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Abstract

Current weakly-supervised semantic segmentation methods
often estimate initial supervision from class activation maps
(CAM), which produce sparse discriminative object seeds
and rely on image saliency to provide background cues when
only class labels are used. To eliminate the demand of ex-
tra data for training saliency detector, we propose to discover
class pattern inherent in the lower layer convolution features,
which are scarcely explored as in previous CAM methods.
Specifically, we first project the convolution features into a
low-dimension space and then decide on a decision boundary
to generate class-agnostic maps for each semantic category
that exists in the image. Features from Lower layer are more
generic, thus capable of generating proxy ground-truth with
more accurate and integral objects. Experiments on the PAS-
CAL VOC 2012 dataset show that the proposed saliency-free
method outperforms the previous approaches under the same
weakly-supervised setting and achieves superior segmenta-
tion results, which are 64.5% on the validation set and 64.6%
on the test set concerning mIoU metric.

Introduction

Computer vision community has witnessed tremendous
progress on the image semantic segmentation problem
(Shelhamer, Long, and Darrell 2014; Chen et al. 2016;
Zhen et al. 2019) thanks to the successful applications of
Deep Convolutional Neural Networks (DCNN). However,
training these DCNNs requires large amount of pixel-level
annotations, whose collecting procedure is labor-intensive,
thus becoming a bottleneck for real-world applications.
A promising solution is to develop segmentation methods
that could utilize unlabeled or weakly-labeled visual data
(Kolesnikov and Lampert 2016; Huang et al. 2018) since
they could be acquired in a much faster and cheaper manner.

In this work, we focus on tackling the problem of se-
mantic segmentation under only image-level supervision,
since the class information is a more natural supervision
and requires the least amount of time for annotation, roughly
twenty seconds per image (Russakovsky et al. 2016). Given
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Figure 1: Comparison of localization ability between CAM
(Zhou et al. 2016) and the proposed method. (a) Original im-
ages. (b) Object seeds from CAM method. The black regions
are pixels with relatively small saliency value. (c) Mask es-
timated by our method. (e)(f)(g) Convolutional features pro-
jected onto 2d planes. Each point denotes a spatial location
in the original convolutional features and its color indicates
the ground-truth class.

only the semantic labels of the image, it is very challeng-
ing to locate integral object regions since it involves associa-
tion between high-level semantic and low-level appearance.
Many of the previous methods (Huang et al. 2018) relied on
class activation maps (CAM) (Zhou et al. 2016) to gener-
ate initial supervisions. However, there are two main issues
concerning CAM methods: 1) it only localizes sparse dis-
criminative object seeds, as shown in Fig.1(b); 2) it provides
no background cues, which are needed for the subsequent
segmentation task but are unavailable from the classification
network. The latter could be solved by resort to an external
saliency detector, whose training also requires extra annota-
tions.

To address the sparseness of initial seeds, many ap-
proaches, e.g., adversarial erasing (Wei et al. 2017b; Hou
et al. 2018), saliency-aided (Wei et al. 2016; Chaudhry et
al. 2017; Oh et al. 2017) and region mining (Huang et al.
2018; Wang et al. 2018), have been proposed for weakly-
supervised semantic segmentation. But they all focused on
high-level features, which are discriminative enough for
classification yet not suitable for dense labeling task. We
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instead discover that lower level features could be an alter-
native cue for finding more integral object regions, as they
tend to be more generic and thus are not limited to discrim-
inative areas. Unlike CAM method, the inherent association
with the semantic categories is lost when we explore lower
level convolution features beyond the ones just before classi-
fication layer. Principal Component Analysis (PCA) (Pear-
son 1901), as demonstrated in (Wei et al. 2017a), exposed
in low-dimension space the inner structure between features
from foreground and background regions. Figs.1(e), (f), and
(g) show in 2d plane the distribution of convolution features
from three different layers. The background and foreground
features are more (linearly) separable if lower layer features
(C41) are adopted.

Based on the above observation, we propose to exploit
generic features from lower layers to separate image pix-
els into background and foreground classes. More specif-
ically, we first learn a normal classification network using
the class labels. Then the training images are reorganized
into semantic subsets according to their class labels. For a
specific subset, we extract the convolution features for each
image, which are then projected into low-dimension space
to decide on a decision boundary. With some refinements,
we could estimate accurate initial masks of integral object,
as shown Fig.1(c). After obtaining proxy ground-truth, we
simply learn a fully convolutional segmentation network to
perform the dense labeling task.

In summary, the main contributions of our work are three-
fold:

• Instead of working on the CAM (Zhou et al. 2016) from a
single image to obtain sparse object seeds, we creatively
explore the generic features across images from the same
semantic category to discover the underlying structures.

• Our approach is a self-contained and saliency-free seg-
mentation system, thus eliminating the demand of an ex-
ternal saliency detector.

• Experimental results demonstrate that the proposed
method achieves state-of-the-art segmentation results un-
der weakly-supervised setting. In particular, it achieves
64.5% and 64.6% mIoU scores on val and test set of PAS-
CAL VOC 2012 dataset.

Related Works

In this section, we introduce image co-localization and
weakly-supervised semantic segmentation methods which
are related to our work.

Image Co-Localization

Image co-localization addresses the problem of simultane-
ously localizing some common object across a set of un-
labeled images. Among the popular approaches, Deep De-
scriptor Transformation (DDT) (Wei et al. 2017a) provided
great insights into the feature correlations across images
via Principal Component Analysis. By projecting the con-
volution features onto the first component, DDT revealed
the positions of common objects. DDT was designed for
co-localizing common objects, namely predicting the boxes

surrounding them, so it can not provide precise class as-
signment to individual pixels. Besides, co-localization has
a strong assumption that every image contains object from a
single category, so DDT is unable to handle multi-class im-
ages. Instead, we discover that feature depth matters when
performing dense labeling tasks and thus propose to explore
the inner structure of convolution features from lower net-
work layer.

Weakly-Supervised Semantic Segmentation

Here we mainly review weakly-supervised segmentation
methods under image-level labels, which share the same
weak supervision with our method. Many of the weakly-
supervised methods utilized classification network to gen-
erate initial seed cues, which then supervised the training of
segmentation networks. Seed, expand and constrain (SEC)
(Kolesnikov and Lampert 2016) proposed to localize object
seeds using CAM (Zhou et al. 2016), which were discrim-
inative for classification yet only provided sparse object-
related seeds. To address this problem, subsequent methods
introduced either ”static” or ”dynamic” expansion mecha-
nisms to discover more foreground pixels.

Dynamic expansion mechanisms start with sparse ini-
tial supervisions and try to update them with more object-
related pixels along with the training of segmentation net-
works. Wang et al. (Wang et al. 2018) proposed to mine
common object features between the initial seeds and un-
detected foreground pixels through a region classification
network, which was iteratively updated along with the seg-
mentation network. Deep Seeded Region Growing (Huang
et al. 2018) proposed to expand the initial seeds to neighbor-
ing pixels using high-level convolution features to compute
pixel similarity. FickleNet (Lee et al. 2019) made a major
improvement over DSRG on obtaining more accurate seed
cues via a stochastic feature selection layer, whose computa-
tion though consumed more GPU memory during inference.

In contrast, static mechanisms find as many object-related
pixels as possible beforehand, so the estimated supervision
stays the same during the training of segmentation network.
Some methods (Wei et al. 2016; Chaudhry et al. 2017;
Oh et al. 2017) harnessed image saliency as heuristic cues,
which might be inaccurate and tended to be cluttered under
multi-class scenes. Recently, adversarial erasing (Wei et al.
2017b) was proposed to suppress initially stimulated regions
by erasing associated pixels. However, it required retrain-
ing of the network after each erasing. Self-erasing network
(Hou et al. 2018) shifted the erasing operation to the high-
level convolution features and prevented attentions spread-
ing to the background by conditionally reversing signs of
feature activations. Multi-dilated convolutions (MDC) (Wei
et al. 2018) proposed to adopt convolution kernels of varying
dilation rates to enlarge receptive field of DCNN, thus pro-
moting the emergence of non-discriminative object regions.
However, overlarge receptive fields tended to downgrade the
localization ability on small objects.

It is worth noting that CAM provided no background cues
for the subsequent segmentation task, so the CAM-based
methods, such as DSRG (Huang et al. 2018), MDC (Wei et
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Figure 2: The overall architecture of the proposed method. Training images are first organized into different subsets based
on class labels. Images from each subset are passed through classification network to extract convolution features, which are
forwarded to the Discovering Class Patterns module to output a d-dimensional vector. During mask estimation, we perform
inner product between the convolution features and the class patterns to generate segmentation masks for each class present in
the image, which are then combined to yield the final mask estimation.

al. 2018), FickleNet (Lee et al. 2019), etc., required an exter-
nal saliency detector to extract background pixels. It is unde-
sirable since extra annotations are needed to train a saliency
detector.

Methods

As aforementioned, CAM produces sparse object seeds and
relies on external saliency detector to provide background
cues. To handle the spareness, we here propose to explore
more generic features from lower network layer, other than
those discriminative ones for classification. Specifically, the
training images are reorganized into semantic subsets ac-
cording to their class labels. The generic features from
the same semantic subsets are used to Discover Class Pat-
terns (DCP), which serves as a per-pixel classifier to decide
whether an individual pixel is background or foreground,
thus naturally eliminating the usage of an external saliency
detector. Fig.2 gives an overview of the proposed approach.

The upper part of Fig.2 denotes the DCP module where
training images are reorganized into semantic subsets to ex-
tract class pattern inherent in the generic features. Then we
compute the correlation between the feature and class pat-
terns at each spatial location to estimate the initial supervi-
sion, as shown in the lower part of Fig.2. Before diving into
the technical details, the following section introduces the in-
tuition behind our approach.

Observation

Principal component analysis (PCA) (Pearson 1901), widely
used for dimension reduction, is mathematically defined as
an orthogonal linear transformation that transforms the data
to a new coordinate system such that the greatest variance by
some projection of the data comes to lie on the first coordi-
nate, the second greatest variance on the second coordinate,
and so on. As shown in Fig.1, there is a clear distinction be-
tween foreground and background features, especially from
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Figure 3: Percentage of variance explained by the first 50
components for the dog class.

lower network layer. But how does one decide on a decision
boundary to separate them? Fig.3 shows the percentage of
variance explained by the first 50 components for the dog
class. We can see that the first component contributes over
10% for the variance, but it drops dramatically down to less
than 4% for the second component. Therefore, the first com-
ponent serves as a representative class pattern as it captures
the most feature variation. Features with positive correlation
with the class pattern are more likely to be associated with
foreground pixels and vice versa, which indicates the ori-
gin serves a good decision boundary. The following section
presents the calculation of class pattern for each semantic
category.

Discovering Class Pattern

We denote the set of training data as
{(X1, y1), (X2, y2), ..., (Xm, ym)}, where the class la-
bels yi belong to a set of foreground categories C. We
obtain a feature extractor f(X; θ), parameterized by θ,
from classification CNN by dropping the last few layers.
For brevity we simply write it as f(X) and the associated
parameter is determined by the context.

Based on the image-level labels, we first reorganize the
training images into semantic subsets {Ic|c ∈ C}, where Ic

denotes the set of images in which class c exists. Notably,
some images contain more than one classes and thus will
be divided into several semantic subsets. Inside each sub-
sets {X1, X2, ..., X |Ic|}, we forward each image through
the classification network up to a desired layer to obtain the
features:

T i = f(Xi), T i ∈ Rh×w×d (1)

The pixel descriptor at each spatial location is denoted as
tiu ∈ Rd, where u loops through the spatial dimension. Then
the mean vector and covariance matrix could be calculated
across all pixel locations and distinct images:

t̄c =
1

K

∑

i

∑

u

tiu

Σc =
1

K

∑

i

∑

u

(tiu − t̄c)(t
i
u − t̄c)

ᵀ
(2)

where K is the total number of spatial locations. For images
with the same input dimension, K equals to |Ic| × h× w.

We then perform eigendecomposition on the covariance
matrix to obtain the eigenvector ξc associated with the
largest eigenvalue. Repeat the preceding procedure for each
class and we could obtain all the class patterns {ξc|c ∈ C}.
Note that there is no class pattern associated the background
class.

Per-Pixel Mask Estimation

The class patterns could serve as a per-pixel classifier when
we project the original convolution features onto them to see
the correlation with each semantic categories:

qc = (tu − t̄c)
ᵀξc (3)

where qc is essentially the value of the first principal compo-
nent and a positive qc denotes that pixel u belongs to class c.
Since some pixels might have positive correlation with sev-
eral classes, we come up with the following mechanism to
handle conflicts. For a specific spatial location u, there are
three common cases:

• Case 1: It does not have positive correlation with any of
the class patterns and is assigned to background class cbg;

• Case 2: It has positive correlation with only one of the
class patterns ξc and is assigned to a foreground category
c;

• Case 3: It has positive correlation with more than one of
the class patterns and is treated as uncertain cuncertain,
which is ignored during training.

We also perform fully-connected CRF as post refinement
only for the single-class images since multi-class images
tend to be more cluttered. Algorithm 1 summarizes the pro-
cedure for estimating the proxy ground-truth for one image.

Generic vs. Discriminative Features

Here we visualize the estimated masks to further verify our
assumption that feature map matters for weakly supervised
semantic segmentation. To this end, we consider the features
from three different blocks in the last stage (C4) of ResNet-
101, namely C41, C42 and C43. Block C43 is closest to the
classification layer and thus is discriminative enough to sup-
port decision making. Fig.4 shows some estimated masks
for the training images using features from different net-
work layers. As could be seen in the first two rows, the
masks from C43 are not as complete as those from C41.
This coarse estimation from block C43 suffices for object
detection since we could find the smallest surrounding box.
However, it is harmful for the dense labeling task. We argue
that lower residual block yields more generic features and
thus not limit itself to the most discriminative regions, like
the front of the car and head of the bird. Another notable
phenomenon is that C41 seems to generate more compact
object boundary, while mask from C43 tends to be coarse
and overlarge, which could easily be seen in the third row.
It could be because block C43 has relatively larger receptive
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Algorithm 1: Estimating proxy ground-truth
Input: Image X , class labels y and class patterns

{ξc|c ∈ C}
1 Extract the activation T = f(X) ∈ Rh×w×d;
2 Initialize M = zeros(n), Q = zeros(n, |y|), where n

equals to h× w;
3 for position u in {1, 2, ..., n} do
4 for class c in y do
5 qc = (tu − t̄c)

ᵀξc;
6 Q(u, c) = I(qc > 0);// I(·) is the

indicator function
7 end

8 end
9 for position u in {1, 2, ..., n} do

10 s =
∑

c Q(u, c);
11 if s = 0 then

// case 1
12 M(u) = cbg;
13 else if s = 1 then

// case 2
14 M(u) = argmaxc Q(u, c);
15 else

// case 3
16 M(u) = cuncertain;
17 end

18 end
Output: Estimated mask supervision M

field. The last two rows demonstrate the masks for multi-
class images. More thorough comparison is presented in the
experimental section.

Experiments

Experimental Setup

Dataset and Evaluation Metric The proposed method is
evaluated on two benchmark datasets, PASCAL VOC 2012
(Everingham et al. 2012) and COCO (Lin et al. 2014). PAS-
CAL VOC: It consists of 20 foreground classes plus one
background class. As a common practice in (Kolesnikov and
Lampert 2016; Huang et al. 2018), we also include the extra
annotations by (Hariharan et al. 2011) in addition to the of-
ficially provided train set (1,464 images) and end up with a
trainaug set with 10,582 images. We report the mean inter-
section over union (mIoU) on both val and test set. COCO:
We use the train-val split setting of competition in 2017,
where 112k images are used for training and the remain-
ing 5k are reserved for evaluation. We report the same mIoU
metric in the 5k validation images over 81 semantic cate-
gories.

Training and Testing Setting We use ResNet-101 for
classification network, which is initialized by parameters
pre-trained on the ImageNet (Deng et al. 2009). For the seg-
mentation network, we adopt the DeepLab-CRF-LargeFOV
model (Chen et al. 2016). For fair comparison, both VGG16
and ResNet101 are adopted as backbone for evaluation. We

(a) C41 (b) C42 (c) C43

image (a) C41 (b) C42 (c) C43

Figure 4: Demonstration of training images. The estimated
mask of each column comes from different convolution lay-
ers, namely C41, C42 and C43.

use Adam optimizer (Kingma and Ba 2014) with a learn-
ing rate of 5e-6 for the backbone and 1e-4 for the randomly
initialized layers. With a batch size of 16, we train the seg-
mentation network for 20 epochs. During training, the image
batches are resized to fixed dimension of 328 × 328.

In the test phase, we adopt multi-scale testing with in-
put dimensions of 241, 328 and 401. The test image is first
forwarded through the segmentation network and the scores
from different input dimensions are aggregated by taking the
average. As common practice in (Kolesnikov and Lampert
2016; Huang et al. 2018), we apply a fully-connected CRF
(Krähenbühl and Koltun 2011) as post refinement.

Ablation Study

In this section, we conduct experiments to provide more in-
sights into the proposed method. All the comparison exper-
iments are done on the PASCAL VOC dataset. In order to
verify our assumption, we conduct experiments concerning
different network features while generating proxy ground-
truth for the segmentation network. We find that there is no
need to use all the images from a semantic subset. In our
experiments, at most 800 images for each subset are chosen
at random to estimate the covariance matrix. The extracted
class patterns are nearly identical to the one from all images.
Using fewer images saves a lot of the computation and also
avoids numerical instability. The overall results are shown in
table 1.

The first three rows in Table 1 demonstrate that the seg-
mentation performance increases dramatically when using
features from lower residual blocks. Block C43 is right next
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Table 1: Segmentation results on PASCAL VOC 2012 val set under different experimental settings of our method
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C43 74.9 33.9 25.0 37.9 29.4 47.3 68.9 59.9 58.1 23.0 50.3 34.0 54.1 47.5 56.7 48.8 41.3 48.3 27.9 51.5 48.0 46.0
C42 80.8 43.0 31.0 49.0 32.7 57.0 74.0 67.3 64.2 25.0 57.4 32.5 60.7 61.4 66.3 55.2 44.7 57.9 30.5 56.0 52.7 52.4
C41 86.1 53.7 33.8 66.1 40.2 64.2 82.2 73.4 82.4 24.6 71.1 30.6 77.3 72.8 72.1 66.9 45.3 70.3 32.5 67.4 53.1 60.3

C41 + Retrain 88.6 64.1 35.4 78.8 50.8 61.0 85.8 77.7 84.6 26.7 75.2 40.8 79.1 77.4 76.0 70.4 48.3 69.2 39.0 69.9 58.3 64.5

to the classification layer and achieves accuracy of 46.0%,
close to the result 45.4% (Kolesnikov and Lampert 2016)
that was obtained by training on the object seeds from CAM.
Going lower to block C42 improves the performance by
6.4%. Block C41 achieves the highest accuracy of 60.3%,
up from 52.4% as in C42. This coincides with our intuition
that lower convolutional layers yield more generic features
and thus provides more integral and compact object masks
as proxy ground-truth.

Since there are uncertain pixels cuncertain for multi-class
images due to the design of algorithm 1, we would like to
predict the proxy ground-truth for those uncertain pixels by
making use of the trained model. To be specific, we retrain
the segmentation model from scratch using the segmentation
masks predicted by the trained model ”C41”. The retraining
improves the final result from 60.3% to 64.5%. Further re-
training brings negligible improvement so we decide to per-
form it once.

Comparison with State-of-arts

The segmentation results on PASCAL VOC 2012 are pre-
sented in table 2. All the results for comparison were ob-
tained using the VGG16 backbone unless specified oth-
erwise. We compare our method with the previous state-
of-art weakly-supervised segmentation approaches. Some
of the methods are only provided for reference since they
used stronger supervisions including scribbles (Lin et al.
2016), bounding boxes (Dai, He, and Sun 2015; Song et
al. 2019) and image saliency (Wei et al. 2016; 2017b;
Chaudhry et al. 2017; Wang et al. 2018). Besides, both
WebS-i2 (Jin et al. 2017) and Hong et al. (Hong et al. 2017)
used extra webly-crawled images (19k and 900k), whose
collection might take extra efforts.

Results in table 2 show that our method achieves state-of-
art segmentation performance and outperforms all the pre-
vious approaches by a significant margin. Among the tech-
niques that use only class labels, DSRG (Huang et al. 2018)
and FickleNet (Lee et al. 2019) achieve the best perfor-
mance. However, as MCOF (Wang et al. 2018) and MDC
(Wei et al. 2018), both DSRG and FickleNet utilize sim-
ilar CAM techniques to extract foreground object seeds
and thus the background cues are extracted from an exter-
nal saliency detector, whose training requires extra pixel-
level annotations. Our approach directly estimate the back-
ground regions from the classification network, hence elim-
inating the need for an external saliency detector. Affin-
ityNet (Ahn and Kwak 2018) also avoided the usage of
saliency prior but an addition network was learned for se-
mantic affinities. In contrast, our method makes full use of
the classification network and requires no additional net-

Table 2: Segmentation results of different methods on PAS-
CAL VOC 2012 val and test Set.

Methods Train Set Val Test

Supervision: Scribbles
Scribblesup (Lin et al. 2016) 10k 63.1 -
Supervision: Box
BoxSup (Dai, He, and Sun 2015) 10k 62.0 64.2
Box-driven (Song et al. 2019) 10k 66.8 -
Supervision: Class labels
STC (Wei et al. 2016) 10k + sal 49.8 51.2
WebS-i2 (Jin et al. 2017) 19k 53.4 55.3
AE-PSL (Wei et al. 2017b) 10k + sal 55.0 55.7
MCOF (Wang et al. 2018) 10k + sal 56.2 57.6
Hong et al. (Hong et al. 2017) 10k + video 58.1 58.7
DCSP (Chaudhry et al. 2017) 10k + sal 58.6 59.2
EM-Adapt (Papandreou et al. 2015) 10k 38.2 39.6
DCSM (Shimoda and Yanai 2016) 10k 44.1 45.1
SEC (Kolesnikov and Lampert 2016) 10k 50.7 51.7
Multi-Cues (Roy and Todorovic 2017) 10k 52.8 53.7
DSRG (Huang et al. 2018) 10k 59.0 60.4
AffinityNet (Ahn and Kwak 2018) 10k 58.4 60.5
SeeNet (Hou et al. 2018) 10k 61.1 60.7
MDC (Wei et al. 2018) 10k 60.4 60.8
FickleNet (Lee et al. 2019) 10k 61.2 61.9
Ours (VGG16) 10k 61.2 -
Ours (ResNet101) 10k 64.5 64.6

work training. With the refinement of CRF and ResNet101
backbone, our method achieves mIoU results of 64.5% on
val set and 64.6% on the test set. The result on test set
is available on the website (http://host.robots.ox.ac.uk:8080/
anonymous/USWTK1.html).

Qualitative Results

Fiugure 5 shows some qualitative sample images from PAS-
CAL VOC 2012 val set. Our method can produce decent
segmentation mask which maintains low-level object bound-
ary. As shown in the first two rows, it perfectly predicts the
integral object regions. For more complex scenes involving
multiple classes, our approach still performs very well in lo-
cating different objects, which further verifies the effective-
ness of the proposed method.

Results on COCO

To verify the practicability of our method, we conduct fur-
ther experiment on Microsoft COCO dataset, which contains
a lot more semantic categories (81) and images (118k), thus
posing a challenge for current weakly-supervised methods.
We first learn a classification network using the available
class labels and achieve a classification accuracy of 80.4%.
As aforementioned, we only use at most 2000 images from
each semantic subset to compute the class patterns since
there are more images in each semantic category concerning
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Image Ground Truth Our Method

Figure 5: Demonstration of sample images. Left column:
The original image. Middle column: ground truth mask.
Right column: segmentation result from our method.

COCO. We compare our method with two other popular ap-
proaches, SEC (Kolesnikov and Lampert 2016) and DSRG
(Huang et al. 2018). Per-class IOUs are shown in table 3.
Our approach seems to perform much better on several su-
percategories, such as Food, Appliance, Indoor, and outper-
forms DSRG by 3.9% on val set on aggregate. One notable
problem on COCO dataset is that weakly-supervised meth-
ods fail to detect several classes, such as fork and hair dryer.
More investigation is needed to address the problem of de-
tecting small objects.

Conclusion

In this paper, we address two main issues of the classic
Class Activation Map (CAM) for weakly-supervised seman-
tic segmentation under image-level supervision. To over-
come the sparseness of the object seeds, we propose to ex-
plore convolution features from lower network layer, which
is more generic for dense labeling task since it is not di-
rectly involved in classification. The generic features are
extracted from a semantic subset to discover class pattern,
which serves as a per-pixel classifier to generate the ini-
tial supervision. The experimental results show that the pro-
posed method achieves state-of-art segmentation results on

Table 3: Per-class IoU on COCO val set.
Cat. Class SEC DSRG Ours
BG background 74.3 80.6 73.9
P person 43.6 48.7

V
eh

ic
le

bicycle 24.2 30.4 45.0
car 15.9 22.1 31.5
motocycle 52.1 54.2 59.1
airplane 36.6 45.2 26.9
bus 37.7 38.7 52.4
train 30.1 33.2 42.4
truck 24.1 25.9 36.9
boat 17.3 20.6 23.5

O
ut

do
or

traffic light 16.7 16.1 13.3
fire hydrant 55.9 60.4 45.1
stop sign 48.4 51.0 43.4
parking meter 25.2 26.3 33.5
bench 16.4 22.3 26.3

A
ni

m
al

bird 34.7 41.5 29.9
cat 57.2 62.2 62.1
dog 45.2 55.6 57.5
horse 34.4 42.3 40.7
sheep 40.3 47.1 54.0
cow 41.4 49.3 47.2
elephant 62.9 67.1 64.3
bear 59.1 62.6 58.9
zebra 59.8 63.2 60.7
giraffe 48.8 54.3 45.1

A
cc

es
so

ry

backpack 0.3 0.2 0.0
umbrella 26.0 35.3 46.1
handbag 0.5 0.7 0.0
tie 6.5 7.0 15.5
suitcase 16.7 23.4 43.6

Sp
or

t

frisbee 12.3 13.0 23.2
skis 1.6 1.5 6.5
snowboard 5.3 16.3 10.9
sports ball 7.9 9.8 0.6
kite 9.1 17.4 14.0
baseball bat 1.0 4.8 0.0
baseball glove 0.6 1.2 0.0
skateboard 7.1 14.4 7.6
surfboard 7.7 13.5 17.6
tennis racket 9.1 6.8 38.1
bottle 13.2 22.3 28.4

Cat. Class SEC DSRG Ours

K
itc

he
nw

ar
e wine glass 22.3 24.0 27.2

cup 17.9 20.4 21.7
fork 1.8 0.0 0.0
knife 1.4 5.0 0.9
spoon 0.6 0.5 0.0
bowl 12.5 18.8 7.6

Fo
od

banana 43.6 46.4 52.0
apple 23.6 24.3 28.8
sandwich 22.8 24.5 37.4
orange 44.3 41.2 52.0
broccoli 36.8 35.7 33.7
carrot 6.7 15.3 29.0
hot dog 31.2 24.9 38.8
pizza 50.9 56.2 69.8
donut 32.8 34.2 50.8
cake 12.0 6.9 37.3

Fu
rn

itu
re

chair 7.8 9.7 10.7
couch 5.6 17.7 9.4
potted plant 6.2 14.3 21.8
bed 23.4 32.4 34.6
dining table 0.0 3.8 1.1
toilet 38.5 43.6 43.8

E
le

ct
ro

ni
cs

tv 19.2 25.3 11.5
laptop 20.1 21.1 37.0
mouse 3.5 0.9 0.0
remote 17.5 20.6 37.2
keyboard 12.5 12.3 19.0
cell phone 32.1 33.0 38.1

A
pp

lia
nc

e microwave 8.2 11.2 43.4
oven 13.7 12.4 29.2
toaster 0.0 0.0 0.0
sink 10.8 17.8 28.5
refrigerator 4.0 15.5 23.8

In
do

or

book 0.4 12.3 26.3
clock 17.8 20.7 13.4
vase 18.4 23.9 27.1
scissors 16.5 17.3 37.0
teddy bear 47.0 46.3 58.9
hair dryer 0.0 0.0 0.0
toothbrush 2.8 2.0 11.1
mean IoU 22.4 26.0 29.9

benchmark datasets. In future work, we would focus on ex-
tending the current framework for more challenging tasks,
like instance segmentation.
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2017. Webly supervised semantic segmentation. In CVPR,
1705–1714.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. In ICLR, volume abs/1412.6980.
Kolesnikov, A., and Lampert, C. 2016. Seed, expand
and constrain: Three principles for weakly-supervised im-
age segmentation. In ECCV, volume abs/1603.06098.
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