts more
realistic structures and generates continuous and smooth de-
tails. Also, our method employs EMD as the loss function,
which guarantees the even distribution of the points, while
existing methods are more likely to overpopulate points in
some parts. It can also be seen that our method can preserve
the known structures, while other methods always distort or
even neglect the structures revealed in the input. Moreover,
unlike FCAE and PCN outputting the fix-sized point clouds,
our method is capable of generating dense point cloud with
arbitrary resolution. Figure 1 shows such an example.

Ablation Study

We compare our method to some ablated versions which are
described in Table 2. With regard to the expansion penalty,
by remeshing the point clouds with the Ball-Pivoting Algo-
rithm (Bernardini et al. 1999), we compute the sum of the ar-
eas of the surface elements. The results are shown in Table 4,
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Table 1: Quantitative comparison between our methods and
existing methods. For both EMD and CD, lower is better.

methods vessel cabinet table airplane car chair sofa lamp average
Oracle 0.93 1.44 1.21 0.69 1.25 1.17 1.28 0.91 1.11
FCAE 7.22 11.20 7.77 4.10 7.00 7.64 7.00 14.64 8.32

AtlasNet 8.11 8.91 5.07 3.27 4.20 5.03 6.97 10.71 6.53
PCN 6.56 8.79 6.84 3.44 4.44 6.89 6.28 15.45 7.34
Ours 3.83 4.16 3.66 2.18 3.28 3.63 3.47 6.04 3.78

(a) EMD× 100

methods vessel cabinet table airplane car chair sofa lamp average
Oracle 0.42 0.72 0.55 0.28 0.63 0.50 0.60 0.35 0.50
FCAE 1.33 1.40 1.16 0.70 1.10 1.29 1.37 1.72 1.26

AtlasNet 2.30 2.49 1.46 0.85 1.42 1.58 2.67 1.82 1.82
PCN 1.23 1.35 1.14 0.66 1.10 1.41 1.36 1.46 1.21
Ours 1.17 1.37 1.15 0.60 1.11 1.16 1.31 1.30 1.14

Ours-CD 0.99 1.19 0.96 0.56 1.03 1.02 1.16 1.07 1.00

(b) CD× 100

Table 2: The ablated versions of our method. “�” indicates
including that component while “×” indicates not.

methods Lexpansion merging refining CD/EMD
w/o Lexpansion (A) × MDS � EMD

w/o merging (B) � × × EMD
w/o MDS (C) � FPS � EMD

w/o refining (D) � MDS × EMD
Ours-CD (E) � MDS � CD

Ours � MDS � EMD

which suggests that, without the expansion penalty, each sur-
face element tends to cover a significantly larger area. Fig-
ure 3 demonstrates that the expansion penalty can motivate
each surface element to be centralized in a local area and
prevent surface elements from overlapping. As shown in Ta-
ble 3, version A, without the expansion penalty, typically
produces point clouds with larger EMD and CD. With re-
gard to the merging operation, merging the coarse output
with the input point cloud can preserve some known struc-
tures resulting in a more reliable output. Version B, without
the merging operation and the subsequent refining operation,
typically produces point clouds with larger EMD and CD.
Moreover, we use MDS to obtain an evenly distributed sub-
set point cloud. Replacing the MDS with the FPS, version C
cannot guarantee the even distribution of the points, which
causes a significantly larger EMD. However, since the FPS
may preserve more points from the reliable input, version
C produces point clouds with smaller CD. With regard to
the refining operation, the point-wise residual enables the
generation of fine-grained details. Without the refining op-
eration, version D tends to produce point clouds with larger
EMD and CD. With regard to the similarity metric, we im-
plement an approximation which allows calculating EMD
for dense point clouds. Version E replaces EMD with CD
and produces solutions with larger EMD and smaller CD.

Conclusion

We have presented a novel a1pproach for point cloud com-
pletion, which completes the partial point cloud in two
stages. With the expansion penalty, we can effectively con-

Table 3: Quantitative comparison between our method and
the ablated versions. For descriptions of the methods, see
Table 2 and the text. For both EMD and CD, lower is better.

methods vessel cabinet table airplane car chair sofa lamp average
A 3.94 4.33 3.85 2.23 3.47 3.78 3.59 6.08 3.91
B 4.18 4.37 4.08 2.39 3.46 3.89 3.75 6.51 4.08
C 4.30 5.30 4.24 2.59 4.01 4.41 4.18 6.38 4.43
D 3.93 4.32 3.73 2.38 3.41 3.73 3.64 6.02 3.89
E 5.44 6.81 4.52 3.01 4.39 5.44 5.62 8.93 5.52

Ours 3.83 4.16 3.66 2.18 3.28 3.63 3.47 6.04 3.78

(a) EMD× 100

methods vessel cabinet table airplane car chair sofa lamp average
A 1.20 1.46 1.22 0.62 1.15 1.23 1.38 1.37 1.20
B 1.36 1.48 1.29 0.70 1.19 1.30 1.45 1.59 1.29
C 1.09 1.38 1.12 0.58 1.11 1.10 1.27 1.23 1.11
D 1.24 1.44 1.21 0.64 1.15 1.23 1.40 1.39 1.21
E 0.99 1.19 0.96 0.56 1.03 1.02 1.16 1.07 1.00

Ours 1.17 1.37 1.15 0.60 1.11 1.16 1.31 1.30 1.14
(b) CD× 100

Table 4: The surface area for the ground truth, and the sum
of the areas of the surface elements for the two methods. The
numbers are the averages over all object categories.

ground truth w/o Lexpansion Ours
1.11 2.41 1.56

trol the distribution of the points. The novel sampling opera-
tion enables us to preserve the known structures. Moreover,
we have discussed the similarity metrics and implemented
an efficient approximation for EMD. Extensive experiments
demonstrate that our approach predicts more realistic struc-
tures and generates dense point clouds evenly.
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