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Abstract

Face parsing has recently attracted increasing interest due to
its numerous application potentials, such as facial make up
and facial image generation. In this paper, we make contribu-
tions on face parsing task from two aspects. First, we develop
a high-efficiency framework for pixel-level face parsing an-
notating and construct a new large-scale Landmark guided
face Parsing dataset (LaPa). It consists of more than 22,000
facial images with abundant variations in expression, pose
and occlusion, and each image of LaPa is provided with an
11-category pixel-level label map and 106-point landmarks.
The dataset is publicly accessible to the community for boost-
ing the advance of face parsing.1 Second, a simple yet ef-
fective Boundary-Attention Semantic Segmentation (BASS)
method is proposed for face parsing, which contains a three-
branch network with elaborately developed loss functions
to fully exploit the boundary information. Extensive exper-
iments on our LaPa benchmark and the public Helen dataset
show the superiority of our proposed method.

Introduction

Face parsing, aiming to assign pixel-level semantic labels
for facial images, has attracted more and more attentions
due to its wide application potentials, such as facial make
up (Ou et al. 2016) and facial image synthesis (Zhang et al.
2018). In recent years, deep learning promotes the develop-
ment of face related fields, such as face recognition (Sun
et al. 2014; Taigman et al. 2014; Schroff, Kalenichenko,
and Philbin 2015; Deng et al. 2019; Fu et al. 2019), face
detection (Zafeiriou, Zhang, and Zhang 2015; Zhang et al.
2017) and face alignment (Zhou et al. 2013; Wu et al. 2017;
Merget, Rock, and Rigoll 2018). However, the development
of face parsing remains slow. One of the major obstacle is
the lack of training data. As is well known, adequate train-
ing data is crucial for achieving good results by deep learn-
ing methods. However, there are few public datasets for face
parsing due to the difficulty and high cost of pixel-level an-
notation. By contrast, labeling a small number of predefined
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1https://github.com/lucia123/lapa-dataset

Figure 1: Annotation examples of the proposed LaPa
dataset. It consists of more than 22,000 images with large
variations in pose, facial expression and occlusion. Each im-
age is provided by 106-point landmarks and an 11-category
semantic label map. One can refer to the supplementary ma-
terial for more examples.

landmarks in a facial image is much easier, and it is a fea-
sible way to utilize these landmarks to guide the face pars-
ing annotation. Nevertheless, the public datasets for facial
landmark localization are limited either on the number of
training samples or the number of landmarks. Specifically,
most of public available datasets are annotated with less than
100 points, which are not enough to depict the shape of fa-
cial parts with fine details. For example, the widely used 68-
point landmarks in 300W (Sagonas et al. 2013) describe the
eyebrow with only 5 points on the upper boundary while
leaving the lower boundary unmarked. The recent 98-point
landmarks in WFLW (Wu et al. 2018) do not cover the re-
gions of nose wing. Needless to say other makeups such
as 21-point in AFLW (Koestinger et al. 2011) and 6-point
in AFW (Baltrusaitis, Robinson, and Morency 2013), they
could be applied for face geometric normalization but are
incompetent to represent boundaries of facial parts. The He-
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len dataset (Le et al. 2012) contains 194-point landmarks,
but the number of samples is only 2,330 and no landmarks
are located on the nose bridge.

To remedy the above problems, in this paper we develop
a high-efficiency framework for face parsing annotating. It
is composed of two consecutive modules - Dense Landmark
Annotation (DLA) module and Pixel-Level Parsing Anno-
tation (PPA) module, both of which simplify the annotation
at their respective stages. In the DLA module, we develop
a semi-automatic labeling tool for 106-points facial land-
mark annotation. This tool could greatly reduce the work-
load for annotators with the help of an iteratively updated
auxiliary model. Subsequently, with the color image and the
annotated landmarks, the pixel-level semantic labels are pro-
duced automatically in the PPA module, no need of manual
work. It is accomplished by three steps. First, we propose a
category-wise fitting approach, which could draw the con-
tour for each facial part based on the landmarks. Second, a
coarse-to-fine segmentation strategy is employed to segment
the hair and facial skin regions. Finally, the generated label
maps are merged hierarchically as a complete annotation.

Benefiting from the proposed framework, we construct a
new facial Landmark guided face Parsing (LaPa) dataset
efficiently. It consists of more than 22,000 images, cover-
ing large variations in facial expression, pose and occlusion.
Each image is provided with annotations of an 11-category
(namely hair, face skin, left/right eyebrow, left/right eye,
nose, upper/lower lips, inner mouth and background) pixel-
level label map along with the coordinates of 106-point land-
marks. Fig. 1 gives some annotation examples of the pro-
posed LaPa dataset.

Beyond the lack of training data, another critical issue of
face parsing is that the semantic labels of the boundary pix-
els are challenging to be predicted. It is caused by the se-
mantic confusion, especially for the facial parts where the
boundary pixels cover a nonnegligible proportion. To tackle
this problem, we propose an effective Boundary-Attention
Semantic Segmentation (BASS) method, which improves
the performance by fully utilizing the boundary informa-
tion from two aspects: 1) the boundary-aware features are
integrated into semantic features in the network to preserve
more contour details. 2) an additional boundary-attention se-
mantic loss is developed to reinforce the boundary effect in
model optimization. Extensive experiments demonstrate the
effectiveness of our method.

We summarize the contributions of this paper as follows:
1) We develop a high-efficiency framework for face pars-

ing annotation, which considerably simplifies and speeds up
the face parsing annotation, and makes it possible to con-
struct a large-scale face parsing dataset efficiently.

2) By using the proposed framework, we construct a new
large dataset for face parsing. It contains more than 22,000
images. Each image is provided with an 11-category pixel-
level semantic label map and coordinates of 106-point land-
marks. It could be applied to numerous face related applica-
tions.

3) We propose an effective boundary-attention seman-
tic segmentation method for face parsing, which provides
a baseline for the proposed LaPa dataset and achieves the

state-of-the-art performance on the public Helen dataset.

Related Work

Datasets

Due to the high-cost of pixel-level annotation, there are few
face parsing datasets published. The most commonly used
datasets are LFW-PL (Kae et al. 2013) and Helen (Le et
al. 2012; Smith et al. 2013). LFW-PL is a subset of the
Labeled Faces in the Wild (LFW) funneled images which
is a dataset of face photographs dedicated to the uncon-
strained face recognition. This dataset contains 2,927 fa-
cial images. All the images are first segmented into super-
pixels, and then each superpixel is manually assigned with
one of the hair/skin/background categories. The annotations
for facial parts are not provided in this dataset. The origi-
nal Helen dataset (Le et al. 2012) is composed of 2,330 fa-
cial images with densely-sampled, manually-annotated key-
points around the semantic facial parts. Smith et al. (Smith et
al. 2013) generated segmentation ground truths of eye, eye-
brow, nose, inside mouth, upper lip and lower lip automati-
cally by using the contours, together with facial skin and hair
categories generated from manually annotated boundaries
and an automatic matting algorithm (Levin, Rav-Acha, and
Lischinski 2008). Another related dataset is CelebAMask-
HQ (Lee et al. 2019). It is a large-scale face image dataset
that has 30,000 high-resolution face images selected from
the CelebA dataset (Liu et al. 2015b) by following CelebA-
HQ (Karras et al. 2018). The masks of CelebAMask-HQ
were manually-annotated with 19 classes.

Methods

In recent years, increasing attention has been drawn in
face parsing due to its great application potentials. Early
works mainly focus on hand-crafted features and probabilis-
tic graphical models. Warrell et al. (Warrell and Prince 2009)
proposed to use priors to model facial structure and got fa-
cial parts labels through a Conditional Random Field (CRF).
Smith et al. (Smith et al. 2013) adopted SIFT features to
select examplers and computed segmentation map of a test
image by propagating labels from the aligned exemplar im-
ages. Kae et al. (Kae et al. 2013) combined CRF with a
Restricted Boltzmann Machine (RBM) to model both lo-
cal and global structures for face labeling. More recently,
certain works attempt to tackle the face parsing task with
the help of deep learning to break the performance bottle-
neck of traditional methods. Luo et al. (Luo, Wang, and
Tang 2012) proposed a hierarchical face parsing framework
with Deep Belief Networks (DBNs) as facial parts and com-
ponents detectors. Liu et al. (Liu et al. 2015a) exploited a
Convolution Neural Network (CNN) to model both unary
likelihoods and pairwise label dependencies. Yamashita et
al. (Yamashita et al. 2015) proposed a weighted cost func-
tion to improve performance for certain classes like eyes.
Jackson et al.(Jackson, Valstar, and Tzimiropoulos 2016)
proposed a two-stage parsing framework with Fully Con-
volutional Networks (FCNs). Liu et al. (Liu et al. 2017)
designed a light-weight network which combines a shal-
low CNN with a spatially variant Recurrent Neural Network
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(RNN) and a coarse-to-fine approach for accurate face pars-
ing. Wei et al. (Wei et al. 2017) introduced an automatic
method for selecting receptive fields. Guo et al. (Guo et al.
2018) adopted a prior mechanism to refine the Residual En-
coder Decoder Network (RED-Net). Wei (Wei et al. 2019)
revisited the structure of traditional FCN and proposed an
accurate face parsing method at real-time speed. Lin (Lin et
al. 2019) proposed a novel RoI Tanh-warping operator and
achieved the state-of-the-art performance on both LFW-LP
and Helen datasets.

The New Face Parsing Dataset

In this section, we first describe the proposed high-efficiency
framework for face parsing annotating, and then introduce
the constructed face parsing dataset LaPa.

High-Efficiency Framework

The framework is composed of two consecutive modules,
named Dense Landmark Annotation (DLA) and Pixel-level
Parsing Annotation (PPA).

Dense Landmark Annotation module The purpose of
the DLA module is to annotate facial images with dense
landmarks efficiently. We develop a semi-automatic facial
landmark labeling tool with user interface. This tool can give
a reference position for each landmark with the help of an
auxiliary facial landmark localization model, so that annota-
tors only need to adjust a small number of points for diffi-
cult cases rather than annotating all from scratch. In this pa-
per, hourglass network (Newell, Yang, and Deng 2016; Bu-
lat and Tzimiropoulos 2017) is employed, which is trained
with mere 2,000 manually annotated images at the begin-
ning and updated once 2,000 additional images are labeled.
The Normalized Mean Error (NME) and Area Under Curve
(AUC) on the test set (2,000 accurately labeling images by
annotators) w.r.t. the number of training samples are reported
in Fig. 2. We can see that the performance of the auxiliary
model keeps improving along with the increasing samples
accumulated by our semi-automatic labeling tool. This tool
significantly simplifies and speeds up the process of dense
landmark annotation. In this work, the DLA module takes
the 106-point landmark definition. The outputs of this mod-
ule will be fed to the PPA module.

Figure 2: Performance of the auxiliary model for landmark
localization w.r.t. the number of training samples. The hori-
zontal axis refers to the number of training samples which is
accumulated by our facial landmark labeling tool. The verti-
cal axis refers to the corresponding evaluation performance.

Figure 3: The framework for the proposed PPA module.
First, the coarse segmentation is applied on the whole image
and then the face region is cropped and finely segmented into
three categories including hair, skin and background. Mean-
while, the annotation of facial parts are produced by our
category-wise fitting approach according to the manually an-
notated facial landmarks. Finally, the outputs are merged hi-
erarchically as a complete annotation.

Pixel-Level Parsing Annotation module This module
takes a color image and the coordinates of 106-point land-
marks as input, and outputs a pixel-level semantic label map
including 11 categories. As Fig. 3 shows, it consists of three
stages:

1) Coarse-to-fine segmentation for hair and face skin.
Parsing hair and skin are important for many facial appli-
cations, such as hair coloring, skin whitening, etc. However,
conventional facial landmarks are not defined on the fore-
head and hair regions, in part because forehead regions are
often occluded by hair. Thus, we solve this problem resort-
ing to the human parsing dataset CIHP2. It is the first stan-
dard and comprehensive benchmark for instance-level hu-
man parsing. Because the test set of CIHP does not supply
the ground truth, we just adopt the training and validation
set, totally 33,280 images.

In the coarse segmentation stage, we firstly map twenty
categories in CIHP into two by taking hair and skin as fore-
ground and others as background. Then we crop the regions
of interest from original images according to the mapped
labels incorporating with the instance labels. Usually, one
image in CIHP could produce several sub-images in which
only one major face exists. After filtering the images of
which the width or height is less than 80 pixels, we col-
lect about 26,000 images for training. Here we adopt the ad-
vanced Pyramid Scene Parsing Network (PSPNet) (Zhao et
al. 2017) to segment the foreground (hair and skin) from the
background. This stage could be considered as a face detec-
tion operation to preserve the hair region while regular face
detectors usually focus on the face region and may lose part
of hair.

In the fine segmentation stage, we process the data in a
similar way as the coarse segmentation stage but retaining
hair and skin regions as two separate categories. In order
to obtain more accurate segmentation results, the proposed
BASS method is adopted in this stage, which will be intro-
duced in the latter section.

2) Category-wise fitting for facial parts. Facial parts in-
clude left/right eyebrow, left/right eye, nose, upper/lower lip
and inner mouth. In order to obtain more natural and accu-
rate contours, we develop different fitting schemes for dif-

2http://sysu-hcp.net/lip/overview.php
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ferent facial parts according to their characteristics. For eye-
brow, outer contour of mouth and jawline, we adopt polygon
fitting to generate approximated contours. The pixels within
each polygon are assigned to the corresponding category. In
some cases, direct connection of long-distance neighboring
landmarks may cause piecewise linear effect. To overcome
this problem, prior knowledge is leveraged to make the re-
sults smoother by interpolation. For eye and inner mouth,
two parabolas are applied to sketch the upper and lower
boundary separately. For nose, we separate it into left and
right parts to handle the profile case, and piecewise fitting is
adopted due to the complex shape of nose. Note that all the
partial landmarks are fitted in the transformed space where
each part is aligned with a standard pose.

3) Hierarchical fusion. After the above two steps, we
could obtain the label maps for hair/skin and facial parts.
Then we merge them into a unified label map hierarchically.
We emphasize that the order of fusion is important for pro-
ducing correct results. For example, eye is always beyond
the skin but sometimes behind hair or sunglasses, so if the
label of eye covers the label of hair, the results will be un-
reasonable. Therefore, we merge the label maps in the order
of skin, facial parts, hair and background.

Dense Landmark Guided Face Parsing (LaPa)
dataset

We collect 22,176 images from two popular datasets -
the landmark localization dataset 300W-LP (Sagonas et al.
2013; Zhu et al. 2016) and the face recognition dataset
Megaface (Kemelmacher-Shlizerman et al. 2016). We ran-
domly select 2,000 images for validation and 2,000 images
for test, and the remaining 18,176 images are taken as the
training set. All the images are annotated by the DLA mod-
ule first, and then the color image and the landmarks are fed
to the PPA module to obtain an 11-category semantic label
for each pixel. The label is determined according to the visi-
ble texture. Therefore, some categories may be not presented
due to occlusions. For example, eye may be invisible due to
large pose or occlusion by other objects such as sunglasses
or hair. In this work, we focus on single face parsing, and
thus only the major face is annotated even if multiple faces
exist in an image. Fig. 1 shows some examples of the pro-
posed dataset.

Comparison with relevant datasets Helen (Smith et al.
2013) is a widely used dataset for face parsing, while it
still has several limitations: 1) The labeling is not accu-
rate enough especially for hair and face skin categories pro-
duced by matting. As a result, most works based on He-
len only focus on facial components, while ignoring hair
and skin. 2) The limited number of samples make it dif-
ficult to support training large-scale practical models. The
LFW-PL dataset (Kae et al. 2013) has the same issue of the
lack of training images while only hair and facial skin are
annotated without considering facial parts. In contrast, the
CelebAMask-HQ dataset (Lee et al. 2019) has plentiful im-
ages with more categories. Nevertheless, most of the sam-
ples in CelebAMask-HQ are frontal or nearly frontal facial
images, lacking the pose diversity. Compared with these ex-
isting datasets, the proposed LaPa dataset has obvious ad-

Figure 4: The network structure of BASS. It consists of three
branches. The semantic branch runs a multi-category seman-
tic segmentation task. The boundary-aware branch runs a
two-category boundary segmentation task. The boundary-
attention semantic branch takes the combination of the fea-
tures from the former two branches as input and employs
the boundary map to weight the semantic loss for boundary
pixels.

vantages on the diversity. Furthermore, resorting to the pro-
posed framework, the LaPa dataset could be scaled up easily
with incremental facial images.

Boundary-Attention Semantic Segmentation

Although face could be approximately considered as a rigid
body in which the deformation is limited, face parsing is still
a challenging task due to the variations in facial expression
and pose. Meanwhile, the facial parts are usually smaller
than general objects while the boundary pixels, which are
difficult to be distinguished due to the semantic confusion,
covers a nonnegligible proportion. To overcome these prob-
lems, we propose an effective Boundary-Attention Semantic
Segmentation (BASS) method for face parsing, which fully
utilizes the boundary information in both the network im-
provement and loss development.

As Fig. 4 shows, the network structure consists of three
branches. The basic branch of the network is called semantic
branch. The purpose is to learn semantic features and infer
accurate semantic label maps from facial images. Any ex-
isting segmentation network structure could be taken in this
branch. Here, we employ ResNet-101 (He et al. 2016) as
the backbone. In order to reduce the resolution loss caused
by pooling or convolution with stride larger than 1, dilation
convolution (Chen et al. 2018) is adopted in the fifth resid-
ual block, therefore the resolution of the output is 1/16 rather
than 1/32 of the input. In order to leverage the global texture
information, pyramid spatial pooling with different scales
are used before the classifier learning. Then, the output fea-
ture maps with different resolutions are concatenated with
high-resolution feature maps generated by the last residual
block after interpolation to the same size. The integrated
feature maps are used to predict the semantic label for each
pixel.

As we have mentioned above, boundary pixels are impor-
tant but challenging to be predicted. In order to improve the
segmentation performance for boundary pixels, a boundary-
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aware branch is added to learn boundary features by a
boundary detection task. First, it extracts shared features
from different layers of ResNet-101 in the semantic branch,
and then projects them into a new space where boundary
details are well preserved. The output of this branch is a
boundary map in which each value refers to the confidence
score that pixel is located on the boundary without con-
sidering semantics. Many existing works (Wu et al. 2018;
Ruan et al. 2019) and our experiments have proved the ef-
fectiveness of exploiting boundary information.

However, the effect is limited due to the independence of
these two tasks. Therefore, similar to (Ruan et al. 2019), we
employ another branch called boundary-attention semantic
branch. The features extracted from the semantic branch and
boundary-aware branch are combined in this branch, which
are rich in semantics while boundary details are well pre-
served. We attempt different combination strategies, includ-
ing element plus, element multiply and channel concatena-
tion. The experimental results show that all the three strate-
gies are useful for the segmentation while concatenation is
the best way (Tab. 1).

In addition to the enhancement in feature space, we de-
velop a boundary-attention semantic loss which enlarges the
semantic loss of boundary pixels according to the boundary
map. This loss could significantly improve the segmentation
accuracy, especially for the categories with clear boundaries.
The comparison results will be given in the next section. The
total loss function are defined as follows:

L = λ1Ls + λ2Lb + λ3Lbs, (1)

Ls = − 1

N

N∑

i=1

C∑

j=1

ysij log p
s
ij , (2)

Lb = − 1

N

N∑

i=1

(ybi log p
b
i + (1− ybi ) log(1− pbi )), (3)

Lbs = − 1

N

N∑

i=1

C∑

j=1

wi y
s
ij log p

bs
ij , (4)

where L refers to the total loss. Ls, Lb and Lbs denote
the loss of the semantic, boundary-aware, and boundary-
attention semantic branches, respectively. λ1, λ2 and λ3 are
hyper-parameters to balance the loss of different branches.
N denotes the number of pixels in the whole image while C
denotes the number of parsing categories. Here ysij equals to
1 if the semantic label of pixel i is j, and ysij = 0 otherwise.
ybi is a indicator variable of which the value is 1 if pixel i
is located on the boundaries and 0 otherwise. ps, pb and pbs

are prediction values of the three branches, respectively. To
emphasize the effect of boundaries, we introduce a new pa-
rameter wi = 1 + α, if ybi = 1 and wi = 1, otherwise. Note
that if α = 0, Lbs is equivalent to the conventional cross
entropy loss. If α > 0, the loss of boundary pixels will be
enlarged. During test phase, pbs is taken as the prediction of
the output.

Experiments

In this section, we first conduct extensive experiments on
the LaPa dataset to validate the effectiveness of the proposed
method. Then we compare our method with other state-of-
the-arts on the public Helen dataset.

Experimental Settings

For both LaPa and Helen datasets, we adopt similar net-
work configurations. For the semantic branch, the network
parameters of ResNet-101 are initialized from the model
pretrained on the ImageNet dataset (Deng et al. 2009). The
input size of the network is 473×473, and dilation convo-
lution is used in the last residual block to retain the feature
resolution. The extracted features are then processed by a
spatial pyramid pooling module with four different scales of
1 × 1, 2 × 2, 3 × 3 and 6 × 6 to aggregate global and lo-
cal contextual information. For the boundary-aware branch,
the feature maps from conv2 3, conv3 4 and conv4 23 in
ResNet-101 are concatenated as input. As the same in (Ruan
et al. 2019), we adopt a positive/negative sample balancing
strategy which takes the ratio of pixels belonging to specific
class as the weights of the opposite one. For the boundary-
attention semantic branch, the last feature maps before pre-
dictors of the semantic and boundary-aware branches are
combined as the input features.

The network is trained by minimizing the objective func-
tion defined in Eq. (1). We use mini-batch gradient descent
as the optimizer with the momentum of 0.9, weight decay
of 0.0005 and batch size of 64. ”Poly” learning rate policy
is used to update parameters and the initial learning rate is
set to 0.001. Synchronized Batch Normalization is adopted
to accelerate the training procedure. For simplicity, the λ1,
λ2 and λ3 are all set to 1. Parameter α are determined on the
validation set. Our experiments are implemented by Pytorch
framework, and all the models are trained on 4 NVIDIA
Tesla P40 with 24GB memory.

Similar to the previous work (Lin et al. 2019), face align-
ment is implemented as a pre-processing step on the Helen
dataset while the results are evaluated on the original annota-
tions without image transformation and cropping. However,
face alignment is not employed on the LaPa dataset because
it may cause the losses the foreground pixels, e.g., hair. F1-
score is taken as the quantitative evaluation metric, which is
commonly used by the existing face parsing literature.

Experiments on the LaPa Dataset

Ablation Study To evaluate the effectiveness of the pro-
posed strategies separately, we train the following models
on the LaPa dataset. The basic model A is trained only with
the semantic branch, which does not utilize any auxiliary
boundary information. The model B is trained with both the
semantic branch and the boundary-aware branch. The two
tasks share low-level features but are independent on the
high-level layers. The model Cx is trained with all the three
branches (i.e. semantic branch, boundary-aware branch and
boundary-attention semantic branch) while α = 0 in the
boundary-attention semantic loss. The Model Dx is trained
with the same network structure as Model Cx while α is set
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to 1. The superscript x denotes different combination strate-
gies for the two kinds of features, where p means element
plus, m means element multiplication, and c means concate-
nation on the channels.

Tab. 1 gives the comparison results. We can see that the
basic model A achieves an overall F1-score of 88.62%.
While adding the boundary-aware branch, the accuracy is
improved to 89.08% by model B. That means the bound-
ary detection task could preserve the auxiliary boundary in-
formation in the low-level features, which is useful for the
high-level semantic predictions. Models Cp, Cm and Cc are
all higher than model B, achieving 89.25%, 89.26% and
89.32%, respectively. Models Dp, Dm and Dc further im-
prove the performance to 89.50%, 89.53% and 89.62% by
enlarging the semantic loss of boundary pixels. For both the
training of model C and model D, the concatenation strategy
achieves the best performance compared to the element-plus
and element-multiplication strategies. Fig. 6 provides some
visualization results for comparison of the three branches.

Evaluation with different parameter α We inspect the
performance w.r.t. parameter α for each category on the val-
idation set. As Fig. 5 shows, the performance with α = 2
is significantly better than that with α = 0 for almost all
the facial parts except the nose. We speculate this is be-
cause the nose has no clear boundary. For the categories
with clear boundaries such as eyebrows, eyes and mouth,
the boundary-attention semantic loss (with α > 0) brings
notable improvement. For the hair, skin and background cat-
egories, there is no obvious change with different values of
α because the boundary pixels cover a very small proportion
for these categories. In our experiments, the mean F1-score
with α = 10 achieves 90.07%, higher than α = 0 by 0.75%.

Figure 5: F1-score w.r.t. the parameter α. The horizontal axis
refers to the value of α. The vertical axis refers to the F1-
score on the validation set.

Baseline for the LaPa dataset Because the official codes
of the related methods on face parsing are not available, we
just report the results of our BASS method on our LaPa

Figure 6: Visualizing the results on the LaPa dataset. (a) is
the original color image, in which the red dashed rectangles
indicate the challenging parts. (b)-(d) are the zoom-in results
of models trained with different network structure. S, B and
SB denote the semantic branch, boundary-aware boundary
and boundary-attention semantic branch, respectively. (e) is
the ground truth of the corresponding image.

(a) Image (b) S (c) B (d) SB (e) GT

dataset, which could be taken as the baseline for further
comparison on this dataset. The last two rows in Tab. 1 gives
the results. It achieves 90.07% F1-score on the validation set
and 89.79% F1-score on the test set. The parameter α is set
to 10 which is determined on the validation set.

Comparison with State-of-the-art Methods

Dataset and ground truth Since the original Helen
dataset (Le et al. 2012) is made for facial landmark lo-
calization instead of parsing, Smith et al. (Smith et al.
2013) take several steps to convert densely labeled land-
marks into segmentation maps. Specifically, ground truth
segments of facial parts are automatically generated from
manually-annotated contours. For facial skin, the jawline
contour is used as the lower boundary, while for the up-
per boundary, an automatic matting algorithm (Levin, Rav-
Acha, and Lischinski 2008) is used to separate the forehead
from hair. The same matting strategy is adopted to recover
the hair region. To make the dataset adaptive to semantic
segmentation tasks, we first transform the confidence maps
ranging from 0 to 255 to label maps by selecting the cat-
egory with the maximum confidence value. However, this
will cause incorrect ground truth for certain cases, espe-
cially for the hair category. As the number of training im-
ages are limited, many methods adopt exemplar based ap-
proach, which needs to split some images as exemplar dur-
ing the training and test phase. As in (Liu et al. 2015a;
Guo et al. 2018), 230 images are split as exemplars. In con-
trast, our method could directly output the prediction result
for each pixel by the network, thus we use all the training
images and exemplar images for training model, and test im-
ages are the same as (Liu et al. 2015a; Guo et al. 2018).

Experimental results As the previous works (Smith et al.
2013; Liu et al. 2015a; 2017; Guo et al. 2018; Wei et al.
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Table 1: Ablation study and baselines on the LaPa dataset. Model A is trained only by the semantic branch. Model B is
trained by Model A plus the boundary-aware branch. Model Cx is trained by Model B plus the boundary-attention semantic
branch with softmax loss(α = 0 in Eq. (1)). Model Dx is trained by Model B plus the boundary-attention semantic branch
with boundary-attention semantic loss (α = 1). The superscript x denotes different combination strategies for the two kinds
of features, where p means element plus, m means element multiplication, and c means concatenation on the channels. The
performance of each category, together with the mean F1-score over the 10 foreground categories on the validation set are
listed. The last two rows are the results of our BASS method on the validation set and test set.

hair skin left right left right nose upper inner lower background meaneyebrow eyebrow eye eye lip mouth lip
A 95.53 96.88 86.09 85.59 86.26 86.25 95.33 83.35 86.57 84.37 99.01 88.62
B 95.92 97.08 86.31 86.20 86.70 86.88 95.56 83.99 87.12 85.04 99.10 89.08
Cp 95.98 97.16 86.78 86.56 87.05 87.08 95.64 84.20 86.84 85.16 99.11 89.25
Cm 95.95 97.15 86.82 86.75 86.94 87.24 95.48 83.97 87.18 85.16 99.11 89.26
Cc 96.00 97.17 86.97 86.94 87.10 87.41 95.65 83.92 86.90 85.10 99.11 89.32
Dp 96.04 97.17 87.02 87.01 87.24 87.62 95.62 84.49 87.29 85.52 99.12 89.50
Dm 96.03 97.21 87.18 86.99 87.39 87.58 95.61 84.34 87.43 85.56 99.12 89.53
Dc 96.09 97.24 87.31 87.16 87.58 87.56 95.66 84.57 87.39 85.63 99.13 89.62

Val. 96.00 97.32 87.90 87.68 88.23 88.22 95.81 85.15 88.06 86.33 99.10 90.07
Test 96.31 97.24 87.67 87.55 88.06 87.91 95.47 84.36 87.64 85.70 99.17 89.79

Table 2: Comparison with state-of-the-art methods on the Helen dataset. To keep consistent with other methods, the performance
of the hair category and other fine-grained categories (e.g. left/right eyes) is omitted. The overall scores are computed by
combining the merged brows/eyes/mouth and nose categories.

skin nose upper-lip inner-mouth lower-lip brows eyes mouth overall
Smith et al. (Smith et al. 2013) 88.2 92.2 65.1 71.3 70.0 72.2 78.5 85.7 80.4

Liu et al. (Liu et al. 2015a) 91.2 91.2 60.1 82.4 68.4 73.4 76.8 84.9 85.9
Liu et al. (Liu et al. 2017) 92.1 93.0 74.3 79.2 81.7 77.0 86.8 89.1 88.6

Guo et al. (Guo et al. 2018) 93.8 94.1 75.8 83.7 83.1 80.4 87.1 92.4 90.5
Wei et al. (Wei et al. 2019) 95.6 95.2 80.0 86.7 86.4 82.6 89.0 93.6 91.6
Lin et al. (Lin et al. 2019) 94.5 95.6 79.6 86.7 89.8 83.1 89.6 95.0 92.4

BASS (ours) 94.9 95.8 83.7 89.1 91.4 83.5 89.8 96.1 93.1

2019) do not report the performance of hair and fine-grained
categories (i.e. left/right eyebrow and left/right eye) on the
Helen dataset, the mean score of foreground categories can-
not be computed as Tab. 1 shows. To keep consistent with the
previous methods, we report our results on the skin, nose,
upper-lip, inner-mouth, lower-lip, merged brows, merged
eyes and merged mouth categories. The overall scores are
computed by combining the merged brows, merged eyes,
merged mouth and nose categories without considering fine-
grained categories. As Tab. 2 shows, our model achieves the
overall score of 93.1%, surpassing state-of-the-art methods.

Conclusion

In this paper, we develop a high-efficiency framework for
face parsing annotation, which significantly simplifies the
pixel-level semantic annotation for face parsing with high
accuracy. Benefiting from this novel framework, we con-
struct a new dataset for face parsing. It consists of more
than 22,000 facial images and each image is provided with
an 11-category semantic label map along with coordinates
of 106-point landmarks. Furthermore, we propose an effec-
tive boundary-attention semantic segmentation method for
face parsing, which boosts the performance by fully utilizing

the boundary information in both network improvement and
loss development. Experiments on Helen and the proposed
LaPa datasets demonstrate the effectiveness of our method.
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