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Abstract

Crowd counting is an important yet challenging task due to
the large scale and density variation. Recent investigations
have shown that distilling rich relations among multi-scale
features and exploiting useful information from the auxiliary
task, i.e., localization, are vital for this task. Nevertheless,
how to comprehensively leverage these relations within a uni-
fied network architecture is still a challenging problem. In
this paper, we present a novel network structure called Hybrid
Graph Neural Network (HyGnn) which targets to relieve the
problem by interweaving the multi-scale features for crowd
density as well as its auxiliary task (localization) together and
performing joint reasoning over a graph. Specifically, HyGnn
integrates a hybrid graph to jointly represent the task-specific
feature maps of different scales as nodes, and two types of
relations as edges: (i) multi-scale relations capturing the fea-
ture dependencies across scales and (ii) mutual beneficial re-
lations building bridges for the cooperation between counting
and localization. Thus, through message passing, HyGnn can
capture and distill richer relations between nodes to obtain
more powerful representations, providing robust and accurate
results. Our HyGnn performs significantly well on four chal-
lenging datasets: ShanghaiTech Part A, ShanghaiTech Part
B, UCF CC 50 and UCF QNRF, outperforming the state-of-
the-art algorithms by a large margin.

Introduction

Crowd counting, with the purpose of analyzing large crowds
quickly, is a crucial yet challenging computer vision and AI
task. It has drawn a lot of attention due to its potential appli-
cations in public security and planning, traffic control, crowd
management, public space design, etc.

Same as many other computer vision tasks, the perfor-
mance of crowd counting has been substantially improved
by Convolutional Neural Networks (CNNs). Recently, the
state-of-the-art crowd counting methods (Liu, Weng, and
Mu 2019; Liu, Salzmann, and Fua 2019; Wan et al. 2019;
Liu, Salzmann, and Fua 2019; Jiang et al. 2019) mostly fol-
low the density-based paradigm. Given an image or video
frame, CNN-based regressors are trained to estimate the
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Figure 1: Illustration of the proposed HyGnn model. (a) In-
put image, in which crowds have heavy overlaps and occlu-
sions. (b) Backbone, which is a truncated VGG-16 model.
(c) Domain-specific branches: one for crowd counting and
the other for localization. (d)HyGnn, which represents the
features from different scales and domains as nodes, while
the relations between them as edges. After several mes-
sage passing iterations, multiple types of useful relations are
built. (e) Crowd density map (for counting) and localization
map (as the auxiliary task).

crowd density map, whose values are summed to give the
entire crowd count.

Recent studies (Shen et al. 2018; Cao et al. 2018; Li et
al. 2017; 2018) have shown that multi-scale information, or
relations across multiple scales helps to capture contextual
knowledge which benefits crowd counting. Moreover, the
crowd counting and its auxiliary task (localization), in spite
of analyzing the crowd scene from different perspectives,
could provide beneficial clues for each other (Liu, Weng,
and Mu 2019; Lian et al. 2019). Crowd density map can
offer guidance information and self-adaptive perception for
precise crowd localization, and on the other hand, crowd
localization can help to alleviate local inconsistency issue
in density map. The mutual cooperation, or called mutual
beneficial relation, is the key factor in estimating the high-
quality density map. However, most methods only consider
the crowd counting problem from one aspect, while ignore
the other one. Consequently, they fail to fully utilize mul-
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tiple types of useful relations or structural dependencies in
the learning and inferring processes, resulting in sub-optimal
results.

One primary reason is the lack of a unified and effective
framework capable of modeling the different types of rela-
tions (i.e., multi-scale relations and mutual beneficial rela-
tions) over a single model. To address this issue, we intro-
duce a novel Hybrid Graph Neural Network (HyGnn), which
formulates the crowd counting and localization as a graph-
based, joint reasoning procedure. As shown in Fig. 1, we
build a hybrid graph which consists of two types of nodes,
i.e., counting nodes storing density-related features and lo-
calization nodes storing location-related features. Besides,
there are two different pairwise relationships (edge types)
between them. By interweaving the multi-scale and multi-
task features together and progressively propagating infor-
mation over the hybrid graph, HyGnn can fully leverage
the different types of useful information, and is capable of
distilling the valuable, high-order relations among them for
much more comprehensive crowd analysis.

HyGnn is easy to implement and end-to-end learnable.
Importantly, it has two major benefits in comparison to ex-
isting models for crowd counting (Liu, Weng, and Mu 2019;
Liu, Salzmann, and Fua 2019; Wan et al. 2019; Liu, Salz-
mann, and Fua 2019; Jiang et al. 2019). (i) HyGnn inter-
weaves crowd counting and localization with a joint, multi-
scale and graph-based processing rather than a simple com-
bination as done in most existing solutions. Thus, HyGnn
significantly strengthens the information flow between tasks
and across scales, thereby enabling the augmented repre-
sentation to incorporate more useful priors learned from
the auxiliary task and different scales. (ii) HyGnn explicitly
models and reasons all relations (multi-scale relations and
mutual beneficial relations) simultaneously over a hybrid
graph, while most existing methods are not capable of deal-
ing with such complicated relations. Therefore, our HyGnn
can effectively capture their dependencies to overcome in-
herent ambiguities in the crowd scenes. Consequently, our
predicted crowd density map is potentially more accurate,
and consistent with the true crowd localization.

In our experiments, we show that HyGnn performs re-
markably well on four well-used benchmarks and surpasses
prior methods by a large margin. Our contributions are
summarized in three aspects:

• We present a novel end-to-end learnable model, namely
Hybrid Graph Neural Network (HyGnn), for joint crowd
counting and localization. To the best of our knowledge,
HyGnn is the first deep model capable of explicitly mod-
eling and mining high-level relations between counting
and its auxiliary task (localization) across different scales
through a hybrid graph model.

• HyGnn is equipped with a unique multi-tasking property,
where different types of nodes, connections (or edges),
and message passing functions are parameterized by dif-
ferent neural designs. With such property, HyGnn can
more precisely leverage cooperative information between
crowd counting and localization to boost the counting per-
formance.

• We conduct extensive experiments on four well-known
benchmarks including ShanghaiTech Part A, Shang-
haiTech Part B, UCF CC 50 and UCF QNRF, on which
we set new records.

Related Works

Crowd Counting and Localization. Early works (Viola,
Jones, and Snow 2005) in crowd counting use detection-
based methods, and employ handcrafted features like
Haar (Viola, Jones, and others 2001) and HOG (Dalal and
Triggs 2005) to train the detector. The overall performances
of these algorithms are rather limited due to various occlu-
sion. The regression-based methods, which can avoid solv-
ing the hard detection problem, has become mainstream
and achieved great performance breakthroughs. Tradition-
ally, the regression models (Chen et al. 2013; Lempitsky
and Zisserman 2010; Pham et al. 2015) learn the map-
ping between low-level images features and object count
or density, using gaussian process or random forests regres-
sors. Recently, various CNN-based counting methods have
been proposed (Zhang et al. 2015; 2016; Liu, Weng, and
Mu 2019; Liu, Salzmann, and Fua 2019; Wan et al. 2019;
Liu, Salzmann, and Fua 2019; Jiang et al. 2019) to bet-
ter deal with different challenges, by predicting a density
map whose values are summed to give the count. Partic-
ularly, the scale variation issue has attracted the most at-
tention of recent CNN-based methods (Dai et al. 2019;
Varior et al. 2019). On the other hand, as observed by some
recent researches (Idrees et al. 2018a; Liu, Weng, and Mu
2019; Lian et al. 2019), although the current state-of-the-
art methods can report accurate crowd count, they may pro-
duce the density map which is inconsistent with the true
density. One major reason is the lack of crowd localiza-
tion information. Some recent studies (Zhao et al. 2019;
Liu, Weng, and Mu 2019) have tried to exploit the useful
information from localization in a unified framework. They,
however, only simply share the underlying representations
or interweave two modules for different task together for
more robust representations. Differently, our HyGnn con-
siders a better way to utilize the mutual guidance informa-
tion: explicitly modeling and iteratively distilling the mutual
beneficial relations across scales within a hybrid graph. For
a more comprehensive survey, we refer interested readers
to (Kang, Ma, and Chan 2018).

Graph Neural Networks. The essential idea of Graph
Neural Network (GNN) is to enhance the node representa-
tions by propagating information between nodes. Scarselli
et al. (Scarselli et al. 2008) first introduced the concept of
GNN, which extended recursive neural networks for pro-
cessing graph structure data. Li et al. (Li et al. 2016) pro-
posed to improve the representation capacity of GNN by us-
ing Gated Recurrent Units (GRUs). Gilmer et al. (Gilmer
et al. 2017) used message passing neural network to gen-
eralize the GNN. Recently, GNN has been successfully ap-
plied in attributes recognition (Meng et al. 2018), human-
object interactions (Qi et al. 2018a), action recognition (Si
et al. 2018), etc. Our HyGnn shares similar ideas with
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Figure 2: Overall of our HyGnn model. Our model is built on the truncated VGG-16, and includes a Domain-specific Feature
Learning Module to extract features from different domain. A novel HyGnn is used to distill multi-scale and cross-domain
information, so as to learn better representations. Finally, the multi-scale features are fused to produce the density map for
counting as well as generate the auxiliary task prediction (localization map).

above methods that fully exploits the underlying relation-
ships between multiple latent representations through GNN.
However, most existing GNN-based models are designed
to deal with only one relation type, which may limit the
power of GNN. To overcome above limitation, our HyGnn
is equipped with a multitasking property, i.e., parameteriz-
ing different types of connections (or edges) and the mes-
sage passing functions with different neural designs, which
significantly discriminates HyGnn from all existing GNNs.

Methodology

Preliminaries

Problem Formulation. Let the crowd counting model be
represented by the function M which takes an Image I as
input and generates the corresponding crowd density mapD
(for counting) as well as the auxiliary task prediction, i.e.,
localization map L. Let Dg and Lg be the groundtruth den-
sity map and localization map, respectively. Our goal is to
learn powerful domain-specific representations, denoted as
fd and fl, to minimize errors between the estimated D and
groundtruth Dg, as well as between L and Lg. It should
be noted that crowd counting and localization tasks share a
common meta-objective, and Dg and Lg are obtained from
the same point-annotations without additional target labels.

Notations. To achieve above goal, we need to capture and
distill the underlying dependencies between multi-task and
multi-scale features. Given the multi-scale deep density fea-
ture maps Fd = {f si

d }Ni=1 and multi-scale deep localization
feature maps Fl = {f si

l }Ni=1, we represent Fd and Fl with a di-
rected graphG = (V,E), whereV is a finite set of nodes and
E is a finite set of edges. The nodes in our HyGnn are further
grouped into two types:V = V1⋃V2, whereV1 = {v1

i }|V
1 |

i=1

is the set of counting (density) nodes and V2 = {v2
i }|V

2 |
i=1 de-

notes the set of localization nodes. In our model, we have
the same number of nodes in two latent domains, and there-
fore |V1| = |V2| = N. Accordingly, there are two types of
edges E = Ei, j

⋃ Ĕm,n between them: (i) cross-scale edge

em
i, j = (vm

i , v
m
j ) ∈ Ei, j stands for the multi-scale relation be-

tween nodes from the ith scale to the jth scale within the same
domain m ∈ {1, 2}, where i, j ∈ {1, · · · ,N}; (ii) cross-domain
edge ĕm,n

i = (vm
i , v

n
i ) ∈ Ĕm,n reflects mutual beneficial rela-

tions between nodes from the domain m to domain n with
the same scale i ∈ {1, · · · ,N}, where m, n ∈ {1, 2} & m � n.
For each node vm

i (i ∈ {1, · · · ,N} & m ∈ {1, 2}), we learn
its updated representation, namely hm

i , through aggregating
representations of its neighbors. Finally, the updated multi-
scale features H1 = {h1

i }|V
1 |

i=1 and H2 = {h2
i }|V

2 |
i=1 are fused

to produce the final representation fd and fl, which is used to
generate the outputsD andL. Here, we only consider multi-
scale relations between nodes of the same domain, and mu-
tual beneficial relations between nodes of the same scale in
our graph model. Considering that our graph model is de-
signed to deal with two different nodes- and relations-types,
we call it as Hybrid Graph Neural Network (HyGnn) which
will be detailed in the following section.

Hybrid Graph Neural Network (HyGnn)

Overview. The key idea of our HyGnn is to perform K
message propagation iterations overG to joint distill and rea-
son all relations between crowd counting and auxiliary task
(localization) across scales. Generally, as shown in Fig. 2,
HyGnnmap the given image I to the final predictionsD and
L through three phases. First, in the domain-specific feature
extracting phase, HyGnn generates multi-scale deep den-
sity features Fd and localization features Fl for I through a
Domain-specific Feature Learning Module (DFL), and rep-
resents these features as a graphG = (V,E). Second, a para-
metric message passing phase runs for K times to propagate
message between nodes and also to update node represen-
tations according to the received messages within the graph
G. Third, a readout phase fuses the updated multi-scale fea-
tures H1 and H2 to generate final representations (i.e., fd
and fl), and map them to the outputs D and L. Note that, as
crowd counting is our main task, we emphasize the accuracy
ofD during the learning process.
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Figure 3: The architecture of the learnable adapter. The
adapter takes the node representation of one (source) domain
h

m(k)
i as input and outputs the adaptive convolution parame-

ters θ∗m(k)
i . The adaptive representation h′m(k)

i is generated
conditioned on h

n(k)
i .

Domain-specific Feature Learning Module (DFL). The
Domain-specific Feature Learning Module (DFL) is one of
the major modules of our model, which extracts multi-scale,
domain-specific features Fd = {f si

d }Ni=1 and Fl = {f si
d }Ni=1 from

the input I. DFL is composed of three major parts: one
front-end and two domain-specific back-ends.

The front-end Fr is based on the well-known VGG-16,
which maps the RGB images I to the shared underlying
representations: fshare = Fr(I). More specifically, the first
10 layers from VGG-16 are deployed as the front-end and
shared by these two tasks. Meanwhile, different dilated con-
volution layers are used as the back-ends, denoted as Bd and
Bl, to enlarge receptive fields which are tailored for learning
domain-specific features: fd = Bd(fshare) and fl = Bl(fshare).
In addition, the Pyramid Pooling Module (PPM) (Zhao et
al. 2017) is applied in each domain-specific back-end for
extracting multi-scale features, followed by an interpolation
layer R to ensure multi-scale feature maps to have the same
size H ×W. Details of the DFL architecture can be found in
the supplementary file.

Node Embedding. In our HyGnn, each node v1
i or v2

i ∈ V
takes a unique value from {1, · · · , |V|}, and is associated
with an initial node embedding (or node state), namely v1

i
or v2

i . We utilize our DFL to extract multi-scale domain-
specific features as initial node representations. Take an ar-
bitrary counting node v1

i ∈ V1 for example, its initial repre-
sentations h

1(0)
i can be computed as:

h
1(0)
i = v1

i = R(P(fd, si)) ∈ RH×W×C , (1)

where h
1(0)
i ∈ RH×W×C is 3D tensor features. R(·) and P(·) are

the interpolation operation and pyramid pooling operation,
respectively. The initial node representation for the localiza-
tion node v2

i ∈ V2 is defined similarly as follows:

h
2(0)
i = v2

i = R(P(fl, si)) ∈ RH×W×C , (2)

where h
2(0)
i ∈ RH×W×C denotes the initial node representa-

tion for the localization node v2
i ∈ V2.

Cross-scale Edge Embedding. A cross-scale edge em
i, j ∈

Ei, j connects two nodes vm
i and vm

j which are from the same
domain m ∈ {1, 2} but different scales i, j ∈ {1, · · · ,N}. The
cross-scale edge embedding, denoted as em

i, j, is used to distill
the multi-scale relation on the two sides of the edge from

A

A

A Adaptive module

Convolution

Multiply

Minus

Figure 4: Detailed illustration of the cross-domain edge em-
bedding and message aggregation. Please see text for details.

vm
i to vm

j as edge’s representation. To this goal, we employ a
relation function frel(·, ·) to capture the multi-scale relations,

e
m(k)
i, j = frel(h

m(k)
i ,hm(k)

j ) = Conv(g(hm(k)
i ,hm(k)

j )) ∈ RH×W×C ,

(3)
where g(·, ·) is a function to combine features h

m(k)
i and h

m(k)
j .

Following (Wang et al. 2019b), we model g(hi,h j) = hi−h j,
making the relations calculated based on the difference be-
tween the node embedding to alleviate the symmetric impact
in feature combination. Conv(·) means the convolution op-
eration that is used to learn the edge embedding in a data-
driven way. Each element in e

m(k)
i, j reflects the pixel-level re-

lations between the nodes of different scales from scale i to
scale j. As a result, e

m(k)
i, j can be considered as the features

that depict the multi-scale relationships between nodes.

Cross-domain Edge Embedding. Because our HyGnn is
designed to fully exploit complementary knowledge con-
tained in the nodes of different domains (m, n ∈ {1, 2} &
m � n), one major challenging is to overcome the “do-
main gap” between them. Rather than directly combining
features as that used in cross-scale edge embedding, we first
adapt the node representation of one (source) domain h

m(k)
i

conditioned on the node representation of the other (target)
domain h

n(k)
i to overcome the domain difference. Here, in-

spired by (Bertinetto et al. 2016), we integrate a learnable
adapter Am(hm(k)

i

∣∣∣∣∣∣hn(k)
i ) into our HyGnn to transform the

original node representation h
m(k)
i to the adaptive represen-

tation h′m(k)
i as follows:

h′m(k)
i = Am(hm(k)

i

∣∣∣∣∣∣hn(k)
i ) = θ∗m(k)

i ∗ h
n(k)
i ,

where θ∗m(k)
i = Eφ(hm(k)

i ).
(4)

In the above function, ∗ is the convolution operation, and
θ∗m(k)

i means the dynamic convolutional kernels. Eφ(·) is a
one-shot learner to predict the dynamic parameters θ∗m(k)

i
from a single exemplar. Following (Nie et al. 2018), as
shown in Fig. 3, we implement it by a small CNN with learn-
able parameters φ.

After achieving the adaptive representation h′m(k)
i , the

cross-domain edge embedding ĕ
m,n
i for the edge ĕm,n

i =
(vm

i , v
n
i ) ∈ Em,n can be computed as:

11696



ĕ
m,n(k)
i = frel(h′m(k)

i ,hn(k)
i ) = Conv(g(h′m(k)

i ,hn(k)
i )) ∈ RH×W×C , (5)

where ĕ
m,n
i ∈ RH×W×C is a 3D tensor, which represents the

hidden representation of a cross-domain relation. The de-
tailed architecture can be found in Fig. 4.

Cross-scale Message Aggregation. In our HyGnn, we
use different aggregation schemes for a node to aggregate
feature messages from its neighbors. For the message mm

i, j
passed from node vm

i to vm
j within the same domain across

different scales, we have:

m
m(k)
i, j = M(hm(k−1)

i , em(k−1)
i, j ) = so f tmax(em(k−1)

i, j ) · hm(k−1)
i ,

(6)
where M(·) is the cross-scale message passing function (ag-
gregator), and so f tmax(·) maps the edge’s embedding into
the link’s weight. Note that because our HyGnn is designed
to handle a pixel-level task, the link’s weight between nodes
is in the manner of a 2D map. Thus, mm

i, j assigns the pixel-
wise weighted features from node vm

i to vm
j to aggregate in-

formation.

Cross-domain Message Aggregation. Because the cross-
domain discrepancy is significant in high-dimensional fea-
ture space and distribution, directly passing the learned rep-
resentations of one node to its neighboring nodes for aggre-
gation is a sub-optimal solution, which might damage the
learned representations. Therefore, we formulate the mes-
sage passing from node vm

i to vn
i as an adaptive representa-

tion learning process, conditioned on hn
i . Here, we use the

similar idea with that used in cross-domain edge embedding
process, i.e., using a one-shot adapter to predict the message
that should be passed:

m̆
m,n(k)
i = M̆(hm(k−1)

i , ĕm,n(k−1)
i

∣∣∣∣∣∣hn(k−1)
i )

= Ăm(so f tmax(ĕm,n(k−1)
i ) · hm(k−1)

i

∣∣∣∣∣∣hn(k−1)
i )

= Ĕη(so f tmax(ĕm,n(k−1)
i ) · hm(k−1)

i ) ∗ h
n(k−1)
i

= ψ∗m(k−1)
i ∗ h

n(k−1)
i ,

(7)

where M̆(·) means the message passing function between
nodes of two different domains. Ă(·) is the adapter which
is conditioned on the node embedding of target domain
h

n(k−1)
i . Ĕη(·) means a small CNN with learnable parameters
η, which serves as one-shot learner to predict the dynamic
parameters. ψ∗m(k−1)

i is the predicted dynamic convolutional
kernels, which includes guidance information that should be
propagated from node vm

i to node vn
i .

Two-stage Node-state Update. In the kth step, our HyGnn
first aggregates information from the neighbor nodes of the
other domain within the same scale i using Eq. 7. Therefore,
vn

i (i ∈ {1, · · · ,N} & n ∈ {1, 2}) gets an intermediate state
h̃

n(k)
i by taking into account its received cross-domain mes-

sage m̆
m,n(k)
i and its prior state h

n(k−1)
i . Here, following (Qi et

al. 2018b), we apply Gated Recurrent Unit (GRU) (Ballas et
al. 2015) as the update function,

h̃
n(k)
i = UGRU(hn(k−1)

i , m̆m,n(k)
i ). (8)

Then, HyGnn performs message passing across scales
within the same domain n using Eq. 3 and aggregates mes-
sage using Eq. 6. After that, vn

i gets the new state h
n(k)
i of

the kth iteration by considering the cross-scale message m
n(k)
j,i

and its intermediate state h̃
n(k)
i ,

h
n(k)
i = UGRU (̃hn(k)

i ,mn(k)
j,i ). (9)

Readout Function. After K message passing iterations,
the updated multi-scale features of two domains (node rep-
resentations) H1 = {h1

i }|V
1 |

i=1 and H2 = {h2
i }|V

2 |
i=1 are firstly

merged to form their final representations fd and fl,

fd = Cd(H1) and fl = Cl(H2), (10)

where Cd(·) and Cl(·) are the merge functions which are im-
plemented with concatenation layers. Then, fd and fl are fed
into a convolution layer to get the final per-pixel predictions,

Loss. Our HyGnn is implemented to be fully differentiable
and end-to-end trainable. The loss for each task can be com-
puted for the outputs of readout functions, and the error can
propagate back according to chain rule. Here, we simply em-
ploy the Mean Square Error (MSE) loss to optimize network
parameters for these two tasks:

L = L1(Dg,D) + λL2(Lg,L), (11)

where L1 and L2 are MSE losses, and λ is the combination
loss. Because our main task is crowd counting, we set λ =
0.001 to emphasize the accuracy of crowd counting.

Experiments

In this section, we experimentally validate our HyGnn on
four public counting benchmarks (i.e., ShanghaiTech Part A,
ShanghaiTech Part B, UCF CC 50 and UCF QNRF). First,
we conduct an ablation experiment to prove the effective-
ness of our hybrid graph model and the multi-task learning.
Then, our proposed HyGnn is evaluated on all of these pub-
lic benchmarks, while comparing the performance against
other state-of-the-art approaches.

Datasets. We use Shanghai Tech (Zhang et al. 2016),
UCF CC 50 (Idrees et al. 2013) and UCF QNRF (Idrees
et al. 2018b) for benchmarking our HyGnn. Shanghai Tech
provides 1,198 annotated images with more than 330K peo-
ple with head center annotations. It includes two subsets:
Shanghai Tech A and Shanghai Tech B. UCF CC 50 pro-
vides 50 images with 63,974 head annotations in total. The
small dataset size and large count variance make it a very
challenging dataset. UCF QNRF is the largest dataset to
date, which contains 1,535 images which are divided into
train and test sets of 1,201 and 3,34 images respectively. All
of these benchmarks have been widely used for performance
evaluation by existing approaches.

Implementation Details and Evaluation Protocol. To
make the comparison fair, we use a truncated VGG as the
backbone network. Specifically, the first 10 convolutional
layers from VGG-16 are used as the front-end and shared
by both two tasks. Following (Li, Zhang, and Chen 2018),
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Table 1: Comparison with other state-of-the-art crowd counting methods on four benchmark crowd counting datasets using the
MAE and MSE metrics.

Methods Shanghai Tech A Shanghai Tech B UCF CC 50 UCF QNRF
MAE MSE MAE MSE MAE MSE MAE MSE

Crowd CNN (Zhang et al. 2015) 181.8 277.7 32 49.8 467 498 - -
MC-CNN (Zhang et al. 2016) 110.2 173.2 26.4 41.3 377.6 509.1 277 426
Switching CNN (Sam, Surya, and Babu 2017) 90.4 135 21.6 33.4 318.1 439.2 228 445
CP-CNN (Sindagi and Patel 2017) 73.6 106.4 20.1 30.1 298.8 320.9 - -
D-ConvNet (Shi et al. 2018) 73.5 112.3 18.7 26 288.4 404.7 - -
L2R (Liu, van de Weijer, and Bagdanov 2018) 72 106.6 13.7 21.4 279.6 388.9 - -
CSRNet (Li, Zhang, and Chen 2018) 68.2 115 10.6 16 266.1 397.5 - -
PACNN (Shi et al. 2019) 66.3 106.4 8.9 13.5 267.9 357.8 - -
RA2-Net (Liu, Weng, and Mu 2019) 65.1 106.7 8.4 14.1 - - 116 195
SFCN (Wang et al. 2019a) 64.8 107.5 7.6 13 214.2 318.2 124.7 203.5
TEDNet (Jiang et al. 2019) 64.2 109.1 8.2 12.8 249.4 354.2 113 188
ADCrowdNet (Liu et al. 2019) 63.2 98.9 7.6 13.9 257.1 363.5 - -
HyGnn (Ours) 60.2 94.5 7.5 12.7 184.4 270.1 100.8 185.3

Table 2: Analysis of the proposed method. Our results are
obtained on Shanghai Tech A.

Methods MAE↓ MSE↓
Baseline Model (a truncated VGG) 68.2 115.0
Baseline + PSP (Zhao et al. 2017) 65.3 106.8
Baseline + Bidirectional Fusion (Yang et al. 2018) 65.1 105.9
Single-task GNN 62.5 103.4
Multi-task GNN w/o adapter 62.4 101.8
HyGnn (N=2, K=3) 62.1 100.8
HyGnn (N=3, K=3) 60.2 94.5
HyGnn (N=5, K=3) 60.2 94.1
HyGnn (N=3, K=1) 65.4 109.2
HyGnn (N=3, K=3) 60.2 94.5
HyGnn (N=3, K=5) 60.1 94.4
HyGnn (full model) 60.2 94.5

our counting and localization back-ends are composed of 8
dilated convolutions with kernel of size 3 × 3.

We use Adam optimizer with an initial learning rate 10−4.
We set the momentum to 0.9, the weight decay to 10−4

and the batchsize to 8. For data augmentation, the training
images and the corresponding groundtruths are randomly
flipped and cropped from different locations to the size of
400×400. In the test phase, we simply feed the whole image
to our HyGnn to get the counting and localization results.

For evaluation, we adopt Mean Absolute Error (MAE)
and Mean Squared Error (MSE) to evaluate the performance.
They are defined as follows:

MAE =
1
N

N∑
i=1

|Ci − CGT
i | and MSE =

√√
1
N

N∑
i=1

|Ci −CGT
i |2,

(12)
where Ci and CGT

i are the estimated count and the ground
truth count of the ith test image.

Ablation Study. Extensive ablation experiments are per-
formed on ShanghaiTech A to verify impact of each compo-
nent in our HyGnn. Results are summarized in Tab. 2.
Effectiveness of HyGnn. To show the importance of our
HyGnn, we offer a baseline model without HyGnn, which
gives the results from our backbone model, a truncated VGG
with dilated back-ends. As shown in Tab. 2, our HyGnn sig-

nificantly outperforms the baseline by 8.0 in MAE (68.2 �→
60.2) and 20.5 in MSE (115.0 �→ 94.5). This is because
our HyGnn can simultaneously modeling the multi-scale and
cross-domain relationship which is important for achieving
accurate crowd counting results.
Multi-task GNN vs. Single-task GNN. To evaluate the ad-
vantages of multi-task cooperation, we offer a single-task
model which only formulate cross-scale relationship. Ac-
cording to our experiments, our HyGnn outperforms the
single-task graph neural network by 2.3 in MAE (62.5 �→
60.2) and 8.9 in MSE (103.4 �→ 94.5). This is because our
HyGnn is able to distill mutual benefits between density and
localization, while single-task graph neural network ignores
this important information.
Effectiveness of the Cross-domain Edge Embedding. Our
HyGnn carefully deals with the cross-domain information
by a learnable adapter. To evaluate its effectiveness, we pro-
vide a multi-task GNN without the learnable adapter, that
is we directly fuse features of different domains through the
aggregation operation. As shown Tab. 2, our cross-domain
edge embedding method achieves better performance in
both MAE (60.2 vs. 62.4) and MSE (94.5 vs. 101.8), which
indicates that our design of cross-domain edge embedding
method is helpful for better leveraging information from
other domain.
Node Numbers N in HyGnn. In our model, we have N num-
bers of nodes in each domain, i.e., |V1| = |V2| = N. To
investigate the impact of node numbers, we report the per-
formance of our HyGnn with different N. We find that with
more scales in the model (2 �→ 3), the performance improves
significantly (i.e., 62.1 �→ 60.2 according to MAE and
100.8 �→ 94.5 according to MSE). However, when further
considering more scales (3 �→ 5), our model only achieves
slight performance improvements, i.e., 60.2 �→ 60.2 ac-
cording to MAE and 94.5 �→ 94.1 according to MSE. This
may be due to the redundant information in multi-scale fea-
tures. Considering the tradeoff between efficiency and per-
formance, we set N = 3 in the following experiments.
Message Passing Iterations K. To evaluate the impact of
message passing iterations K, we report the performance of
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Figure 5: Density and localization maps generated by our HyGnn. We also show the counting map estimated by CSRNet for
comparison. Clearly, our HyGnn produces more accurate results.

our model with different passing iterations K. Each mes-
sage passing iteration in our HyGnn includes two cascade
steps: i) the cross-scale message passing and ii) the cross-
domain message passing. We find that with more iterations
in the model (1 �→ 3), the performance of our model im-
proves. When further considering more iterations (3 �→ 5),
the performance improves slightly. Therefore, we find that
our HyGnn converges to an optimal solution after three iter-
ations.
GNN vs. Other Multi-feature Aggregation Methods.
Here, we conduct an ablation to evaluate the superiority of
GNN. We use a single-task GNN to fully exploit the under-
lying relationships between multi-scale features and com-
pare our method with two well-known multi-scale feature
aggregation methods (PSP (Zhao et al. 2017) and Bidirec-
tional Fusion (Yang et al. 2018)) on Shanghai Tech A. As
can be seen, our GNN-based method greatly outperforms
other methods by a large margin.

Comparison with State-of-the-art. We compare our
HyGnn with the state-of-the-art for the crowd counting.
Quantitative Results. As can be seen in Tab. 1, our HyGnn
consistently achieves better results than other methods on
four widely-used benchmarks. Specifically, our method
greatly outperform previous best result by 3.0 in MAE and
4.4 in MSE on ShanghaiTech Part A. Although previous
methods have worked well on ShanghaiTech Part B, our
HyGnn also achieves the best performance. Compared with
existing best algorithms like ADCrowdNet (Liu et al. 2019)
and SFCN (Wang et al. 2019a), our HyGnn achieves per-
formance gain by 0.1 in MAE and 1.2 in MSE and 0.1
in MAE and 0.3 in MSE respectively. On the most chal-
lenging UCF CC 50, our HyGnn achieves considerable per-
formance gain by decreasing the MAE from previous best
214.2 to 184.4 and MSE from 318.2 to 270.1. On UCF-
QNRF dataset, our HyGnn also outperforms other meth-

ods with a large margin. As shown in Tab. 1, our HyGnn
achieves a significant improvement of 10.8% in MAE over
the existing best result produced by TEDNet (Jiang et
al. 2019). Compared with other top-ranked methods, our
HyGnn produce more accurate results. This is because
HyGnn is able to leverage free-of-cost localization informa-
tion and joint reason all relations between them.

Qualitative Results. Fig. 5 visualizes and compares the pre-
dicted density maps and counts of our HyGnn with CSR-
Net (Li, Zhang, and Chen 2018). In addition, we also show
the localization results. We observe that our HyGnn is very
powerful, and achieves much more accurate count estima-
tions and reserve more consistency with the real crowd dis-
tributions. This is because our HyGnn can distill important
information from the auxiliary task through a graph.

Conclusions

In this paper, we propose a novel method for crowd count-
ing with a hybrid graph model. To best of our knowledge, it
is the first deep model that can handle both multi-scale and
mutual beneficial relations within a unified graph for crowd
counting. The whole HyGnn is end-to-end differentiable and
able to handle different relations effectively. Meanwhile, the
domain gap between different tasks is also carefully consid-
ered in our HyGnn. According to our experiments, HyGnn
achieves significant improvements compared to recent state-
of-the-art methods on four benchmarks. We believe that our
HyGnn can also incorporate other knowledge, e.g., fore-
ground information, for further performance improvements.
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