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Abstract

While the performance of crowd counting via deep learning
has been improved dramatically in the recent years, it re-
mains an ingrained problem due to cluttered backgrounds and
varying scales of people within an image. In this paper, we
propose a Shallow feature based Dense Attention Network
(SDANet) for crowd counting from still images, which dimin-
ishes the impact of backgrounds via involving a shallow fea-
ture based attention model, and meanwhile, captures multi-
scale information via densely connecting hierarchical image
features. Specifically, inspired by the observation that back-
grounds and human crowds generally have noticeably differ-
ent responses in shallow features, we decide to build our at-
tention model upon shallow-feature maps, which results in
accurate background-pixel detection. Moreover, considering
that the most representative features of people across differ-
ent scales can appear in different layers of a feature extraction
network, to better keep them all, we propose to densely con-
nect hierarchical image features of different layers and sub-
sequently encode them for estimating crowd density. Exper-
imental results on three benchmark datasets clearly demon-
strate the superiority of SDANet when dealing with differ-
ent scenarios. Particularly, on the challenging UCF CC 50
dataset, our method outperforms other existing methods by
a large margin, as is evident from a remarkable 11.9% Mean
Absolute Error (MAE) drop of our SDANet.

Introduction

Crowd counting aims to count the number of people by
means of estimating the density distribution of the crowd
in a single image. It is a very useful computer vision tech-
nique to facilitate a variety of applications, including crowd
control, disaster management and public safety monitoring.
However, it is not a trivial task due to great challenges in
real-world situations caused by cluttered backgrounds and
non-uniform people scale within an image.

Tremendous algorithms (Zhang et al. 2016; Li, Zhang,
and Chen 2018; Jiang et al. 2019) have been proposed in the
literature for estimating the crowd density distribution. The
majority of them focused on addressing two problems when
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(a) Background noise (b) Scale variation

Figure 1: Illustrations of the problems of cluttered back-
grounds and varying scales of people. In (a), the right picture
depicts the estimated density map of the left image, where
backgrounds like the umbrella (in red box) could be mis-
takenly regarded as people in the density map and thus de-
crease the estimation accuracy. In (b), sizes of human heads
(in green boxes) vary greatly within the image due to their
different distances from the camera.

learning the mappings from image features to density dis-
tribution maps, i.e., 1) how to eliminate the impacts of clut-
tered backgrounds, and 2) how to deal with varying scales of
people within an image. Figure 1 illustrates both mentioned
problems. Specifically, in Figure 1(a), the right picture de-
picts the estimated density map of the left image, derived by
the MCNN model (Zhang et al. 2016). It can be noticed that
backgrounds, e.g., umbrellas, could be mistakenly regarded
as people on the density map, thus decreasing the estimation
accuracy. Meanwhile, as illustrated in Figure 1(b), sizes of
human heads can vary greatly within an image, because of
their different distances from the camera.

To eliminate noises caused by cluttered backgrounds, at-
tention mechanism is usually introduced to re-weigh fea-
tures or regions in terms of their probabilities of being the
crowds. Generally, additional training samples and param-
eters are employed to train standalone classifiers indicating
density levels (Sam, Surya, and Babu 2017) or head prob-
ability (Liu et al. 2019) as the metric to evaluate the im-
portance of different features/regions within an image, on
the basis of which, different weights are given to the fea-
tures/regions. However, standalone networks with complex
structures usually require millions of extra to-be-learned pa-
rameters, which can be a heavy burden for a real-life appli-
cation.
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By exploring the relationship between images and their
corresponding normalized shallow feature maps generated
by several baselines (Zhang et al. 2016; Boominathan,
Kruthiventi, and Babu 2016; Li, Zhang, and Chen 2018)
(Figure 2), we observe, for the first time, that backgrounds
like stairs, trees and buildings, tend to have significantly dif-
ferent responses from those of the human crowds. For exam-
ple, the backgrounds have stronger responses in Figure 2(a)
but weaker ones in Figure 2(b), whereas human crowds’ re-
actions are opposite (weaker responses in Figure 2(a) but
stronger ones in Figure 2(b)). This tells us that backgrounds
and human crowds are more separable on shallow-layer fea-
ture maps. An attention model based on shallow features has
potential to generate more accurate attention maps. There-
fore, instead of involving a sophisticated standalone atten-
tion model as previous works, we incorporate an attention
module in our feature extraction networks, which effectively
reuses the shallow features and enjoys less complex struc-
tures to diminish background noises.

Regarding the problem of varying scales of people within
an image, some works (Zhang et al. 2016; Deb and Ven-
tura 2018) adopted “multi-column” frameworks to extract
multi-scale information from images, where each branch ex-
tracts features of a specific scale by adopting filters with a
certain size. Others exploit some convolutional operations,
like dilated (Li, Zhang, and Chen 2018; Deb and Ventura
2018) and deformable convolution kernels (Liu et al. 2019;
Zou et al. 2018), to capture multi-scale information by ex-
panding the receptive field of filters. Yet most of them ex-
tracted features layer by layer, and thus the features of the
current layer may lose information of features in some pre-
ceding layers.

Actually, the most representative features of people across
different scales can appear in different layers of the feature
extraction networks. For example, the most representative
features of people in a smaller scale can probably be ex-
tracted in an earlier layer, while those of people in a larger
scale can be extracted in a later layer. Thus, it is vital to
keep information of features in all different layers. There-
fore, densely-connected structure that enables each layer to
process features from all preceding layers seems like an ap-
propriate structure, on which features corresponding to all
scales can be well preserved and better encoded to facilitate
the estimation of the crowd density.

Based on the observations above, we propose a new
method for crowd counting, termed Shallow feature based
Dense Attention Network (SDANet). SDANet consists of
three components, i.e., low-level feature extractor, high-level
feature encoder, and attention map generator. As mentioned
above, the attention map generator reduces the noises caused
by backgrounds via re-weighing specific regions with atten-
tion maps generated with shallow features. Moreover, multi-
scale information is well preserved via densely connecting
the features of different layers in the high-level feature en-
coder. Extensive experiments on benchmark datasets also
clearly demonstrate the superiority of SDANet.

Contributions of our work are summarized as follows:
• We observe, for the first time, that shallow features con-

tain distinguishable information between backgrounds

(a)

(b)

Figure 2: Images and their corresponding shallow feature
maps from several baselines. The shallow feature maps are
linearly normalized to [0,255] by their maximums, which
are shown as heat maps. It can be seen that the backgrounds
and the human crowds have significantly different responses
in (a) and (b).

and human crowds, which allows us to utilize a
lightweight network to generate even more accurate at-
tention maps.

• We propose to employ densely connected structures in
feature extraction/encoding networks, such that multi-
scale information in different layers can be well kept to
facilitate the estimation of the crowd density.

• We propose a novel crowd counting method termed
SDANet. And experiments conducted on three bench-
mark datasets show that SDANet achieves the state-of-
the-art performance for crowd counting.

Related Works

Over the last few years, researchers have attempted to ad-
dress the issue of crowd counting by density estimation with
a variety of approaches (Sindagi and Patel 2018), where a
mapping from image features to crowd density is learned
and then the counted number is the summation over an es-
timated density map. Existing density estimation methods
can be generally categorized as hand-crafted feature based
ones and deep feature based ones, where latter ones tend to
incorporate attention mechanism recently.

Hand-Crafted Feature based Methods

Early works usually extract hand-crafted features imply-
ing global image characteristics, such as local binary pat-
tern (LBP) and gray level co-occurrence matrices (GLCM),
and learn its mapping to the density by regression models,
ranging from linear ones to non-linear ones. Lempitsky et
al.(Lempitsky and Zisserman 2010) utilized linear models
to describe the mapping from image features to the den-
sity in a local region, which is applied in bacteria counting
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(c) AMG

Figure 3: (a) The architecture of SDANet. (b) The architecture of HFE. (c) The architecture of AMG.

and crowd counting with a relatively sparse density. Idress et
al.(Idrees et al. 2013) explored features from three sources,
i.e., Fourier, interest points and head detection combined
with their respective confidences to get counts at localized
patches and adopted a Markov Random Field (MRF) frame-
work to obtain an estimated count for the entire image.

Deep Feature based Methods

Inspired by the huge success of convolutional neu-
ral networks (CNN) in image classification (Krizhevsky,
Sutskever, and Hinton 2012), recently deep features have
been leveraged for density estimation. Owing to their su-
perior performance, deep learning based methods (Wang
et al. 2015; Zhang et al. 2016; Deb and Ventura 2018;
Li, Zhang, and Chen 2018; Hossain et al. 2019) quickly
dominate the research in crowd counting.

Zhang et al.(Zhang et al. 2016) proposed a multi-column
based architecture (MCNN), where each column adopts a fil-
ter with a certain size to extract features of the corresponding
scale. Instead of training all patches with the same paralleled
network, Sam et al.(Sam, Surya, and Babu 2017) proposed
a switching CNN that adaptively selects the optimal branch
for an image patch according to its density. A classifier in-
dicating patch density is trained beforehand and empowers
density estimation networks by providing prior knowledge.
Recently, dilated kernels have also been involved in multi-
column frameworks to further deliver larger reception fields
(Li, Zhang, and Chen 2018).

Attention mechanism in crowd counting Recently, at-
tention mechanism is widely incorporated to enhance the
crowd counting performance. The idea is to roughly ap-

proximate the regions in the image where people are likely
appeared. To do so, an attention model is learned to as-
sign larger weights to pixels/regions of being human crowds.
(Liu et al. 2018; Kang and Chan 2018; Hossain et al. 2019;
Liu et al. 2019; Zhu et al. 2019).

ADCrowdNet (Liu et al. 2019) employs an attention map
generator trained on additional negative samples and then
applies it to detect crowd regions in the images. Hossain
et al.(Hossain et al. 2019) proposed a Scale-Aware Atten-
tion Networks (SAAN), which utilizes attention mechanism
to re-weigh multi-scale features learned by multi-columns.
SFANet (Zhu et al. 2019) generates an attention map with
the same size of the image by an additional CNN branch,
where each pixel indicates its probability of being the head.
Alternatively, DecideNet (Liu et al. 2018) uses a learned at-
tention map to combine the two maps generated by the re-
gression branch and the detection branch.

The proposed SDANet in this paper is also a deep feature
based method with attention mechanism incorporated. How-
ever, different from previous works that learned a standalone
attention model with sophisticated structures, by observing
that shallow features can have strong signals to distinguish
backgrounds and human crowds, we propose to use shal-
low features to build an attention module in SDANet with
simpler network structures. Moreover, instead of encoding
multi-scale features layer by layer that has the risk of losing
feature information of some preceding layers, we propose
to densely connect outputs of each layer in SDANet, so that
multi-scale features of different layers can be better kept and
encoded to facilitate the estimation of crowd density.
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Figure 4: The architecture of the second module of LFE.
(D)Conv represents the convolution layer with dilated ker-
nels.

Our Approach

The framework of SDANet is illustrated schematically in
Figure 3(a), which mainly consists of three components:
Low-level Feature Extractor (LFE), High-level Feature En-
coder (HFE), and Attention Map Generator (AMG).

Low-level Feature Extractor (LFE)

Most existing methods use separate branches with different
size filters to extract multi-scale information from images,
which may introduce redundant structures into the pipeline
(Li, Zhang, and Chen 2018). Inspired by the success of
SANet (Cao et al. 2018) in feature extraction, the Inception
module (Szegedy et al. 2015), a tool to process visual in-
formation of various scales, is used as the shallow feature
extractor of SDANet.

Specifically, LFE consist of two feature extractor blocks
and each of them contains four branches with filter sizes of
1 × 1, 3 × 3, 5 × 5, and 7 × 7 respectively, as shown in
Figure 4. Each branch focuses on a certain scale and gener-
ates the same number of feature maps. To further enhance
model’s capability to capture multiple scales information,
dilated convolution, which can enlarge the receptive field
without involving extra computations, is employed in the
second block. Additionally, expect for the 1×1 branch, there
is an extra 1× 1 filter added before the other three branches
to reduce the feature channels by half. Moreover, ReLU ac-
tivate function is applied after each convolution layer in LFE
to avoid negative values.

As a departure from most of works, we remove the pool-
ing layers between the inception modules to avoid the reduc-
tion in spatial resolution caused by the pooling operation and
the additional complexity brought by subsequent deconvo-
lutional layers. Considering the trade-off between resource
consumption and model accuracy, we instead adopt dilated
filters with the dilated rate of 2 to replace the pooling layer
(Chen et al. 2018). Features from different branches, cover-
ing multi-scale appearance of people in images, are subse-
quently concatenated together for the feature encoding.

High-level Feature Encoder (HFE)

The structure of HFE is shown in Figure 3(b), which takes
shallow features extracted from the second block of LFE as
input. While encoding features, such a structure can well
preserve multi-scale information.

HFE is compose of two blocks, where each block consists
of three convolution layers with the filter size of 3 × 3 fol-
lowed by a ReLU activate function. Particularly, the input
of a specific convolution layer Flj (j = 1, 2, 3) is the con-
catenation of all outputs from preceding layers, i.e., Flj =
concat(F1, ..., Flj−1

), which are indicated by different col-
ors in the figure. The dense connection between layers en-
sures that multi-scale information in the shallow features can
be preserved. At the bottom of each block, a 1× 1 convolu-
tion layer is applied to integrate the concatenated hierarchi-
cal features and reduce feature channels to the same dimen-
sion as the input, which is indicated by Conv1×1. Therefore,
the output of the i-th block in HFE FLi

can be obtained by,
FLi

= FLi−1
+ Conv1×1[concat(Fl1 , Fl2 , Fl3)]. (1)

Finally, the input of each block is added onto the output,
which will in turn become the input of the next block.

On top of that, to further preserve multi-scale informa-
tion, shallow features obtained by low-level feature extrac-
tor (FM2 ) and the output of each block in HFE (FLi ) are
concatenated together, which is Fg in Eq. (2), as the input
for the feature integration in global level. In the integration,
a 1× 1 and a 3× 3 convolution layer are employed to inte-
grate high-level features in a global level, which is indicated
by G in Eq. (2). Henceforth, the output of HFE can be cal-
culated by,

FG = G(Fg). (2)
Rather than widening the network, the proposed densely

connected structure takes full advantage of features from all
layers and well preserves the scale information in shallow
features, which efficiently eliminates the problem of scale
variation. In the paper, the dimension of FM2

and FG are
both set to 64 according to the extensive experiments, which
is less than most of the state-of-the-art methods.

Attention Map Generator (AMG)

In light of the observation that backgrounds on shallow
feature maps tend to have significantly different responses,
compared to the crowds, we generate attention maps based
on low-level features only. Specifically, AMG takes shallow
features from the first block of LFE (FM1

) as input and gen-
erates pixel-wise attention maps (Fatt) on which crowd re-
gions are always ”brighter” than the backgrounds, i.e.,

Fatt = AMG(FM1
). (3)

Here, two convolution layers followed by a sigmoid func-
tion, as shown in Figure 3(c), are used to ensure that all
the computed weights are within the range of 0 to 1. Latt,
the summation of pixel-wise Euclidean distance between re-
fined feature maps Fref and ground-truth density map D,
conveys the supervision information to the learning pro-
cess of the attention module. Subsequently, the attention
map Fatt is employed to refine the encoded feature FG by
element-wise multiply (⊗) as follows,

Fref = FG ⊗ Fatt, (4)
where Fref is taken as the input of the last two convolution
layers whose filter sizes are 1 × 1 and 3 × 3 respectively to
generate the high-quality density map D̂ under the supervi-
sion of a combination of several losses.
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Figure 5: Qualitative results on ShanghaiTech Dataset. For each group of images, pictures in the middle and on the right are
corresponding ground truth and estimated density map of the image on the left, where the number on the top right corner
indicates the ground truth (GT) and the estimated number of people (PRE) respectively. It can be seen that SDANet has a strong
adaptability to different density levels with a error less than 4%.

Table 1: Comparison results of different methods on the
UCF CC 50 dataset.

Method MAE MSE
FHSc+MRF 468.0 590.3

MCNN 377.6 509.1
Switching-CNN 318.1 439.2

SANet (Cao et al. 2018) 258.4 334.9
CSRNet (Li, Zhang, and Chen 2018) 266.1 397.5

SAAN (Hossain et al. 2019) 271.6 391.0
SDANet (ours) 227.6 316.4

Loss Function

The density maps generator in the SDANet adopts a coarse-
to-fine strategy. Concretely, the loss is composed of two
terms: Latt and Lmap in the Figure 3(a) respectively.

Firstly, a convolution layer with the filter size of 3 × 3
is employed to learn a coarse mapping between combined
feature maps (Fref ) from the HFE and AMG to the density
maps, and meanwhile, prepare coarse density maps for fur-
ther process. In order to supervise the learning process of
attention maps and the generation of coarse density maps,
Latt, measuring the Euclidean distance between coarse den-
sity maps (D̂C) and the ground-truth density map D, is
adopted. Explicitly, Latt is defined as,

Latt =
1

M

∑
M

||D̂C −D||22, (5)

where M is the dimension of D̂C , and is set to 32 throughout
all experiments.

Subsequently, two convolution layers with filter sizes of
3 × 3 and 1 × 1 are involved to further refine the quality of
coarse density map, thus enhancing the accuracy of crowd
counting. Noticeably, the ReLU activation function is em-
ployed after convolution layers to avoid appearance of neg-
ative values. Last, Lmap is introduced to supervise the re-
finement process and generate the fine-grained density map
(D̂F ). Concretely, Lmap is composed by an Euclidean loss

(LE) and a Counting loss (LC), which are somewhat com-
plementary to each other. Initially, LE is adopted to improve
the quality of density map by minimizing the Euclidean dis-
tance between the fine-grained density map and the ground-
truth, which can be described by,

LE =
1

N

N∑
i=1

||D̂Fi
−Di||22, (6)

where D̂Fi and Di are estimated density map and ground
truth of the i-th image Ii, respectively, and N refers to the
number of training samples. However, sharp edges and out-
liers in coarse density maps might be blurry in fine-grained
maps. To remedy this situation, LC is added as a compensa-
tion, which is defined by,

LC =
1

N

N∑
i=1

(
Ci − Ĉi

Ci + ε
)2, (7)

where Ĉi and Ci represent, respectively, the estimated num-
ber of people and the ground truth of the i-th training sam-
ple, which are the integral over all pixels p on the cor-
responding density map, i.e., Ci =

∑
p Di. Additionally,

ε = 0.0001 is set to avoid the denominator being zero. LC

not only accelerates the convergence process but improves
the counting accuracy. In summary, Lmap is expressed as,

Lmap = LE + αLC , (8)

where α = 0.01 is the empirical weight for LC .
Therefore, the overall loss of SDANet is,

Loss = Latt + Lmap. (9)

Adam (Kingma and Ba 2014) algorithm with the initial
learning rate of 1e-4 is adopted to optimize the SDANet.

Experiments

Evaluation Metrics

Similar to the previous work, the mean absolute error (MAE)
and mean squared error (MSE) metrics are used for algo-

11769



Table 2: Comparison results of different methods on 5 scenes (S1∼S5) in the WorldExpo′10 dataset in terms of MAE.

Method S1 S2 S3 S4 S5 Average
Cross-scene (Zhang et al. 2015) 9.8 14.1 14.3 22.2 3.7 12.9

MCNN (Zhang et al. 2016) 3.4 20.6 12.9 13.0 8.1 11.6
Switching-CNN (Sam, Surya, and Babu 2017) 4.4 15.7 10.0 11.0 5.9 9.4

SANet (Cao et al. 2018) 2.6 13.2 9.0 13.3 3.0 8.2
CSRNet (Li, Zhang, and Chen 2018) 2.9 11.5 8.6 16.6 3.4 8.6
SaCNN (Zhang, Shi, and Chen 2018) 2.6 13.5 10.6 12.5 3.3 8.5

SDANet (ours) 2.0 14.3 12.5 9.5 2.5 8.1

rithm evaluation, which are defined as:

MAE =
1

N

N∑
i=1

∣∣∣Ci − Ĉi

∣∣∣ , (10)

MSE =

√√√√ 1

N

N∑
i=1

(
Ci − Ĉi

)2

, (11)

where N represents the total number of images involved in
testing, Ci and Ĉi are the ground truth and estimated number
of people for the i-th image respectively.

Datasets

In the experiment, three crowd counting benchmark
datasets, the UCF CC 50 dataset, the WorldExpo′10 dataset,
and the ShanghaiTech dataset, are used to evaluate the per-
formance of SDANet, each being elaborated below.

UCF CC 50 dataset (Idrees et al. 2013) contains 50 im-
ages with various perspectives and resolutions. The number
of annotated people per image ranges from 94 to 4543 with
an average number of 1280, which is a challenging dataset
in the field of crowd counting.

WorldExpo′10 dataset (Zhang et al. 2015) consists of
3980 annotated frames from 1132 video sequences captured
by 108 different surveillance cameras, which is divided into
a training set (3380 frames) and a test set (600 frames).
The region of interest (ROI) is also provided for the whole
dataset.

ShanghaiTech dataset (Zhang et al. 2016) consists of
1198 annotated images with a total amount of 330,165 an-
notated people. The dataset contains two parts: Part A and
Part B. Part A includes 482 internet images with highly con-
gested scenes while Part B includes 716 images with rela-
tively sparse crowd scenes taken from streets in Shanghai.

Experiment Settings

Taking the computation cost and data variety into account,
we adopted the patch-wise training strategy. Following the
previous work (Zhang et al. 2016), 9 patches, where each
patch is 1/4 of the image size, are cropped from each im-
age to generate the training set. The first four patches con-
tain four quarters of the image without overlapping while
the other five patches are randomly cropped from the image.
During the test, non-overlapping patches are cropped from

each image in the test set and compute individually. The final
density map of the image is the concatenation of its patches’
predictions. Additionally, images are further augmented by
randomly horizontal flipping.

Besides, we generated the ground-truth from head annota-
tions given by datasets (Zhang et al. 2016). Each head anno-
tation is blurred with a Gaussian kernel, whose summation
is normalized to one and the number of people is the integral
over the density map.

The implementation of SDANet is based on the PyTorch
framework. As we train the whole network from scratch, all
parameters are randomly initialized by Gaussian distribution
with mean of zero and standard deviation of 0.01.

Results and Analysis

On each dataset, we follow the standard protocol to generate
ground truth and compare our method with the state-of-the-
art algorithms. Furthermore, we conduct extensive ablation
experiments on the WorldExpo′10 dataset to analyze the ef-
fects of different components in SDANet. We explain exper-
imental settings and show results as follows.

Experimental Evaluations

Quantitative results On the UCF CC 50 dataset, we per-
formed a 5-fold cross-validation to evaluate the proposed
method as suggested by (Idrees et al. 2013). Table. 1 shows
the comparison of the results of our method with contem-
porary state-of-the-art works on UCF CC 50 dataset, which
illustrates the proposed SDANet is able to deal with crowd
scenes with varying densities and achieves a superior per-
formance over other approaches. Specifically, our method
achieves 11.91% MAE reduction and 5.52% MSE reduc-
tion. This clearly demonstrates that SDANet is super robust
against the scale and density changes.

The comparison results of SDANet with contemporary
state-of-the-art work on the 5 scenes (S1∼S5) in the test set
of WorldExpo′10 dataset are shown in Table. 2. The chal-
lenging test set is a combination of different densities, rang-
ing from sparse to dense, and various backgrounds includ-
ing squares, stations, etc. From the result, it can be seen that
the proposed SDANet scores the best in Scene1, Scene4 and
Scene5 as well as the best accuracy on average, which again
proves the strong adaptability of SDANet against different
scenarios with varying density levels.

On the ShanghaiTech dataset, SDANet is evaluated and
compared with other recent works and results are shown
in Table. 3. Again, the proposed method attains the lowest
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Table 3: Comparison results of different methods on the ShanghaiTech dataset.

Method Part A Part B
MAE MSE MAE MSE

Cross-scene 181.8 277.7 32.0 49.8
MCNN 110.2 173.2 26.4 41.3

Switching-CNN 90.4 135.0 21.6 33.4
CP-CNN (Sindagi and Patel 2017) 73.6 106.4 20.1 30.1

DecideNet (Liu et al. 2018) - - 21.5 32.0
ACSCP (Shen et al. 2018) 75.7 102.7 17.2 27.4

CSRNet 68.2 115.0 10.6 16.0
SANet 67.0 104.5 8.4 13.6

TEDnet (Jiang et al. 2019) 64.2 109.1 8.2 12.8
SDANet (ours) 63.6 101.8 7.8 10.2

Table 4: Ablation study results on the WorldExpo′10 dataset.

Models MAE MSE
SDANet without AMG 12.89 15.28

SDANet without Dense Structure 10.14 13.25
SDANet without Refinement 9.64 13.19

SDANet 8.10 12.90

MAE and MSE as well. Specifically, our approach outper-
forms the latest work TEDnet by 4.87% and 20.31% over
the MAE and MSE metric respectively on the ShanghaiTech
Part B dataset.

Visualization results We firstly analyzed the attention
maps generated by AMG and obtained some statistical re-
sults. Taking the attention map of Figure 2(a) as an example,
the average attention value of crowd region (center-right) is
0.874 (GT=1) while that for background region (left corner)
is 0.253 (GT=0), which proves that the attention maps re-
duce the background noise by arranging background regions
with relatively low weights.

To demonstrate the performance of SDANet on scenes
with cluttered backgrounds and varying head sizes, we
choose, in particular, the ShanghaiTech dataset for estimated
density maps visualization, which are shown in Figure 5. For
each group of images, pictures in the middle and on the right
are corresponding ground truth and estimated density map of
the image on the left, where the number on the top right cor-
ner indicates the ground truth (GT) and the estimated num-
ber of people (PRE) respectively. Here, we display the esti-
mated density maps of various scenarios, ranging from 103
persons to 1067 persons, to demonstrate that the proposed
SDANet performs decently in both dense and sparse scenes.
It can be seen that SDANet has a strong adaptability to dif-
ferent density levels with a error less than 4%.

Ablation Study

To validate the effectiveness of key components in the
SDANet, we also conducted ablation studies on the
WorldExpo′10 dataset which is more realistic and challeng-
ing due to the fact that all images are acquired from real
surveillance scenes.

Effectiveness of AMG We explore the performance im-
provement offered by AMG by removing the attention mod-
ule from the SDANet and compare it with the network with
AMG. The result is indicated by SDANet without AMG in
Table. 4. There are 37% increase in MAE and 15% increase
in MSE if AMG is dropped out, clearly demonstrating that
AMG has made a significant contribution in diminishing
background noise.

Effectiveness of densely-connected structure In order to
shed light on how the densely connecting structure preserves
multi-scale features, we conduct an experiment on the same
dataset without the dense connection between layers and the
result is indicated by SDANet without Dense Structure in Ta-
ble. 4. It can be seen that the removal of the dense connection
between layers leads to an over 20.1% drop in the count-
ing accuracy, which means that densely-connected structure
reinforces the diversity of features and improve the perfor-
mance of SDANet.

Effectiveness of estimation refined layers Furthermore,
we study the refinement ability of the last two layers and the
loss term Lmap. We screen out the last two convolution lay-
ers in SDANet and train the network with solely Latt, whose
result is indicated by SDANet without Refinement in Table. 4.
Without the refinement layers, there is a nearly 16% decline
in the MAE. Therefore, the coarse-to-fine strategy involved
in the loss function can further enhance the performance of
the network.

Conclusion

In this paper, we have presented a brand-new Shallow fea-
ture based Dense Attention Network (SDANet) aiming to
automatically count the number of people in an image.
Our SDANet is characterized by: 1) diminishing the im-
pact of backgrounds via involving a lightweight attention
model, and 2) capturing multi-scale information via densely
connecting hierarchical image features. Extensive experi-
ments have been carried out and the results on three bench-
mark datasets validate the adaptability and robustness of the
SDANet when varying crowd scenes from sparse to dense.
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