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Abstract

We present a novel problem setting in zero-shot learning,
zero-shot object recognition and detection in the context.
Contrary to the traditional zero-shot learning methods, which
simply infers unseen categories by transferring knowledge
from the objects belonging to semantically similar seen cat-
egories, we aim to understand the identity of the novel ob-
jects in an image surrounded by the known objects using the
inter-object relation prior. Specifically, we leverage the visual
context and the geometric relationships between all pairs of
objects in a single image, and capture the information use-
ful to infer unseen categories. We integrate our context-aware
zero-shot learning framework into the traditional zero-shot
learning techniques seamlessly using a Conditional Random
Field (CRF). The proposed algorithm is evaluated on both
zero-shot region classification and zero-shot detection tasks.
The results on Visual Genome (VG) dataset show that our
model significantly boosts performance with the additional
visual context compared to traditional methods.

1 Introduction

Supervised object recognition has achieved substantial per-
formance improvement thanks to the advance of deep con-
volutional neural networks in the last few years (Ren et
al. 2015; Redmon and Farhadi 2017; Hu et al. 2018; Gir-
shick 2015). Large-scale datasets with comprehensive anno-
tations, e.g., COCO (Lin et al. 2014), facilitate deep neural
networks to learn semantic knowledge of the objects within
a predefined set of classes.

However, it is impractical to obtain rich annotations for
every class in the world while it is important to develop the
models that can generalize to new categories without extra
annotations. On the other hand, human beings have capabil-
ity to understand the unseen object categories using external
knowledge such as language descriptions and object rela-
tionships. The problem of inferring objects in unseen cate-
gories is referred to as zero-shot object recognition in recent
literature (Fu et al. 2018; Xian et al. 2018).

In the absence of direct supervision, other resources
of information such as semantic embedding (Norouzi et
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Figure 1: An example of zero-shot recognition with context
information. It contains two seen objects (person and dog)
and one unseen object (frisbee). The prior knowledge of re-
lationships between seen and unseen categories provide cues
to resolve the category of the unseen object.

al. 2013), knowledge graph (Wang, Ye, and Gupta 2018;
Rohrbach, Stark, and Schiele 2011), and attributes (Sung et
al. 2018; Changpinyo et al. 2016) are often employed to in-
fer the appearance of novel object categories through knowl-
edge transfer from seen categories. The assumption behind
the approaches is semantic similarity can transfer to visual
similarity.

Besides inferring novel object categories using visual
similarity, human often capture the information of an object
in the scene context. For example, if we do not know what
the red disk-like object in Figure 1 is, it is possible to guess
its category even with the limited visual cues by recognizing
two other objects in the neighborhood, a person and a dog,
using the prior knowledge that a person and a dog poten-
tially play with together. Suppose that a frisbee is known to
be such kind of an object, we can infer the object as a frisbee
even without seeing it before. In this scenario, the interaction
between multiple objects, e.g.. person, dog, and frisbee, pro-
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vides additional clues to recognize the novel object—frisbee
in this case; note that the external knowledge about the ob-
ject relationships (person and dog can play with frisbee) is
required for unseen object recognition.

Motivated by this intuition, we propose an algorithm for
zero-shot image recognition in the context. Different from
the traditional methods that infer each of unseen objects in-
dependently, we aim to recognize novel objects in the visual
context, i.e., by leveraging the relationships of the objects
shown in an image. The relationship information is defined
by a relationship knowledge graph in our framework and it
is more straightforward to construct a knowledge graph than
to collect dense annotations on images.

In our framework, a Conditional Random Field (CRF) is
employed to jointly reason over local context information as
well as relationship graph prior. Our algorithm is evaluated
on Visual Genome dataset (Krishna et al. 2017), which pro-
vides a large number of object categories and diverse object
relations; our model based on the proposed context knowl-
edge representation illustrates the clear advantage when ap-
plied to various existing methods for zero-shot recognition.
We believe the proposed topic will foster more interesting
work in the domain of zero-shot recognition.

The main contributions of this work are as follows:
• We introduce a new framework of zero-shot learning in

computer vision, referred to as zero-shot recognition in
the context, where unseen object classes are identified by
the relation to other ones shown in the same image.

• We propose a model for this task based on deep neural
networks and CRF, which learns to leverage object rela-
tionship knowledge to recognize unseen object classes.

• The proposed algorithm achieves the significant improve-
ment compared to existing methods on various models
and settings that ignore visual context.

2 Related work

Zero-shot learning A wide range of external knowledge
has been explored for zero-shot learning. Many use object
attributes as a proxy to learn visual representation of un-
seen categories (Sung et al. 2018; Changpinyo et al. 2016;
2018). Semantic embeddings learned from large text corpus
are also used to bridge seen and unseen categories (Frome et
al. 2013; Norouzi et al. 2013). Combination of attributes and
word embeddings are employed to learn classifiers of un-
seen categories by taking linear combinations of synthetic
base classifiers (Changpinyo et al. 2016; 2018), and text
descriptions are also incorporated later to predict classifier
weights (Lei Ba et al. 2015). A recent work (Wang, Ye,
and Gupta 2018; Kampffmeyer et al. 2018) applies Graph
Convolutional Network (GCN) (Duvenaud et al. 2015) over
WordNet knowledge graph to propagate classifier weights
from seen to unseen categories. More detailed survey can be
found in (Fu et al. 2018; Xian et al. 2018).

In addition to zero-shot recognition, zero-shot object de-
tection (ZSD) task is also studied, which aims to local-
ize individual objects of categories that are never seen dur-
ing training (Bansal et al. 2018; Tao, Yang, and Cai 2018;
Rahman, Khan, and Porikli 2018; Zhu et al. 2018; Demirel,

Cinbis, and Ikizler-Cinbis 2018). Among the approaches,
(Zhu et al. 2018) focuses on generating object proposals
for unseen categories while (Bansal et al. 2018) trains a
background-aware detector to alleviate the corruption of the
“background” class with unseen classes. (Rahman, Khan,
and Porikli 2018) proposes a novel loss function to reduce
noise in semantic features. However, none of them have at-
tempted to incorporate context information in the scene.
Context-aware detection Context information has been
used to assist object detection before deep learning era (Gal-
leguillos and Belongie 2010; Divvala et al. 2009; Felzen-
szwalb et al. 2010; Galleguillos, Rabinovich, and Belongie
2008; Desai, Ramanan, and Fowlkes 2011). Deep learning
approaches such as Faster R-CNN (Ren et al. 2015) allow a
region feature to look beyond its own bounding box via the
large receptive field. Object relationships and visual context
are also utilized to improve object detection. For example,
Yang et al.; Li et al. show that the joint learning of scene
graph generation and object detection improves detection
results while Chen, Huang, and Tao; Hu et al. perform mes-
sage passing between object proposals to refine detection re-
sults. A common-sense knowledge graph is used for weakly-
supervised object detection (Kumar Singh et al. 2018).

Similar in motiation, Zablocki et al. recently take sur-
rounding objects into consideration for zero-shot object
recognition. Our method is complementary to theirs. How-
ever, we use geometric information along with a knowledge
graph instead of only considering cooccurance in semantics.
Knowledge graphs Knowledge graphs has been applied to
various vision tasks including image classification (Marino,
Salakhutdinov, and Gupta 2016; Lee et al. 2018), zero-shot
learning (Rohrbach et al. 2010; Rohrbach, Stark, and Schiele
2011; Wang, Ye, and Gupta 2018), visual reasoning (Mal-
isiewicz and Efros 2009; Zhu, Fathi, and Fei-Fei 2014;
Chen et al. 2018), and visual navigation (Yang et al. 2018b).
Graph-based neural networks often propagate information
on the knowledge graph (Marino, Salakhutdinov, and Gupta
2016; Lee et al. 2018; Wang, Ye, and Gupta 2018; Chen et al.
2018). Following (Marino, Salakhutdinov, and Gupta 2016;
Chen et al. 2018; Yang et al. 2018b), we construct the rela-
tionship knowledge graph used in our method in a similar
way.

3 Context-aware zero-shot recognition

3.1 Problem formulation

The existing zero-shot recognition techniquesmostly focus
on classifying objects independently with no consideration
of potentially interacting objects. To facilitate context-aware
inference for zero-shot recognition, we propose to classify
all the object instances—both seen and unseen objects—in
an image. We first assume that the ground-truth bounding
box annotations are given and propose to recognize objects
in the unseen classes. After that, we also discuss zero-shot
object detection when the ground-truth bounding boxes are
not available at test time.

Our model takes an image I and a set of bounding boxes
(regions) {Bi} as its inputs, and produces a class label ci
out of the label set C for each region. Under the zero-shot
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recognition setting, the label set C is split into two disjoint
subsets, S for seen categories and U for unseen categories.
The object labels in S are available during training while
the ones in U are not. The model needs to classify regions of
both seen and unseen categories in testing.

Some existing zero-shot recognition approaches have uti-
lized knowledge graph (Wang, Ye, and Gupta 2018) where
the edges typically represent semantic similarity or hierar-
chy (e.g. zebra is equine). In our formulation, a relation-
ship knowledge graph has edges representing the ordered
pairwise relationships in the form of <subject, predicate,
object> (e.g. <zebra, has, leg>), which indicate the pos-
sible interactions between a pair of objects in an image. A
directed edge denotes a specific predicate (relation) in the
relationship given by a tuple <subject, predicate, object>.
We may have multiple relations for the same pair of cate-
gories; in other words, there can be multiple relationships
defined on an ordered pair of categories. Given a set of re-
lations, R = {rk|k = 1, . . . ,K}, the relationship graph is
defined by G = {V, E}, where V denotes a set of classes
and E = {r(i)mn ∈ R|i = 1, . . . ,Kmn and m,n ∈ C} is a
set of directed edges representing relations between all pairs
of a subject class m and an object class n. Note that Kmn

is the number of all possible predicates between the ordered
pair of classes.

3.2 Our framework

Our framework is illustrated in Figure 2. From an image
with localized objects, we first extract features from the indi-
vidual objects and the ordered object pairs. We then apply an
instance-level zero-shot inference module to the individual
object features, and obtain a probability distribution of the
object over all object categories. The individual class likeli-
hoods are used as unary potentials in the unified CRF model.
A relationship inference module takes the pairwise features
as an input and computes the corresponding pairwise poten-
tials using the relationship graph.

Specifically, let Bi and ci (i = 1, . . . , N ) be an image
region and a class assignment of N objects in an image. Our
CRF inference model is given by

P (c1 . . . cN |B1 . . . BN )

∝ exp

⎛
⎝∑

i

θ(ci|Bi) + γ
∑
i �=j

φ(ci, cj |Bi, Bj)

⎞
⎠ (1)

where the unary potential θ(ci|Bi) comes from the instance-
level zero-shot inference module and the pairwise potential
φ(ci, cj |Bi, Bj) is obtained from the relationship inference
module. γ is a weight parameter balancing between unary
and pairwise potentials.

The final prediction is generated through the MAP in-
ference on the CRF model given by Eq. (1). We call the
whole procedure context-aware zero-shot inference. Similar
techniques can be found in context-aware object detection
techniques (Divvala et al. 2009; Galleguillos and Belongie
2010). However, we claim that our algorithm has sufficient
novelty because we introduce a new framework of zero-shot

learning with context and design the unary and pairwise po-
tentials specialized in CRF for zero-shot setting. We here-
after use θi(·) and φij(·) as the abbreviations for θ(·|Bi) and
φ(·|Bi, Bj), respectively. We discuss the detail of each com-
ponent in the CRF next.
Instance-level zero-shot inference

We use a modified version of Fast R-CNN frame-
work (Girshick 2015) to extract features from individual ob-
jects. The input image and the bounding boxes are passed
through a network composed of convolutional layers and
RoiAlign (He et al. 2017) layer. The network outputs a re-
gion feature fi ∈ R

df for each region, which is further for-
warded to a fully connected layer to produce the probability
of each class Pc(ci) = softmax(Wfi), where W ∈ R

|C|×df

is a weight matrix. The unary potential of the CRF is then
given by

θi(ci) = logPc(ci|Bi) (2)

Although it is straightforward to learn the network parame-
ters including W in the fully supervised setting, we can train
the model only for the seen categories and obtain WS ∈
R

|S|×df . To handle the classification of unseen category ob-
jects, we have to estimate WU as well and construct the full
parameter matrix W = [W�

S ,W
�
U ]

� for prediction. There
are several existing approaches (Changpinyo et al. 2016;
Lei Ba et al. 2015; Changpinyo, Chao, and Sha 2017) to esti-
mate the parameters for the unseen categories from external
knowledge.
Relationship inference with relationship graph

The pairwise potential of the CRF model is given by a
relationship inference module. It takes a pair of regions as
its inputs and produces a relation potential, �(r̂k;Bi, Bj),
which indicates the likelihood of the relation r̂k between the
two bounding boxes. Then the pairwise potential of the CRF
is formulated as

φ(ci, cj |Bi, Bj) =
∑
k

δ(r̂k; ci, cj)�(r̂k;Bi, Bj), (3)

where δ(r̂k; ci, cj) is an indicator function whether tuple
<ci, r̂k, cj> exists in the relationship graph. Intuitively, a
label assignment is encouraged when the possible relations
between the labels have large likelihoods.

The relationship inference module estimates the pairwise
potential from a geometric configuration feature using an
embedding function followed by a two-layer multilayer per-
ceptron as

�(r|Bi, Bj) = MLP(tη(gij)), (4)

where gij is the relative geometry configuration feature of
two objects corresponding to Bi and Bj based on (Hu et al.
2018) and tη(·) embeds its input onto a high-dimensional
space by computing cosine and sine functions of different
wavelengths (Vaswani et al. 2017). Formally, translation-
and scale-invariant feature gij is given by

gij =

[
log

|xi − xj |
wi

, log
|yi − yj |

hi
, log

wj

wi
, log

hj

hi

]�
,

(5)
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Figure 2: The overall pipeline of our algorithm. First, features for individual objects as well as object pairs are extracted
from the image. An instance-level zero-shot inference module is applied on individual features to generate unary potentials. A
relationship inference module takes pairwise features and relationship knowledge graph to generate pairwise potentials. Finally,
the most likely object labels are inferred from CRF constructed by generated potentials.

where (xi, yi, wi, hi) represents the location and size of Bi.
To train the MLP in Eq. (4), we design a loss function

based on pseudo-likelihood, which is the likelihood of a re-
gion given the ground-truth labels of the other regions. Max-
imizing the likelihood increases the potential of true label
pairs while suppressing the wrong ones. Let c∗i to be the
ground-truth label of Bi. The training objective is to min-
imize the following loss function:

L = −
∑
i

logP (c∗i |c∗\i), (6)

where c∗\i denotes the ground-truth labels of bounding boxes
other than Bi and
P (c∗i |c∗\i) (7)

=
exp

∑
j �=i[θi(c

∗
i ) + γφij(c

∗
i , c

∗
j ) + γφji(c

∗
j , c

∗
i )]∑

c∈S exp
∑

j �=i[θi(c) + γφij(c, c∗j ) + γφji(c∗j , c)]
.

Note that �(r|Bi, Bj) is learned implicitly through optimiz-
ing of this loss. No ground-truth annotation about relation-
ships is used in training.
Context-aware zero-shot inference The final step is to
find the assignment that maximizes P (c1, . . . , cN ) given the
trained CRF defined by Eq. (1). We adopt mean field infer-
ence (Koller, Friedman, and Bach 2009) for efficient approx-
imation. A distribution Q(c1, . . . , cN ) is used to approxi-
mate P (c1, . . . , cN ), which is given by the product of the
independent marginals: Q(c1, . . . , cN ) =

∏
i Qi(ci).

To get a good approximation of Q, we minimize the KL-
divergence, KL(Q‖P ). The optimal Q is obtained by itera-
tively updating Q using the following rule:

Qi(ci)← 1

Zi
exp

⎛
⎝θi(ci) + γ

∑
j �=i

∑
cj∈C

Qj(cj)φij(ci, cj)

⎞
⎠ ,

(8)
where Zi is a partition function. Then ĉi = argmaxciQi(ci).

The pairwise potential defined in Eq. (3) involves a (N ×
|C|)2 × |R| matrix. Due to the huge computation/memory
overhead when N and |C| are large, we perform pruning for
acceleration, by selecting the categories with top K proba-
bilities in terms of Pc. In this way, our method can be viewed
as a cascade algorithm; the instance-level inference serves as
the first layer of the cascade, and the context-aware inference
refines the results using relationship information.

4 Implementation
Knowledge graph We extract our relationship knowledge
graph from Visual Genome dataset, similar to (Marino,
Salakhutdinov, and Gupta 2016).We first select 20 most fre-
quent relations and collect all the subject-object relation-
ships that (1) occurs more than 20 times in the dataset and
(2) have the relation defined in R. The purpose of this pro-
cess is to obtain a knowledge graph with common rela-
tionships. The relation set R includes ‘on’, ‘in’, ‘holding’,
‘wearing’ etc.
Model We build our model based on a PyTorch Mask/Faster
R-CNN (He et al. 2017) implementation1, while the region
proposal network and the bounding box regression branch
are removed because ground-truth object regions are given.
We use ResNet-50 (He et al. 2016) as our backbone model.
Each image is resized with its shorter side 600 pixels.
Training We use a SGD with momentum to optimize all
the modules. The instance-level zero-shot inference and re-
lationship inference modules are trained separately in two
stages. In the first stage, we train the instance-level zero-
shot module on seen categories for 100K iterations. The
model is fine-tuned from the pretrained ImageNet classifi-
cation model. The learning rate is initialized to 0.005 and
reduced by 10× after 60K and 80K iterations. After train-
ing on the seen categories, external algorithms are applied
to transfer the knowledge to unseen categories. In the second
stage, we train the relationship inference module for another
60k iterations with all the other modules fixed. To facilitate
training, we omit unary potentials in Eq. (7) in practice. The
learning rate is also initialized to 0.005 and reduced by 10×
after 20K and 40K iterations. For all the modules, the pa-
rameter for the weight decay term is set to 0.0001, and the
momentum is 0.9. The batch size is set to 8, and the batch
normalization layers are fixed during training.

5 Experiments and results

5.1 Task

We mainly evaluate our system on zero shot region classi-
fication task. We provide ground-truth locations, {Bi} for
both training and testing. It enables us to decouple the recog-
nition error from the mistakes from other modules including

1https://github.com/roytseng-tw/Detectron.pytorch
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Figure 3: Examples of top-5 predictions change before (below left) and after (below right) context-aware inference. Blue boxes
are examples of correct refinement and red ones denote failure cases. Each unseen category is prefixed with an * for distinction.

Classic/unseen Generalized/unseen Classic/seen Generalized/seen HM (Generalized)
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins

WE 18.9 25.9 3.7 3.7 35.6 57.9 33.8 56.1 6.7 6.9
WE+Context 19.5 28.5 4.1 10.0 31.1 57.4 29.2 55.8 7.2 17.0

CONSE 19.9 27.7 0.1 0.6 39.8 31.7 39.8 31.7 0.2 1.2
CONSE+Context 19.6 30.2 5.8 20.7 29.6 38.8 25.7 35.0 9.5 26.0

GCN 19.5 28.2 11.0 18.0 39.9 31.0 31.3 22.4 16.3 20.0
GCN+Context 21.2 33.1 12.7 26.7 41.3 42.4 32.2 35.0 18.2 30.3

SYNC 25.8 33.6 12.4 17.0 39.9 31.0 34.2 24.4 18.2 20.0
SYNC+Context 26.8 39.3 13.8 26.5 41.5 39.4 34.5 31.7 19.7 28.9

Table 1: Results on Visual Genome dataset. Each group includes two rows. The upper one are baseline methods from zero-shot
image classification literature. The lower ones are the results of their models attached with our context-aware inference. HM
denotes harmonic mean of the accuracies on S and U .

proposal generation, and diagnose clearly how much con-
text helps zero-shot recognition on object level. As a nat-
ural extension of our work, we also evaluate on zero-shot
detection task. In this case, we feed region proposals ob-
tained from Edgeboxes (Zitnick and Dollár 2014) instead of
ground-truth bounding boxes as input at test time.

5.2 Dataset

We evaluate our method on Visual Genome (VG)
dataset (Krishna et al. 2017). VG contains two subsets of
images, part-1 with ∼60K images and part-2 with ∼40K
images. For our experiment, only a subset of categories are
considered and the annotated relationships are not directly
used.

We use the same seen and unseen category split in (Bansal
et al. 2018). 608 categories are considered for classification.
Among these, 478 are seen categories, and 130 are unseen
categories. The part-1 of VG dataset are used for training,
and randomly sampled images from part-2 are used for test.
This results in 54,913 training images and 7,788 test im-
ages2. The relationship graph in this dataset has 6,396 edges.

5.3 Metrics and settings

We employ classification accuracy (AC) for evaluation,
where results are aggregated in two ways; “per-class” com-

2The training images still include instances of unseen cate-
gories, because pure images with only seen categories are too few.
However, we only use annotations of seen categories.

putes the accuracy for each class and then computes the av-
erage over all classes while “per-instance” is the average ac-
curacy over all regions. Intuitively, “per-class” metric gives
more weight to the instances from rare classes than “per-
instance” one.

The proposed algorithm is evaluated in both the classic
and the generalized zero-shot settings. The model is only
asked to predict among the unseen categories at test time in
the classic setting while it needs to consider both seen and
unseen categories under generalized setting. The generalized
setting is more challenging than the classic setting because
the model has to distinguish between seen and unseen cate-
gories.

5.4 Baseline methods

We compare our method with several baselines. Note that all
baselines treat each object in an image as a separate image
thus only utilizing instance-level features for inference.
Word Embedding (WE) In this method, weight vector W
is set to be the GloVe (Pennington, Socher, and Manning
2014) word embedding of each category. W is fixed during
training. (Note that the same word embedding is used for the
other settings.)
CONSE (Norouzi et al. 2013) CONSE first trains classifiers
on S with full supervision. At test time, each instance in an
unseen class is embedded onto the word embedding space
by a weighted sum of the seen category embeddings, where
the weights are given by the classifier defined on S . Then
the image is predicted to the closest unseen (and seen in the
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Classic/unseen Generalized/unseen Classic/seen Generalized/seen
per-cls per-ins per-cls per-ins per-cls per-ins per-cls per-ins

GCN 19.5 28.2 11.0 18.0 39.9 31.0 31.3 22.4
GCN+G 21.2 33.1 12.7 26.7 41.3 42.4 32.2 35.0
GCN+GA 20.4 26.5 9.2 15.3 40.9 44.8 34.7 40.9

SYNC 25.8 33.6 12.4 17.0 39.9 31.0 34.2 24.4
SYNC+G 26.8 39.3 13.8 26.5 41.5 39.4 34.5 31.7
SYNC+GA 26.6 33.6 11.3 16.4 41.6 42.8 36.5 38.5

Table 2: Results of different inputs to relationship inference module. *+G is the model with only geometry information. *+GA
is the model with both geometry and appearance feature.

Generalized Classic
top-1 top-5 top-1 top-5

WE+Ctx 3.7→10.0 26.6 25.9→28.5 57.5
CONSE+Ctx 0.6→20.7 29.4 27.7→30.2 56.1
GCN+Ctx 18.0→26.7 38.3 28.2→33.1 51.6
SYNC+Ctx 17.0→26.5 49.4 33.6→39.3 68.9

Table 3: Per-instance top-K accuracy on unseen categories.

generalized setting) class in the word embedding space.
GCN (Wang, Ye, and Gupta 2018) Similar to CONSE,
GCN first trains classifiers on S . Then it learns a GCN model
to predict classifier weights for U from the model for the
seen classes. The GCN takes the word embeddings of all the
seen and unseen categories and the classifier weights of S as
its inputs, and learns the global classifier weights by regres-
sion. In the end, the predicted classifier weights are used in
the inference module for both seen and unseen categories.
We use a two-layer GCN with LeakyReLU as the activation
function. Following (Wang, Ye, and Gupta 2018), we use
WordNet (Miller 1995) to build the graph.
SYNC (Changpinyo et al. 2016; 2018) This approach
aligns semantic and visual manifolds via use of phantom
classes. The weight of phantom classifier is trained to min-
imize the distortion error as minV ‖WS − SSV‖, where
SS is the semantic similarity matrix between seen categories
and phantom classes and V is the model parameter of the
phantom classifier. The classifier weights for U is given by a
convex combinations of phantom classifier as WU = SUV,
where SU is the semantic similarity matrix between unseen
categories and phantom classes.

5.5 Zero-shot recognition results

Table 1 presents the performance of our context-aware algo-
rithm based on the four zero-shot recognition baseline meth-
ods. On all backbone baselines, our model improves the ac-
curacy on both unseen categories, both in classic and gen-
eralized settings. The performances on seen categories are
less consistent, which is mainly due to the characteristics of
baseline methods, but still better in general.

For WE and CONSE methods, we can see that there are
huge accuracy gaps between seen and unseen categories,
especially under generalized setting. This implies that the
backbone models are biased towards seen categories signif-
icantly. Hence, it is natural that our model sacrifices accu-

racy on S to improve performance on U . GCN and SYNC,
on the contrary, are more balanced, and our algorithm is able
to consistently improve on both seen and unseen categories
combined with GCN and SYNC.

The harmonic means of accuracies on seen and unseen
categories are consistently higher in our method than in the
baselines under generalized setting. Note that this metric is
effective to compare overall performance on both seen and
unseen categories as suggested in (Xian et al. 2018).

Top-K refinement As we mentioned, our pruning method
makes the context-aware inference a top-k class reranking.
We conduct current experiment with K = 5. In Table 3,
we show “per-instance” top-1 accuracy versus top-5 accu-
racy of different algorithms on unseen categories. Since we
only rerank the top-5 classes, the top-5 accuracies do not
change, and the top-1 accuracy are upper bounded by the
corresponding top-5 accuracy. After applying context-aware
inference, the top-1 accuracies increase. Notably, the base-
line model of CONSE has near 0 accuracy under generalized
setting because it biases towards seen categories severely.
However, its top-5 accuracy is reasonable. Our method is
able to reevaluate top-5 predictions with the help of relation
knowledge and increase the top-1 accuracy significantly.

Qualitative results Figure 3 shows qualitative results from
the context-aware inference. Our context-aware model ad-
justs the class probabilities based on the object context. For
example, zebra is promoted in the first image because the
bands on its body while sausage helps recognize the pizza
in the second image. Different patterns can be found for la-
bel refinement: general to specific (animal to zebra), specific
to general (skyscraper to building), and corrected to similar
objects (pie to pizza, paw to hoof).

Input choices for relationship inference Our relationship
inference module only takes geometry information as in-
put to avoid overfitting to seen categories. One alternative
we tried is combining it with region appearance feature. We
project region features fi and fj into lower dimension and
concatenate it with E(gij) to produce relation potentials. We
report the results in Table 2. The appearance augmented rela-
tionship inference module is named as +GA in the table. It’s
shown that +GA biases towards seen categories, and hurts
performance on unseen categories. +GA on generalized set-
ting on unseen categories is even worse than the baselines.
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Unseen Seen HM
0.4 0.5 0.4 0.5 0.4 0.5

GCN 8.5 6.2 23.1 17.8 12.4 9.2
GCN+Ctx 9.7 6.9 22.3 16.0 13.5 9.6

SYNC 11.1 8.2 24.2 18.8 15.2 11.4
SYNC+Ctx 12.0 8.6 23.1 17.4 15.8 11.5

Table 4: Generalized zero-shot detection results. Re-
call@100 with IOU threshold 0.4/0.5 is reported. HM de-
notes harmonic mean.

5.6 Zero-shot detection results

We extend our region classification model for detection
task by adding a background detector. We set the classi-
fier weight of background class to be normalized average
classifier weights: Wbg =

∑
c∈C Wc

‖∑
c∈C Wc||2 , where each row of

W needs to be normalized in advance. Furthermore, given
thousands of region proposals, we only consider the top 100
boxes with highest class scores given by instance-level mod-
ule for context-aware inference.

Following (Bansal et al. 2018), EdgeBoxes propos-
als are extracted for test images, where only proposals
with scores higher than 0.07 are selected. After detec-
tion, non-maximum suppression is applied with IOU thresh-
old 0.4. Due to incomplete annotations in VG, we report
Recall@100 scores with IOU threshold 0.4/0.5. Table 4
presents instance-level zero-shot performance of GCN and
SYNC models, where our method shows improved accuracy
on unseen categories and higher overall recalls given by har-
monic means. Note that our results on the generalized zero-
shot setting already outperforms the results on the classic
setting reported in (Bansal et al. 2018).

6 Conclusions

We presented a novel setting for zero-shot object recog-
nition, where high-level visual context information is em-
ployed for inference. Under this setting, we proposed a novel
algorithm to incorporate both instance-level and object rela-
tionship knowledge in a principled way. Experimental re-
sults show that our approach boosts the performance com-
pared to the models with only instance-level information.
We believe that this new problem setting and the proposed
algorithm facilitate more interesting research for zero-shot
or few-shot learning.
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Appendices

ImageNet overlaps U 12 classes in the U of (Bansal et al.
2018) are also in ImageNet1k. To get true zero-shot perfor-

mance, in Table 5 we report the per-class accuracy on the re-
maining 118 unseen categories. Results show that our meth-
ods still outperform baselines.

Classic Generalized
GCN 18.3 10.9
GCN+Context 20.1 12.5

SYNC 25.2 12.2
SYNC+Context 26.1 13.7

Table 5: Per-class accuracy after removing ImageNet cate-
gories in unseen set.

Choice of γ γ is chosen by cross validation. For WE,
CONSE, GCN, γ is 1, and for SYNC, γ is set to be 0.5.
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