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Abstract

The current industry practice for 24-hour outdoor imaging
is to use a silicon camera supplemented with near-infrared
(NIR) illumination. This will result in color images with poor
contrast at daytime and absence of chrominance at nighttime.
For this dilemma, all existing solutions try to capture RGB
and NIR images separately. However, they need additional
hardware support and suffer from various drawbacks, includ-
ing short service life, high price, specific usage scenario, etc.
In this paper, we propose a novel and integrated enhancement
solution that produces clear color images, whether at abun-
dant sunlight daytime or extremely low-light nighttime. Our
key idea is to separate the VIS and NIR information from
mixed signals, and enhance the VIS signal adaptively with
the NIR signal as assistance. To this end, we build an optical
system to collect a new VIS-NIR-MIX dataset and present a
physically meaningful image processing algorithm based on
CNN. Extensive experiments show outstanding results, which
demonstrate the effectiveness of our solution.

Introduction

Many practical imaging systems, such as surveillance sys-
tems, require continuous and stable operation. High-quality
images are expected to be captured in 24 hours. As a re-
sult, ambient illumination change becomes a non-negligible
factor. Common cameras usually work well under abundant
daylight, but perform badly at low-light nighttime. Simply
using a flash unit or increasing the exposure time are im-
practical as they will change the tone of imaging, exposure
coverage scope and cause image blur.

To overcome the limitation, the majority of existing solu-
tions use additional near-infrared (NIR) illumination to light
up the object and capture it. However, NIR is a double-edged
sword for those systems. On one hand, it utilizes the sensi-
tivity of Silicon sensors around 700nm-950nm, allowing vi-
sual information acquisition in the dark. On the other hand,
it affects the capture of visible spectrum (VIS) information
and results in degraded color images.
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Figure 1: The proposed 24-hour imaging solution using only
a Silicon sensor. VIS and NIR signals are automatically sep-
arated and processed to produce constantly clear and color-
ful images during both daytime and nighttime.

For this dilemma, advanced solutions tend to capture NIR
and VIS signals separately. Three typical hardware-assisted
solutions include using steerable IR-Cut filters, using spe-
cific color filter arrays (CFAs) and using two different imag-
ing sensors. In the first case, an IR-Cut filter is automatically
or periodically equipped under adequate illumination and is
removed otherwise. However, this requires additional illu-
mination intensity sensor and also reduces the service life.
In the second case, specific CFAs directly capture NIR and
VIS information, but the image resolution and quality are
highly limited. For the last option, involving two cameras
raises the cost and also faces difficulty in meticulous cali-
bration. Overall, all existing solutions that try to capture both
NIR and VIS signals still show limitations.

Different from existing solutions, in this paper we propose
to separate VIS and NIR signals directly from the mixed
signals captured by a single sensor without any additional
hardware, as illustrated in Figure 1. The required hardware
is only a common Silicon sensor without IR-Cut filters. With
our proposed algorithm, our solution not only significantly
reduces the cost, but also produces clear and colorful images
at both daytime and nighttime.

Our key idea lies in the proper use of the wide range, i.e.,
300-950nm, sensitivity of a Silicon senor, to capture the ad-
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equate information of VIS and NIR components, as shown
in Figure 2. Consequently, we propose to separate the VIS
and NIR signal automatically from the mixed signal, and use
the NIR signal as guidance for VIS image enhancement and
restoration. To this purpose, we design an optical imaging
system and build a novel VIS-NIR-MIX image dataset, al-
lowing the learning of a physically meaningful RAW-to-VIS
mapping network.

Both qualitative and quantitative experiments have shown
that our proposed solution is capable of generating colorful
and clear images in both abundant sunlight and extremely
low-light scenes, which outperforms the existing solutions.
Overall, our main contributions are threefold:
• We propose an integrated enhancement solution for 24-

hour high-quality imaging by using only a common Sili-
con sensor without additional hardware.

• We design a prototype imaging system and build a new
dataset with aligned RAW/VIS/NIR images, allowing
RAW-to-VIS mapping in a more accurate way.

• We propose and implement our image processing model
by an end-to-end network. Promising results on high-
quality image generation are provided.

Related work

Imaging under unstable illumination is the major challenge
for many imaging systems. Most existing researches focus
on specific cases, rather than providing an integrated 24-
hour colorful imaging solution. According to the used infor-
mation, they can be roughly divided into three categories:
using only VIS signals, using only NIR signals and us-
ing both VIS/NIR signals. In this section, we will briefly
overview the most relevant works.

Using only VIS signals. Enhancement and restoration
of VIS images has been studied intensively. Existing en-
hancement methods mainly contain histogram equalization
(HE) based methods (Nakai, Hoshi, and Taguchi 2013),
Retinex theory based methods (Guo, Li, and Ling 2017) and
learning based methods (Chen et al. 2018; Lv et al. 2018;
Lv, Li, and Lu 2019). Existing denoising methods are mas-
sive, typically including filter based methods (Dabov et al.
2007), effective prior based methods (Xu, Zhang, and Zhang
2018a), low rank based methods (Yair and Michaeli 2018),
sparse coding based methods (Xu, Zhang, and Zhang 2018b)
and learning based methods (Remez et al. 2017). Although
these researches have greatly promoted the image enhance-
ment and denoising techniques, it’s still far from the require-
ments of 24-hour imaging systems.

Using only NIR signals. Some researches (Limmer and
Lensch 2016; Suárez, Sappa, and Vintimilla 2017) consider
directly learning the NIR to RGB mapping to avoid the ef-
fects of unstable ambient VIS illumination. However, NIR
images and VIS images are not exactly the same, which will
result in unrealistic results. More fundamentally, the color
of object is often inherently ambiguous, which means that
it is difficult to accurately estimate the color information
from the NIR signal without additional constraints. There-
fore, such colorization methods are usually used for specific
purposes rather than high-quality imaging systems.

Figure 2: The relative spectral sensitivity after the CFA of
our imaging system without hot-mirror. The gray curve rep-
resents the sensitivity of the latent pure NIR signal. The
other three colored curves are NIR and VIS mixed signals.

Using both VIS and NIR signals. Since NIR images
have various advantages, e.g., haze free, solutions using both
VIS and NIR signals have become the industry standard for
24-hour imaging systems. There are three common types:
using steerable hot-mirrors, using specific CFAs and using
two cameras. In the first scenario, switching hot-mirrors en-
sures colorful imaging at daytime while almost gray images
obtained at nighttime. Besides the defect of chromaticity
loss, automatic switching will also raise the cost and re-
duce service life. For the second case, the special CFA con-
tains NIR components, which makes it can capture RGB
and NIR signals simultaneously. Many researches focus on
the RGB/NIR separation (Teranaka et al. 2016), RGB/NIR
jointly restoration (Park and Kang 2016) and low-light imag-
ing (Yamashita, Sugimura, and Hamamoto 2017) by using
special CFAs. This special CFA trades the low-resolution
NIR signal at the expense of color image resolution, which
will affect the image quality. Besides, the advantages of
these special CFAs will translate into disadvantages com-
pared with normal bayer filters at daytime. As for the last
strategy, it can be seen as an upgraded version of the second
case, since two cameras can simultaneously capture high-
resolution NIR and VIS images. This will provide prerequi-
sites for researches on low-light RGB/NIR processing (Sug-
imura et al. 2015) and RGB/NIR jointly restoration (Yan et
al. 2013). Nevertheless, two cameras will raise the cost and
face the serious problem of meticulous calibration.

Imaging in Both Daytime and Nighttime:

Analysis and an Integrated Solution

As described above, existing solutions are not fully satis-
factory when dealing with the 24-hour imaging task. In this
paper, we propose a novel and complete solution for 24-
hour colorful and clear imaging, which only needs a com-
mon camera without additional hardware assistance. In this
section, we will analyze the imaging mechanism of our pro-
posed solution in detail, as shown in Figure 3.
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Our imaging model. We consider the common camera
with the hot-mirror removed so that both VIS and NIR pho-
tons can reach the sensor. Assuming that the automatic ex-
posure is turned off, the raw response of one sensor element
can be formulated as:

S = max(0,min(1, round((g · I∗ + V )/η)), (1)

where g is the amplification factor, V is the bias voltage and
η is the quantization step. The symbol I∗ is the released elec-
trons and its noise-free version can be formulated as:

I0 = TAU

∫
λ

L(λ)t(λ)q(λ)dλ, (2)

where T is the exposure time, A is the effective area, U is the
modulation function, λ is the wave length, L(λ) is the inci-
dent spectral irradiance, t(λ) is the transmittance and q(λ) is
the photoelectric conversion function. We consider two main
noise: the thermal noise and the shot noise. The real released
electrons I∗ should be formulated as:

I∗ = I0 +Ns(I0) +Nt, (3)

where Ns(x) represents the shot noise according to the sig-
nal x and Nt represents the thermal noise. In our imaging
model, λ ∈ [300nm, 950nm]. If we use sums to approxi-
mate integrals, the VIS-NIR mixed signal can be approxi-
mated as the superposition of latent NIR and VIS signals.
Thus the mixed imaging model becomes:

Si
m ≈ Si

v + Si
n +Ns(S

i
v + Si

n) +Nt, i ∈ {R,G,B}, (4)

where Sm is the captured mixed signal, Sv are the latent
noise-free VIS signal and Sn is the latent noise-free color-
filter-passed NIR signal.

Analysis on noise signals. The shot noise is dynamically
affected by light intensity, while Nt is usually stable and
measurable. As reported in previous researches (Foi et al.
2008; Guo et al. 2018), Gaussian/Poisson noise are usually
adopted to approximate the thermal/shot noise. Assuming
that the VIS signal are independent with the NIR signal, the
shot noise Ns(S

i
v + Si

n) ≈ Ns(S
i
v) + Ns(S

i
n). Following

this idea, we model the noise as:

Sv+Ns(Sv)∼P(Sv),Sn+Ns(Sn)∼P(Sn),Nt∼N(0,σ2), (5)

where P(λ) represents a Poisson distribution with the pa-
rameter λ, N (0, σ2) denotes a zero-mean Gaussian distribu-
tion with variance σ2, Sv and Sn are VIS signals and NIR
signals respectively. By considering the simplified reflected
light model, we have

Sv = F(L(v)), L(v) ≈ kv · Iv(t), (6)

where F is the nonlinear camera response process for turn-
ing illumination into signals, kv is the reflection coefficient
and Iv(t) represents the VIS illumination levels in time t.
Similarly, the signal of NIR Sn has the same relationship
with the NIR illumination levels In.

By now, Eq. 5 and Eq. 6 model the two major components,
namely the Sv and Sv in Eq. 4, which clearly rely on Iv and
In, respectively. As for Iv , it varies significantly during a
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Figure 3: The imaging model of our proposed solution,
which consists of four main components: VIS signals, NIR
signals, Shot Noise and Thermal Noise.

day and causes drastic change in Sv . It will have low signal-
to-noise (SNR) ratio when Iv is insufficient. However, In
is a stable large value with the presence of additional NIR
illumination, and thus Sn is stable and has high SNR.

The final solution. Given the above analysis, we propose
to separate Sv + Ns(Sv) and Sn + Ns(Sn), and enhance
the VIS signal with the assistance of the high-quality NIR
signal. The separation is possible thanks to the stability of
Sn + Ns(Sn). Then the idea is that, in the daytime when
both Iv and In are large, the noises are negligible, while in
the nighttime when Iv becomes tiny and In is still large, the
problem becomes restoring the VIS signal with information,
e.g., scene structure, provided by the high-quality NIR sig-
nal. In this manner, the integrated solution produces high-
quality images in 24 hours. To the best of our knowledge,
this is the first solution of this kind.

Hardware Design & Dataset Construction

We design a novel optical imaging system and build a new
dataset for training and benchmarking.

Optical Design

There are two feasible ways to collect paired low/normal
light images. One way (Chen et al. 2018) is to shoot at night
and using longer exposure images as reference. Another ap-
proach (Wei et al. 2018) is to imaging by adjusting the expo-
sure time and ISO at daytime. The former is more consistent
with our task. Therefore, we choose the first way to collect
images. Specifically, at nighttime, images of each scene need
to be captured in four configurations: (1) without filters, (2)
with VIS pass filters, (3) with long exposure and VIS pass
filters, (4) with NIR pass filters. As for the daytime, we only
need to capture three images.

Hardware Configuration

The schematic illustration of our designed imaging system
are shown in Figure 5. The exposure is separately set to
0.8s/0.08s for nighttime/daytime, and set to 8s for long ex-
posure images. The resolution of the used camera (Bitran
CS-63C, without IR cut-off filters) is 2048 × 3072 and the
pixel depth is 12 bit. We use a motorized rotator (Thorlabs
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FW102C) for automatic filter switching to ensure that ev-
ery set of images captured by the camera is aligned. It has
six holes: two placed VIS pass filters (Thorlabs FESH0700),
two placed NIR pass filters (Thorlabs FELH0850), and two
remained empty. We use a xenon lamp (Asahi Lax103) as
the light source. For nighttime, we use an additional 880 nm
bandpass filter (FWHM=15 nm) to simulate the LED light-
ing. No filters are used for daytime.

VIS-NIR-MIX Dataset

We propose a novel dataset containing the well aligned VIS
images, NIR images and their mixed images. To the best
of our knowledge, this is the first real dataset of this kind,
which can be considered one of our key contributions in this
paper. Such a VIS-NIR-MIX dataset can guide the separa-
tion of the VIS and NIR signals from their mixed image,
and thus enables the training of our imaging model.

As mentioned earlier, we collect seven images for every
scene, three of which are for the daytime and four for the
nighttime. Examples of the captured image set are shown
in Figure 4. In addition to ensuring the physical alignment,
we also manually check every sample to achieve meticulous
calibration. By using our capture system introduced above,
we totally collect 714 images from 102 different scenes. In
this paper, we use 14 images for test and the rest for training
and the rest images as the training set.

Methodology

A specific implementation of the proposed solution is intro-
duced in this section with all the necessary details. Our so-
lution contains two major steps: separation and restoration.
We design a novel network architecture consists of four sub-
Nets corresponding to the two steps.

Network Architecture

As shown in Figure 6, the proposed network consists
of four sub-networks. We use U-Net (Ronneberger, Fis-
cher, and Brox 2015; Isola et al. 2017) and Res-Net as
the basic element of our network since they have been
proven extensively effective. We use Instance Normaliza-
tion (Ulyanov, Vedaldi, and Lempitsky 2016) rather than
Batch-Normalization (Ioffe and Szegedy 2015) for Nor-
malization. For the U-Net module, we use convolutional

Figure 4: Example images of the VNM dataset. Each scene
contains 7 images: three 3 images and 4 nighttime images.

Figure 5: For data collection, our designed system consists
of a xenon lamp, a camera and a motorized rotator with four
filters (two NIR cut-off filters and two VIS pass filters).

layers with stride 2 for down-sampling and use resize-
convolutional layers for up-sampling (Odena, Dumoulin,
and Olah 2016). As the decease of the feature map size, the
number of feature maps doubles and the feature map num-
ber of the first layer is set to 64. For all layers, using Leaky-
ReLU (except Proportion-Net), the kernel size is set to 3×3
and the concatenating along the channel dimension instead
of adding directly is used for skip connections.

Separation-Net. We use one U-Net module as the virtual
NIR pass filter to generate pure NIR images. The input is the
mixed image and the output is the estimated NIR image.

Proportion-Net. Due to the interval between VIS/NIR
pass filters, the transmittance limitation, etc., the sum of cap-
tured NIR signals and VIS signals are not exactly equal to
the mixed signal. Considering that the major components of
deviation are in 700-850 nm and are similar to NIR signals.
We use one U-Net module to predict this deviation. Differ-
ent from other sub-Nets, we use Sigmoid in the last layer
and use ReLU in other layers. The input should be scaled
to [0, 1] and the value of the output is also in [0, 1], which
presents the deviation percentage of the NIR signal.

Restoration-Net. As the luminance component is similar
to the NIR images, we separate the chrominance component
to avoid possible interference. We directly use a ResNet-like
subnet to enhance and denoise the luminance component.
The inputs are the estimated NIR image and the luminance
component of the estimated VIS image. The output is the
restored luminance component guided by the NIR image.

Colorization-Net. Since color is much lower spatial fre-
quency than intensity, a certain degree of compression won’t
result in the loss of chrominance information, but rather fa-
cilitates denoising and enhancement. Unlike other sub-Nets,
the output size of Colorization-Net is only half of the input.
The obtained color components are resized and fused with
the luminance component to obtain the final result.

Loss Function

The total loss function we proposed is formulated as:

L = α · Ls + β · Lr, (7)

where Ls and Lr represent the loss function of Separation
and Restoration processes, α and β are the corresponding
coefficients. The details of two loss are given below.
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Figure 6: The proposed network architecture. The Separation-Net is used to separate pure NIR signals from mixed signals.
The Proportion-Net is used to estimate the deviation of the NIR signal. The Restoration-Net is used to restore the luminance
component. The Colorization-Net is used to restore the chrominance information. The dashed lines represent skip connections.

To maintain structural consistency, we use a structure-
aware smoothness loss and the well-known image quality as-
sessment algorithms SSIM along with mae as the loss func-
tion. The value ranges of SSIM is (−1, 1] and the definition
can be found in (Wang et al. 2004). The Ls is defined as:

Ls=λv(Lv
ma+1−Lv

ss)+λn(Ln
ma+1−Ln

ss)+γ1Ln
sm, (8)

where Lma, Lss, λ represents the mae, ssim value and co-
efficient. The Ln

sm is defined as:

Ln
sm = ‖∇In ◦ exp(−λg · ∇Im)‖, (9)

where In is the output of the Separation-Net, Im is the input
image, ∇ represents the gradient, λg denotes the coefficient
balancing the strength of structure-awareness. We use simi-
lar loss function for Restoration processes,

Lr =λv2Lv2
ma + λyLy

ma + λv2(1− Lv2
ss )+

γ2Ly
sm + γ3Lv2

sm + γ4Lv2
pe,

(10)

where v2 and y represent the output in RGB and YUV color
spaces, Ly

sm and Lv2
sm are the smooth constrain for Lumi-

nance and VIS signals guided by NIR signals (similar to the
formula 9), γ2, γ3 and γ4 are the coefficient, Lv2

pe is the per-
ceptual loss and the define can be find in (Johnson, Alahi,
and Fei-Fei 2016). In the experiments, the configuration of
the parameters is: α=1, β=1, λn = λv = λv2 = λy =102,
γ1=0.1, γ2=5, γ3=1, γ4=102 and γg=10.

Implementation Details

Our implementation is done with Keras (Chollet and oth-
ers 2015) and Tensorflow (Abadi et al. 2016). The pro-
posed network can be quickly converged after being trained
for 3000 epochs on a Titan-Xp GPU using the proposed
dataset. We use random clipping, flipping and rotating for
data augmentation. We set the batch-size to 10 and the size

of random clipping patches to 256 × 256. The input image
values are scaled to [−1, 1]. In the experiment, training is
done using the Adam optimizer (Kingma and Ba 2014) with
α = 0.0002, β1 = 0.9, β2 = 0.999 and ε = 10−8. In the
training, we reduce the learning rate to 50% when the loss
metric has stopped improving.

Experiments

To demonstrate the performance of our solution, we first
evaluate and compare with existing methods through exten-
sive experiments form both qualitative and quantitative as-
pects. Then, we evaluate the robustness in real-world scenar-
ios under challenging conditions, including different hard-
ware and illumination. Next, we perform the ablation exper-
iment to evaluate the effect of different elements in our so-
lution. Finally, we discuss the failure cases. All experiments
use the model trained by using daytime and nighttime scenes
simultaneously. All visualization results are white balanced.

Performance Comparison

We conduct a comprehensive experiment to prove the per-
formance of our solution by comparing with existing rep-
resentative methods. These comparison methods stand out
from 20 related methods in the pre-experiment. Specially,
for daytime scenes, we compare with Gamma correction,
histogram equalization (HE) and NPE (Wang et al. 2013).
For nighttime scenes, we compare with the extremely low-
light raw image restoration method (Chen et al. 2018), low-
light enhancement method (Guo, Li, and Ling 2017) with
single image denoising method (Dabov et al. 2007) or joint
denoising method (Yan et al. 2013), and colorization meth-
ods (Iizuka, Simo-Serra, and Ishikawa 2016; Zhang, Isola,
and Efros 2016). Notice that, all method as well as ours need
only one image as the input except joint denoising method.
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Perceptual comparison with enhancement method at
daytime. The main challenges of imaging at daytime us-
ing cameras without NIR cut-off filters are the low-contrast
and low-saturation. Therefore, we compare our solution with
three representative enhancement algorithms, as shown in
top section of Figure 7. The colorful result shows the effec-
tiveness of our solution at daytime.

Perceptual comparison with the low-light enhance-
ment and denoising methods at nighttime. The main chal-
lenges of imaging at nighttime are the low-exposure, strong
noise and other degradation. We compare with three repre-
sentative solutions: low-light raw image restoration method,
low-light rgb image enhancement method with single im-
age denoising methods and NIR-guided joint restoration al-
gorithms (need high-quality NIR images as the guidance).
Figure 7 shows that our solution can correctly restore the
chrominance and our result is best in terms of color fidelity.

Perceptual comparison with colorization methods at
nighttime. Directly predicting the chrominance form the
grayscale NIR images seems to be a perfect solution. How-
ever, as the color is often inherently ambiguous, it is almost
impossible to infer brilliance information from grayscale in-
formation in an unqualified condition, such as colorization
for the Rubik’s cube. We use representative colorization so-
lutions to demonstrate the limitations of colorization meth-
ods in 24-hour imaging. Figure 7 shows that our solution can
produce realistic images by using NIR-VIS mixed signals.

Quantitative evaluation. We use PSNR, SSIM (Wang et
al. 2004) and colourfulness (Hasler and Suesstrunk 2003) as
the image quality metrics. Table 1 shows that our solution
outperforms all comparison methods in all quantitative met-
rics whether at daytime or nighttime. Particularly, we use
only one model for imaging in both daytime and nighttime,
which demonstrates the effectiveness of our solution.

PSNR SSIM Color Runtime
Input-daytime 17.66 0.714 38.43 -
HE 16.38 0.691 39.16 1.53
NPE 16.59 0.703 38.68 188.68
Ours 22.25 0.871 73.24 4.03 (GPU)
Input-nighttime 14.73 0.632 67.58 -
CVPR18 15.32 0.678 39.00 3.50 (GPU)
LIME+CBM3D 15.52 0.756 55.26 157.66
LIME+DJF 15.64 0.739 59.97 91.82
SIG16 11.16 0.056 14.65 58.25
ECCV16 13.25 0.575 61.35 16.56 (GPU)
Ours 17.17 0.835 89.74 4.03 (GPU)

Table 1: Quantitative evaluation comparative result. The size
of images for testing runtime is 3072 × 2048. The top (bot-
tom) half is the average metric results of daytime (night).

Robustness Verification

We validate the robustness of our solution by testing three
challenging cases: imaging under different illumination con-
ditions, imaging for outdoor scenes under real sunlight, and
imaging using different cameras.

Figure 7: (Top) Comparison with enhancement methods at
daytime. (Middle) Comparison with colorization methods
at nighttime. (Bottom) Comparison with low-light image
restoration solutions at nighttime.

Different illumination conditions. To demonstrate the
robustness of our solution in restoring images in different
illumination conditions, we provide results of real scenes at
different times to verify the effectiveness of our solution.
Figure 9 shows that our solution can correctly restore im-
ages under different illumination conditions.

Outdoor scenes under real sunlight. Although our im-
age dataset only contains indoor scenes under artificial illu-
mination, our models can enhance outdoor scenes under real
sunlight correctly as shown in Figure 8. In addition, thanks
to the mixed training using daytime and nighttime scenes si-
multaneously, our enhancement results are better than imag-
ing using NIR cut-off filters in terms of contrast.

Different cameras. Robustness across extremely differ-
ent hardware is a challenging task, as imaging colors are
influenced by the camera spectral sensitivity (Gao et al.
2017). Fortunately, as for different sensors, spectral sensi-
tivity dataset (Jiang et al. 2013) has shown that various Sili-
con cameras have similar sensitivities curves, which demon-
strates that our model can be directly applied to low-end
cameras to some extent. To certificate this, we use a low-end
camera (FLIR GS3-U3-15S5C-C) for testing. Its resolution
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is 1032 × 1384 and the pixel depth is 8 bit. The result us-
ing the pre-trained model without any fine-tuning is shown
in Figure 10. This demonstrates the robustness of our model
across hardware.

Ablation Experiment

In this section, we quantitatively evaluate the effectiveness
of different components in our solution based on our VNM
dataset. Table 2 reports the performance of the presented
changes in terms of PSNR and SSIM (Wang et al. 2004).

Loss functions. We evaluate the impact of loss function
components as shown in Table 2 (row 2−4). It shows that the
result quality is improving by containing more loss compo-
nents, which demonstrates the effectiveness of our proposed
loss function from the side.

Network structures. As shown in Table 2 (row 5−8), we
evaluate the effectiveness of different network modules by
replacing using a U-Net. Similar to the loss function, the re-
sults show that more components of our network will result
in better performance. Besides, modifying the Colorization-
Net’s output size will slightly decrease the performance.

Color space. Table 2 (row 9 − 10) shows the impact of
the color space. Directly restoring in HSV (use network like
condition 8) and RGB (use U-Net replace the restoration
module) color space will seriously reduce the result quality.

Condition PSNR SSIM
1. Our full model 19.71 0.853

2. w/i Lma, w/o Lss, w/o Lsm, w/o Lpe 18.71 0.822
3. w/i Lma, w/i Lss, w/o Lsm, w/o Lpe 19.12 0.846
4. w/i Lma, w/i Lss, w/i Lsm, w/o Lpe 19.54 0.839
5. w/o Separation, w/o Restoration 16.74 0.801
6. w/i Separation, w/o Restoration 18.88 0.826
7. w/o Separation, w/i Restoration 17.06 0.811
8. Colorization-Net’s output size ×2 19.10 0.836
9. YUV → HSV color space 18.30 0.806
10. YUV → RGB color space 17.58 0.782

Table 2: Ablation experiment results. This table report mean
PSNR/SSIM in each condition on the test dataset. In this
table, ”w/i” means with and ”w/o” means without.

Figure 8: Our solution correctly enhances outdoor images
under real sunlight.

Figure 9: Our solution restores images correctly at different
times under different illumination conditions.

Figure 10: Our solution correctly enhances indoor and out-
door images captured by using low-end cameras at daytime.

Conclusion & Discussion

In this paper, we propose a novel solution for 24-hour high-
quality imaging. We propose a new imaging model, de-
sign a multi-channel imaging processing system and build a
new dataset called VIS-NIR-MIX Dataset (VNM). Using the
new dataset, we design a proof-of-concept prototype using
a fully-convolution network. Extensive experiments demon-
strate that our solution is effective and practical.

Benefits. Our solution can be used for 24-hour high-
quality imaging, and it avoids the use of additional hardware
like specific CFAs, two cameras, and so on.

Limitations. Our solution is not specifically optimized
for multi-camera consistency. As distributions of signals
captured using diverse cameras are different, maintaining
robust across different cameras is challenging, especially in
extremely low-light conditions. Collecting more diverse data
is a promising solution and we leave this for the future work.

Future work. Future works may focus on improving
the multi-camera consistency, handling dynamic scenarios,
and optimization for specific applications like surveillance.
In addition to improving the model performance, laborious
data preparation is also need to be improved. How to im-
prove the efficiency of data preparation or produce realistic
synthetic data for enlarging the dataset are another aspect.
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