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Abstract

When domains, which represent underlying data distribu-
tions, vary during training and testing processes, deep neural
networks suffer a drop in their performance. Domain gener-
alization allows improvements in the generalization perfor-
mance for unseen target domains by using multiple source
domains. Conventional methods assume that the domain to
which each sample belongs is known in training. However,
many datasets, such as those collected via web crawling, con-
tain a mixture of multiple latent domains, in which the do-
main of each sample is unknown. This paper introduces do-
main generalization using a mixture of multiple latent do-
mains as a novel and more realistic scenario, where we try
to train a domain-generalized model without using domain
labels. To address this scenario, we propose a method that
iteratively divides samples into latent domains via cluster-
ing, and which trains the domain-invariant feature extrac-
tor shared among the divided latent domains via adversarial
learning. We assume that the latent domain of images is re-
flected in their style, and thus, utilize style features for clus-
tering. By using these features, our proposed method suc-
cessfully discovers latent domains and achieves domain gen-
eralization even if the domain labels are not given. Experi-
ments show that our proposed method can train a domain-
generalized model without using domain labels. Moreover,
it outperforms conventional domain generalization methods,
including those that utilize domain labels.

Introduction

In the development of deep neural networks (DNNs), many
methods that achieve good performance in computer vision
tasks have been proposed (Ren et al. 2015; Chen et al. 2018).
A domain represents an underlying data distribution, and
these methods assume that the domains given in training
(source domain) and in testing (target domain) are the same.
However, it is known that DNNs suffer a drop in their per-
formance due to domain shift (Torralba and Efros 2011).

To address this problem, extensive research has been car-
ried out on domain generalization, which aims to train a
domain-generalized model that performs well for the unseen
target domain by using labeled data from multiple source
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Figure 1: Unlike conventional domain generalization, do-
main generalization using a mixture of multiple latent do-
mains aims to train a domain-generalized model without do-
main labels (e.g., Photo, Art, Sketch), which represent the
domain to which each sample belongs.

domains. Considering the situation where a DNN is used for
autonomous driving or robots in the real world, it is desir-
able to perform well under different conditions (e.g., illu-
mination, types of objects) from the data given in training.
Because we can access no samples in the target domain, do-
main generalization can be considered a more difficult and
a more important task than domain adaptation (Long et al.
2015; Ganin and Lempitsky 2015), in which we can access
labeled/unlabeled samples of the target domain in training.

To achieve domain generalization, several domain gener-
alization methods have been proposed, including methods
that train the feature extractor so that the feature distribu-
tions among multiple source domains are matched (Li et al.
2018a; 2018b), or methods that train models for each do-
main and which combine them in testing (Mancini et al.
2018b; D’Innocente and Caputo 2018). These conventional
methods require domain labels, which represent the domain
to which each sample in multiple source domains belongs.
However, most datasets, such as those collected via web
crawling, are a mixture of multiple latent domains, and it
is difficult to know the domain labels. For example, there
are several types of image search results for “dog”, such
as close-up photos of a face, photos of a dog figure in na-
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ture, and drawings of a dog. In this scenario, domain labels
have to be attached manually to use conventional methods,
but this process may be costly and time-consuming. More-
over, it is not obvious how to divide a mixture of multiple
latent domains into each domain because those underlying
data distributions are unknown.

JiGen (Carlucci et al. 2019) achieves domain generaliza-
tion without domain labels by combining supervised learn-
ing and self-supervised learning to solve jigsaw puzzles of
the training images. However, it does not take advantage of
the fact that there exist several latent domains in the source
domain. Therefore, in this paper, we propose a novel and
realistic scenario called domain generalization using a mix-
ture of multiple latent domains, in which the source domain
contains multiple latent domains, and the domain to which
each sample belongs is unknown. As shown in Fig. 1, in
the proposed scenario, we try to train a model that performs
well for the unseen target domain using a mixture of multi-
ple latent domains. Moreover, we propose a novel method to
solve this scenario. First, we assume that the latent domain
of images is reflected in their style. Although other factors
may also be considered, such as the background, location,
and pose change, domain mismatches may be more severe
when image styles are different, such as photos, NIR images,
paintings, or sketches. Therefore, we utilize style features
proposed in the research field of style transfer as domain-
discriminative features to discover latent domains. Specif-
ically, we utilize a stack of convolutional feature statistics
(i.e., mean and standard deviation) that are known to be
capable of capturing image styles (Li et al. 2017c). Once
domain-discriminative features are obtained, our method it-
eratively assigns pseudo domain labels by clustering them,
and trains a domain-invariant feature extractor shared among
multiple latent domains by adversarial learning.

Experiments with benchmark datasets show that our pro-
posed method is effective for domain generalization using a
mixture of multiple latent domains, and it outperforms con-
ventional domain generalization methods that use domain
labels. Moreover, it is found that the use of pseudo domain
labels obtained by clustering style features improves the
classification performance compared with the use of origi-
nal domain labels annotated by humans.

Related Work

Here, we explain domain adaptation and domain generaliza-
tion methods. Moreover, we explain style-transfer methods
because as domain-discriminative features, our proposed
method utilizes style features that were originally proposed
in the research field of style transfer.

Domain Adaptation

To deal with domain shift (Torralba and Efros 2011), do-
main adaptation and domain generalization have been stud-
ied. Domain adaptation aims to generalize a model from
the source domain to the target domain with data in both
domains. In unsupervised domain adaptation, several meth-
ods are employed to match the distribution in pixel space
(Bousmalis et al. 2017; Chen et al. 2019) or feature space

(Long et al. 2015; Ganin and Lempitsky 2015). Although
these methods assume single-source and target domains,
multi-source domain adaptation methods (Xu et al. 2018;
Schoenauer-Sebag et al. 2019) utilize multiple source do-
mains for domain adaptation to learn domain relations.

Moreover, for the case in which the domains to which
each sample belongs are unknown, Mancini et al. (Mancini
et al. 2018a) proposed a deep architecture that automatically
discovers multiple latent domains, and it uses this informa-
tion to align the distributions of the internal feature repre-
sentations of sources and target domains. In contrast to our
proposed method, this method is suitable for domain adap-
tation, and requires target samples in training.

Domain Generalization

Domain generalization aims to train a domain-generalized
model for the unseen target domain by using multiple source
domains. Unlike domain adaptation, target samples are not
given in training. The representative methods for domain
generalization match the feature distributions among mul-
tiple source domains by using an auto-encoder (Ghifary et
al. 2015; Li et al. 2018a) or using adversarial learning (Li
et al. 2018b; Shao et al. 2019). In addition, several methods
have been proposed, such as a method that is based on meta
learning (Li et al. 2017b; Balaji, Sankaranarayanan, and
Chellappa 2018), one that uses domain-specific aggregation
modules (D’Innocente and Caputo 2018), and a method that
combines supervised learning and self-supervised learning
to solve jigsaw puzzles (Carlucci et al. 2019).

Most conventional domain generalization methods re-
quire domain labels, which represent the domains to which
each sample belongs. However, in the scenario of domain
generalization using a mixture of multiple domains, we can-
not apply these methods because domain labels are not
given. Although JiGen (Carlucci et al. 2019) does not re-
quire domain labels in training, it is different from our pro-
posed method, which assumes that the source domain con-
tains multiple latent domains and take advantage of them.

Style Transfer

Style transfer enables us to transfer the style of an image
called style image to that of an image called content image
while preserving its content. Neural style transfer (Gatys,
Ecker, and Bethge 2016) utilizes Gram matrices of the neu-
ral activations from different layers of a convolutional neural
network (CNN) to represent the artistic style of an image. Li
et al. (Li et al. 2017c) theoretically showed that matching
the Gram matrices of neural activations is equivalent to min-
imizing the maximum mean discrepancy with the second-
order polynomial kernel, and constructed another style loss
by aligning the convolutional feature statistics (i.e., mean
and standard deviation) of two feature maps between style
and generated images. AdaIN (Huang and Belongie 2017)
enables arbitrary style transfer in real-time by replacing the
convolutional feature statistics of the content image with
those of the style image. Inspired by these methods, we as-
sume that the latent domain of images is reflected in their
style and utilize convolutional feature statistics as domain-
discriminative features.
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Figure 2: Illustration of our proposed method: Our method iteratively assigns pseudo domain labels by clustering domain-
discriminative features extracted from lower layers of the feature extractor, and trains the domain-invariant feature extractor via
adversarial learning.

Domain Generalization Using a Mixture of

Multiple Latent Domains

In conventional domain generalization, the model trained
with K source domains Ds = {Dk

s}Kk=1, which share the
same tasks (input x and label spaces y) but have differ-
ent data distributions, accurately works for the new target
domain Dt. In this paper, we focus on the image classifi-
cation task and set the number of object categories to C.
Moreover, when the k-th source domain Dk

s has Nk
s sam-

ples, the dataset given in training is Ds = {Dk
s}Kk=1,Dk

s =

{(xk
i , y

k
i )}N

k
s

i=1. This can also be represented using Ds =

{(xi, yi, di)}Ns
i=1, when the domain to which each sample be-

longs and the total number of samples included in all source
domains are defined as di and Ns, respectively. Namely,
conventional domain generalization methods train the model
that works well for the unseen target domain by using input
images xi, object category labels yi, and domain labels di.

However, as we described above, a real dataset may be
a mixture of multiple latent domains, and it is difficult to
obtain domain labels in this case. Therefore, we propose a
scenario called domain generalization using a mixture of
multiple latent domains, where the given dataset is Ds =
{(xi, yi)}Ns

i=1 because domain labels di are unknown.

Proposed Method

In this section, we explain the details of our proposed
method. An overview of our method is shown in Fig. 2.
Our method utilizes adversarial learning with a domain dis-
criminator to train the domain-invariant feature extractor
from among multiple latent domains; this approach is also
used in conventional domain adaptation or generalization
methods (Ganin and Lempitsky 2015; Li et al. 2018b). Al-
though adversarial domain generalization methods require
domain labels, they are not given in domain generaliza-
tion using a mixture of multiple latent domains. Therefore,

our method iteratively reassigns pseudo domain labels by
clustering domain-discriminative features obtained from the
model.

The key point is how to extract domain-discriminative
features from the model in order to cluster samples by their
latent domains. Clustering features obtained from the model
may generally divide samples by their object categories, and
not by their domains. Moreover, our method aims to train
a domain-invariant feature extractor by making the outputs
domain-invariant, which hinders the extraction of domain-
discriminative features from the model. To solve this prob-
lem, we assume that the latent domain of images is reflected
in their style, and we thus propose to utilize style features
used in style transfer. Specifically, we utilize a stack of con-
volutional feature statistics (i.e., mean and standard devia-
tions) obtained from lower layers of the feature extractor. In
this way, our method can divide samples into each latent do-
main and achieve domain generalization. In the rest of the
section, we describe the details of each component of our
proposed method.

Adversarial Domain Generalization

Adversarial learning, which is developed from generative
adversarial networks (GANs) (Goodfellow et al. 2014), has
been used for research in domain adaptation (Ganin and
Lempitsky 2015) and generalization (Li et al. 2018b). Gen-
erally, a deep learning model can be divided into a feature
extractor Ff and a classifier Fc. These models can be trained
with the following classification loss Lcls.

Lcls = − 1

Ns

Ns∑
i=1

C∑
c=1

1l[c=yi] logFc(Ff (xi)) (1)

In addition to these components, adversarial learning in-
troduces a domain discriminator Fd, which is trained to dis-
criminate the domains when outputs of the feature extrac-
tor are inputted. Conversely, the feature extractor is trained
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to extract features that make it difficult for the domain dis-
criminator to discriminate their domains. This makes it pos-
sible to extract domain-invariant features from among mul-
tiple source domains, which generalizes the model for the
unseen target domain. The adversarial loss Ladv is defined
as follows.

Ladv = − 1

Ns

Ns∑
i=1

K̂∑
k=1

1l[k=d̂i]
logFd(Ff (xi)) (2)

Although conventional methods use known domain labels di
and the known number of domains K, our proposed method
uses pseudo domain labels d̂i by assigning samples into K̂
pseudo domains using clustering.

It is known that adversarial learning tends to generate am-
biguous features near the decision boundary by trying to
simply match the distributions among multiple source do-
mains (Saito et al. 2018). Therefore, we introduce the en-
tropy loss Lent (Grandvalet and Bengio 2005), which is
used in some domain adaptation methods (Long et al. 2016;
Zhang et al. 2019) to train a more discriminative model for
target samples by encouraging low-density separation be-
tween object categories. Although previous domain adapta-
tion methods adapt it to only unlabeled target samples, our
method adapts it to all labeled source samples as follows.

Lent = − 1

Ns

Ns∑
i=1

H(Fc(Ff (xi))) (3)

Here, H(·) represents the entropy function. This entropy
loss enables us to extract discriminative features for object
categories and to improve the classification accuracy.

The total training objective is described as follows.

min
Ff ,Fc

= Lcls(Ff , Fc) + λ(Lent(Ff , Fc)− Ladv(Ff , Fd))

min
Fd

= Ladv(Ff , Fd) (4)

Here, λ denotes the trade-off parameter to suppress the noise
signal of two losses Ladv, Lent in the early stage of training.

Domain-discriminative Features

As domain-discriminative features, we utilize style features
proposed in the style transfer (Gatys, Ecker, and Bethge
2016; Li et al. 2017c; Huang and Belongie 2017). Style
transfer aims to generate a stylized image given a content
image and a reference style image. Li et al. (Li et al. 2017c)
proposed a new style loss Lsty to align the convolutional fea-
ture statistics (i.e., mean and standard deviation) between the
generated image xgen and the style image xsty as follows.

Lsty =

M∑
m=1

‖μ(φm(xgen))− μ(φm(xsty))‖2+

M∑
m=1

‖σ(φm(xgen))− σ(φm(xsty))‖2
(5)

Here, each φm(x) denotes the output in a layer used to com-
pute the style loss, and mean μ(x) and standard deviation

Algorithm 1 Training algorithm.

Require: Data: Ds = {(xs
i , y

s
i )}Ns

i=1

Initialize d̂i, d̂
′
i with zero

while not end of epoch do

Calculate {ddf(xi)}Ns
i=1 using Eq. 8

Obtain {ai}Ns
i=1 by clustering {ddf(xi)}Ns

i=1
Calculate π̂ using Eq. 9
Update d̂i with π̂(ai)
while not end of minibatch do

Sample a minibatch of xi, yi, d̂i
Update parameters using Eq. 4

end while
Update d̂′i with d̂i

end while

σ(x) are calculated across spatial dimensions independently
for each channel c.

μc(x) =
1

HW

H∑
h=1

W∑
w=1

xchw (6)

σc(x) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xchw − μc(x))2 + ε (7)

In our method, we assume that the latent domain of im-
ages is reflected in their style, and we thus utilize convo-
lutional feature statistics as domain-discriminative features.
Further, to combine multi-scale style features obtained from
different convolutional layers, we define a stack of them
as domain-discriminative features. Namely, the domain-
discriminative feature ddf(x) is calculated using multiple
layers’ outputs φ1(x), · · · , φM (x) as follows.

ddf(x) = {μ(φ1(x)), σ(φ1(x)), · · · , μ(φM (x)), σ(φM (x))}
(8)

Training Procedure

After obtaining domain-discriminative features for all train-
ing samples using Eq. 8, our method divides them into K̂
clusters by clustering, and utilizes the cluster assignments
ai as pseudo domain labels d̂i. We use a standard clustering
algorithm, k-means (Macqueen 1967), although other clus-
tering algorithms can be used in our method. The overall
training procedure is shown in Alg. 1. Our method iteratively
reassigns pseudo domain labels in training. This is because
domain-discriminative features can be extracted more suc-
cessfully as the training progresses. In particular, we deter-
mine that the reassignment of pseudo domain labels is con-
ducted for each epoch.

The problem here is that clustering can divide samples
into each cluster but cannot properly decide which domain
label should be assigned to each cluster. If the reassigned
pseudo domain labels are shifted largely with those before
one epoch, it negatively impacts the training. Therefore, we
use the following equation to convert the cluster assignment
ai into the pseudo domain label d̂i by calculating the per-
mutation π̂ so as to maximize the rate of agreement between
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the cluster assignments {ai}Ns
i=1 and pseudo domain labels

before one epoch {d̂′i}Ns
i=1.

π̂ = arg max
π∈Π

1

Ns

Ns∑
i=1

1l[d̂′
i=π(ai)]

(9)

Here, the optimal permutation π̂ can be computed using the
Kuhn-Munkres algorithm (Munkres 1957).

Experiments

Datasets

To evaluate our proposed method, we perform experiments
using two datasets for domain generalization.1 PACS (Li et
al. 2017a) consists of four domains (i.e., Photo, Art Paint-
ings, Cartoon, and Sketch), spanning different image styles,
with seven object categories. VLCS (Torralba and Efros
2011) aggregates images of five shared object categories
(bird, car, chair, dog, and person) from PASCAL VOC 2007
(Everingham et al. ), LabelMe (Russell et al. 2008), Caltech-
101 (Fei-Fei, Fergus, and Perona 2007), Sun09 datasets
(Choi et al. 2010) which are considered as four separate
domains. Unlike PACS, VLCS provides only photo images
with different camera types or composition bias. By using
the VLCS dataset, we verify whether our method, which fo-
cuses on the image styles, can also deal with domain shifts
inside photos.

Following the previous work (Carlucci et al. 2019), we
use three domains as the source domain, and the other as
the target. For the same reason, we split 10% (in the case of
PACS) and 30% (in the case of VLCS) of the source samples
as validation datasets. In testing, all target samples are used
to calculate the accuracy of the model that achieves the best
accuracy in the validation dataset. Because domain labels
are not given in domain generalization using a mixture of
multiple latent domains, we do not use them when using our
method.

Implementation Details

As the feature extractor, we use AlexNet and ResNet-18
pre-trained on ImageNet by removing the last layer. As the
classifier, we initialize one fully connected layer to have the
same number of inputs as before, and to have the same num-
ber of outputs as the number of object categories. As the
domain discriminator, we use three fully connected layers
(1024→1024→K̂). Note that we weight the loss function
in Eq. 2 by the inverse of the size of pseudo domain la-
bels. This is because if the number of images per pseudo
domain is highly imbalanced, minimizing Eq. 2 results in
a trivial parametrization where the model will predict the
same output regardless of the input. To acquire the domain-
discriminative features of Eq. 8, we use relu2 and relu3
in the case of AlexNet, and conv2 x and conv3 x in
the case of ResNet-18. To conduct adversarial learning in
Eq. 4, we insert a gradient reversal layer (GRL) (Ganin and

1The code is publicly available at https://github.com/mil-tokyo/
dg mmld/.

Lempitsky 2015) between the feature extractor and the do-
main discriminator, and we use the same schedule for λ of
Eq. 4 as follows: λ = 2

1+exp(−10·p) − 1. Here, p is linearly
changed from 0 to 1 as training progresses. To reduce the
computational cost of clustering, we reduce the dimension
of domain-discriminative features to 256.

Basically, we utilize the other hyper-parameters employed
by JiGen (Carlucci et al. 2019). In other words, we train the
model for 30 epochs using the mini-batch stochastic gradi-
ent descent (SGD) with a momentum of 0.9, a weight decay
of 5e− 4, and a batch size of 128. We set the initial learning
rate to 1e− 3, and scale it by a factor of 0.1 after 80% of the
training epochs. In the experiment with the VLCS dataset,
we set the initial learning rate to 1e−4 because it is observed
that a high learning rate causes early convergence and over-
fitting in the source domain. Moreover, we set the learning
rate of the classifier and the domain discriminator to be 10
times larger than that of the feature extractor because they
are trained from scratch. For pre-processing, we crop images
to random sizes and aspect ratios, horizontally flip them ran-
domly, change their brightness/contrast/saturation/hue ran-
domly, and normalize them using ImageNet’s statistics.

Baselines

We compare our method with the following recent domain
generalization methods. Deep All: Pre-trained Alexnet or
ResNet-18 fine-tuned on the aggregation of all source do-
mains with only the classification loss. TF (Li et al. 2017a):
The low-rank parameterized neural network, which reduces
the number of parameters to be trained. CIDDG (Li et al.
2018b): The conditional-invariant deep domain generaliza-
tion method, which matches conditional distributions by
considering the changes in the class prior. MLDG (Li et
al. 2017b): The meta-learning method by meta-optimization
on simulated train/test splits with the domain shift. CCSA
(Motiian et al. 2017): The deep model in mixture with
the classification and contrastive semantic alignment loss
to address supervised domain adaptation and generalization.
MMD-AAE (Li et al. 2018a): A model that trains feature
representations by jointly optimizing a multi-domain au-
toencoder regularized by the maximum mean discrepancy
distance, a discriminator, and a classifier with adversarial
learning. SLRC (Ding and Fu 2018): The structured low-
rank constraint to transfer the knowledge between domain-
specific networks and the domain-invariant one. D-SAM
(D’Innocente and Caputo 2018): Domain-specific aggrega-
tion modules, which enable us to merge generic and spe-
cific information in an effective manner using an aggregation
layer strategy. JiGen (Carlucci et al. 2019): Jigsaw puzzle-
based generalization method, which focuses on the unsuper-
vised task to solve jigsaw puzzles.

Note that methods other than Deep All and JiGen can-
not be applied for domain generalization using a mixture of
multiple latent domains because they require domain labels
in training. Therefore, for these methods, we use the score in
the scenario of general domain generalization where domain
labels are given.
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PACS Art. Cartoon Sketch Photo Avg.
AlexNet

Deep All 63.30 63.13 54.07 87.70 67.05
TF∗ 62.86 66.97 57.51 89.50 69.21

Deep All 57.55 67.04 58.52 77.98 65.27
CIDDG∗ 62.70 69.73 64.45 78.65 68.88
Deep All 64.91 64.28 53.08 86.67 67.24
MLDG∗ 66.23 66.88 58.96 88.00 70.01
Deep All 64.44 72.07 58.07 87.50 70.52
D-SAM∗ 63.87 70.70 64.66 85.55 71.20
Deep All 66.68 69.41 60.02 89.98 71.52

JiGen 67.63 71.71 65.18 89.00 73.38
Deep All 68.09 70.23 61.80 88.86 72.25

Ours (K̂=2) 66.99 70.64 67.78 89.35 73.69
Ours (K̂=3) 69.27 72.83 66.44 88.98 74.38

Ours (K̂=4) 68.84 72.53 65.90 88.75 74.01
ResNet-18

Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM∗ 77.33 72.43 77.83 95.30 80.72
Deep All 77.85 74.86 67.74 95.73 79.05

JiGen 79.42 75.25 71.35 96.03 80.51
Deep All 78.34 75.02 65.24 96.21 78.70

Ours (K̂=2) 81.28 77.16 72.29 96.09 81.83

Ours (K̂=3) 79.64 76.75 71.22 95.86 80.87
Ours (K̂=4) 80.07 75.06 74.21 95.73 81.26

Table 1: Results in the PACS dataset. The title of each col-
umn indicates the name of the domain used as the target.
The methods with an asterisk use domain labels, but Deep
All, JiGen, and our method do not use them. The respective
scores are obtained from each method’s original paper.

Results

Table 1 and Table 2 show the experimental results with the
PACS and VLCS datasets, respectively. The scores shown in
the tables are the average over five repetitions for each run,
and K̂ denotes the number of pseudo domains used in our
method. For all datasets, our method achieves results that
surpass those of existing methods regardless of the number
of pseudo domains K̂. Below, we discuss the influence of
the number of pseudo domains K̂. In the PACS dataset, our
method has a significant advantage with respect to the cor-
responding Deep All baseline. The results show that train-
ing the domain-invariant feature extractor using adversarial
learning is effective for domain generalization among more
diverse domains such as the PACS dataset. This good perfor-
mance is achieved without using any domain labels, unlike
other methods excluding JiGen. Our method can discover la-
tent domains and assign pseudo domain labels by focusing
on the image styles.

Moreover, even in the VLCS dataset, where domain shifts
are inside only photo images, our method can improve the
classification accuracy compared to other methods. The re-
sults show that even if the original domain labels of datasets
are not separated by the image styles, our method can im-
prove the generalization performance by assigning pseudo
domain labels by focusing on them.

VLCS Caltech Labelme Pascal Sun Avg.
AlexNet

Deep All 85.73 61.28 62.71 59.33 67.26
CIDDG∗ 88.83 63.06 64.38 62.10 69.59
Deep All 86.10 55.60 59.10 54.60 63.85
CCSA∗ 92.30 62.10 67.10 59.10 70.15

Deep All 86.67 58.20 59.10 57.86 65.46
SLRC∗ 92.76 62.34 65.25 63.54 70.97

Deep All 93.40 62.11 68.41 64.16 72.02
TF∗ 93.63 63.49 69.99 61.32 72.11

MMD-AAE∗ 94.40 62.60 67.70 64.40 72.28
Deep All 94.45 57.45 66.06 65.87 71.08
D-SAM∗ 91.75 56.95 58.59 60.84 67.03
Deep All 96.63 59.18 71.96 62.57 72.66

JiGen 96.93 60.90 70.62 64.30 73.19
Deep All 95.89 57.88 72.01 67.76 73.39

Ours (K̂=2) 96.66 58.77 71.96 68.13 73.88

Ours (K̂=3) 97.02 58.37 71.40 67.89 73.67
Ours (K̂=4) 96.57 58.66 72.09 66.79 73.53

Table 2: Results in the VLCS dataset. The respective scores
are obtained from each method’s original paper. For details
about the meaning of columns and use of asterisks, see Ta-
ble 1.

PACS Art. Cartoon Sketch Photo Avg.
AlexNet

Deep All 68.09 70.23 61.80 88.86 72.25
Ours w/o Ladv 67.66 70.45 62.56 88.94 72.40
Ours w/o Lent 68.31 71.13 65.26 89.38 73.52
Ours w/o stat. 67.37 70.22 63.12 89.20 72.48
Ours w/o iter. 69.13 70.72 65.41 89.11 73.59
Ours w/o clus. 68.49 72.24 66.31 89.27 74.08

Ours 69.27 72.83 66.44 88.98 74.38

Table 3: Results of the ablation study in the PACS dataset.
For details about the meaning of columns, see Table 1.

Further Analysis

Ablation Study

In this section, we describe an ablation study to investigate
the effect of different components of our method using the
PACS dataset and AlexNet. The variants of our method used
in the experiments are as follows. Our method without Ladv:
The model that removes the adversarial loss in Eq. 2. Our
method without Lent: The model that removes the entropy
loss in Eq. 3. Our method without stat.: The model that sim-
ply uses outputs of the convolutional layer (relu2 in this
experiment) as domain-discriminative features for cluster-
ing instead of a stack of convolutional feature statistics in
Eq 8. Our method without iter.: The model that uses the first
assigned pseudo domain labels to the end without iteratively
reassigning them. Our method without clus.: The model that
uses original domain labels instead of assigning pseudo do-
main labels by clustering.

Table 3 shows the experimental results obtained when the
number of pseudo domains is set to three. The results of our
method without Ladv and our method without Lent indicate
that the adversarial loss in Eq. 2 is effective for domain gen-
eralization, and it is further improved by using the entropy
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Figure 3: Results obtained when varying the number of
pseudo domains. The accuracy is the average of five sets.

0 5 10 15 20 25 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I Object Category Label
Original Domain Label
Previous Assignment

Figure 4: NMI between pseudo domain labels and object
category labels, original domain labels, and previous assign-
ments.

loss in Eq. 3. The result of our method without stat. indicates
that simply using the outputs of convolutional layers can-
not sufficiently extract domain-discriminative features, and
it cannot achieve domain generalization so well. The result
of our method without iter. indicates that iteratively reas-
signing pseudo domain labels improve the classification per-
formance compared with those assigned at the start of train-
ing to the end. This may be because domain-discriminative
features can be extracted more successfully by using models
trained with samples of each domain, rather than using a pre-
trained model. Finally, the result of our method without clus.
indicates that the use of iteratively reassigned pseudo do-
main labels improves the classification accuracy compared
with the use of original domain labels. It appears that pseudo
domain labels are suitable for training the domain-invariant
feature extractor because they are based on the model’s inner
features and capture image styles.

Varying the Number of Pseudo Domains

In domain generalization using a mixture of multiple la-
tent domains, the number of multiple latent domains in the
source domain is unknown. Although our method divides
samples into K̂ pseudo domains by clustering, we have to
set the number of pseudo domains in advance. It is un-
clear whether our method works accurately if the number
of pseudo domains is not the same as the number of orig-
inal domains. Therefore, we check the performance of our
method when changing the number of pseudo domains. We

Photo
Cartoon

Sketch

Figure 5: T-SNE visualization of domain discriminative fea-
tures.

use the same experimental setting of the previous paragraph
with the PACS dataset and ResNet-18. We consider four ex-
periments in which the target domains are changed as one
set, and repeat it five times. Fig. 3 shows the mean and stan-
dard deviation results of our proposed method and Deep All.
Note that in reality, the number of original domains is three.
Based on the results obtained, there is no significant corre-
lation between the number of pseudo domains and the clas-
sification accuracy, which highlights the robustness of our
method to varying numbers of pseudo domains.

Clustering Evaluation

Our method assigns pseudo domain labels by clustering.
There is a concern that clustering is not performed by do-
mains but by object categories, although it does not neces-
sarily have to divide samples by original domains. There-
fore, we evaluate the clustering by calculating the normal-
ized mutual information (NMI) between pseudo domain la-
bels and object category labels, original domain labels, and
pseudo domain labels before one epoch. Moreover, we visu-
alize the distribution of domain-discriminative features us-
ing t-SNE (van der Maaten and Hinton 2008). We use the
same experiment setting of the previous paragraph with the
PACS dataset and AlexNet, set the number of pseudo do-
mains to three, and set Art-painting to the target domain.

Fig. 4 shows that the NMI between pseudo domain la-
bels and the original domain labels is large, while that be-
tween pseudo domain labels and object category labels is
small. Moreover, the NMI between pseudo domain labels
and original domain labels remains almost unchanged over
the whole training period. These indicate that clustering
domain-discriminative features divides samples not by ob-
ject categories but original domains over the whole train-
ing period. This fact can also be seen in Fig. 5, where the
distributions of domain-discriminative features are roughly
divided by their original domains. Moreover, the NMI be-
tween pseudo domain labels and the previous assignment
gradually converges to 1.0 as the training proceeds, which
indicates that clustering results become gradually stable.

Conclusion

In this study, we proposed a new scenario called domain
generalization using a mixture of multiple latent domains.
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To address this scenario, we proposed a new method that
extracts a stack of convolutional feature statistics represent-
ing the image styles as domain-discriminative features, as-
signs pseudo domain labels by clustering them, and trains
the domain-invariant feature extractor from among latent do-
mains using adversarial learning. In the experiments, our
method without domain labels achieved a better perfor-
mance than conventional methods that use them.
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