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Abstract

Navigating and understanding the real world remains a key
challenge in machine learning and inspires a great variety
of research in areas such as language grounding, planning,
navigation and computer vision. We propose an instruction-
following task that requires all of the above, and which com-
bines the practicality of simulated environments with the
challenges of ambiguous, noisy real world data. StreetNav
is built on top of Google Street View and provides visu-
ally accurate environments representing real places. Agents
are given driving instructions which they must learn to in-
terpret in order to successfully navigate in this environment.
Since humans equipped with driving instructions can read-
ily navigate in previously unseen cities, we set a high bar
and test our trained agents for similar cognitive capabilities.
Although deep reinforcement learning (RL) methods are fre-
quently evaluated only on data that closely follow the training
distribution, our dataset extends to multiple cities and has a
clean train/test separation. This allows for thorough testing of
generalisation ability. This paper presents the StreetNav en-
vironment and tasks, models that establish strong baselines,
and extensive analysis of the task and the trained agents.

1 Introduction
How do you get to Carnegie Hall?

— Practice, practice, practice...
The joke hits home for musicians and performers, but the

rest of us expect actual directions. For humans, asking for di-
rections and subsequently following those directions to suc-
cessfully negotiate a new and unfamiliar environment comes
naturally. Unfortunately, transferring the experience of arti-
ficial agents from known to unknown environments remains
a key obstacle in deep reinforcement learning (RL). For hu-
mans, transfer is frequently achieved through the common
medium of language. This is particularly noticeable in var-
ious navigational tasks, where access to textual directions
can greatly simplify the challenge of traversing a new city.
This is made possible by our ability to integrate visual infor-
mation and language and to use this to inform our actions in
an inherently ambiguous world.

Recent progress in the development of RL agents that can
act in increasingly more sophisticated environments (Ander-
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Figure 1: A route from our dataset with visual observation,
instruction text and thumbnails. The agent must learn to in-
terpret the text and thumbnails and navigate to the goal lo-
cation.

son et al. 2018; Hill et al. 2017; Mirowski et al. 2018) sup-
ports the hope that such an understanding might be possible
to develop within virtual agents in the near future. That said,
the question of transfer and grounding requires more real-
istic circumstances in order to be fully investigated. While
proofs of concept may be demonstrated in simulated, virtual
environments, it is important to consider the transfer prob-
lem also on real-world data at scale, where training and test
environments may radically differ in many ways, such as vi-
sual appearance or topology of the map.

We propose a challenging new suite of RL environments
termed StreetNav, based on Google Street View, which con-
sists of natural images of real-world places with realistic
connections between them. These environments are pack-
aged together with Google Maps-based driving instructions
to allow for a number of tasks that resemble the human ex-
perience of following directions to navigate a city and reach
a destination (see Figure 1).

Successful agents need to integrate inputs coming from
various sources that lead to optimal navigational decisions
under realistic ambiguities, and then apply those behaviours
when evaluated in previously unseen areas. StreetNav pro-
vides a natural separation between different neighbourhoods
and cities so that such transfer can be evaluated under in-
creasingly challenging circumstances. Concretely, we train
agents in New York City and then evaluate them in an un-
seen region of the city, in an altogether new city (Pittsburgh),
as well as on larger numbers of instructions than encoun-
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tered during training. We describe a number of approaches
that establish strong baselines on this problem.

2 Related Work

Reinforcement Learning for Navigation End-to-end
RL-based approaches to navigation jointly learn a repre-
sentation of the environment (mapping) together with a
suitable sequence of actions (planning). These research ef-
forts have utilised synthetic 3D environments such as Viz-
Doom (Kempka et al. 2016), DeepMind Lab (Beattie et al.
2016), HoME (Brodeur et al. 2017), House 3D (Wu et al.
2018), Chalet (Yan et al. 2018), or AI2-THOR (Kolve et
al. 2017). The challenge of generalisation to unseen test
scenarios has been highlighted in Dhiman et al. (2018),
and partially addressed by generating maps of the environ-
ment (Parisotto et al. 2018; Zhang et al. 2017).

More visually realistic environments such as Matterport
Room-to-Room (Chang et al. 2017), AdobeIndoorNav (Mo
et al. 2018), Stanford 2D-3D-S (Armeni et al. 2016), Scan-
Net (Dai et al. 2017), Gibson Env (Xia et al. 2018), and
MINOS (Savva et al. 2017) have recently introduced to
represent indoor scenes, some augmented with navigational
instructions. Notably, Anderson et al. (2018) have trained
agents with supervised ‘student / teacher forcing’ (requiring
privileged access to ground-truth actions at training time)
to navigate in virtual houses. We implement this method
as a baseline for comparison. Mirowski et al. (2018) have
trained deep RL agents in large-scale environments based
on Google Street View and studied the transfer of naviga-
tion skills by doing limited, modular retraining in new cities,
with optional adaption using aerial images (Li et al. 2019).

Language, Perception, and Actions Humans acquire ba-
sic linguistic concepts through communication about, and
interaction within their physical environment, e.g. by as-
signing words to visual observations (Gopnik and Meltzoff
1984; Hoff 2013). The challenge of associating symbols to
observations is often referred to as the symbol grounding
problem (Harnad 1990); it has been studied using symbolic
approaches such as semantic parsers (Tellex et al. 2011;
Krishnamurthy and Kollar 2013; Matuszek et al. 2012;
Malinowski and Fritz 2014), and, more recently, deep learn-
ing (Kong et al. 2014; Malinowski et al. 2018; Rohrbach et
al. 2017; Johnson, Karpathy, and Fei-Fei 2016; Park et al.
2018; Teney et al. 2017). Grounding has also been studied
in the context of actions, but with the most of the focus on
synthetic, small-scale environments (Hermann et al. 2017;
Hill et al. 2017; Chaplot et al. 2017; Shah et al. 2018;
Yan et al. 2018; Das et al. 2018).

In terms of more realistic environments, Anderson et
al. (2018) and Fried et al. (2018) consider the problem of
following textual instructions in Matterport 3D. de Vries et
al. (2018) use navigation instructions and New York im-
agery, but rely on categorical annotation of nearby land-
marks rather than visual observations and use a smaller
dataset of 500 panoramas (ours is two orders of magnitude
larger). Recently, Cirik, Zhang, and Baldridge (2018) and
Chen et al. (2019) have also proposed larger datasets of driv-

ing instructions grounded in Street View imagery. Our work
shares a similar motivation to (Chen et al. 2019), with key
differences being that their agents observed both their head-
ing and by how much to turn to reach the next street/edge in
the graph, whereas ours need to learn what is a traversable
direction purely from vision and multiple instructions. See
Table 1 for a comparison.

3 The StreetNav Suite

We design navigation environments in the StreetNav suite
by extending the dataset and environment available from
StreetLearn1 through the addition of driving instructions
from Google Maps by randomly sampling start and goal po-
sitions.

We designate geographically separated training, vali-
dation and testing environments. Specifically, we reserve
Lower Manhattan in New York City for training and use
parts of Midtown for validation. Agents are evaluated both
in-domain (a separate area of upper NYC), as well as out-of-
domain (Pittsburgh). We make the described environments,
data and tasks available at http://streetlearn.cc.

Each environment R is an undirected, connected graph
R “ tV, Eu, with a set of nodes V and connecting edges E .
Each node vi P V is a tuple containing a 3600 panoramic
image pi and a location ci (given by latitude and longitude).
An edge eij P E means that node vi is accessible from vj
and vice versa. Each environment has a set of associated
routes which are defined by a start and goal node, and a list
of textual instructions and thumbnail images which repre-
sent directions to waypoints leading from start to goal. Suc-
cess is determined by the agent reaching the destination de-
scribed in those instructions within the allotted time frame.
This problem requires from agents to understand the given
instructions, determine which instruction is applicable at any
point in time, and correctly follow it given the current con-
text. Dataset statistics are in Table 2.

3.1 Driving Directions

By using driving instructions from Google Maps we make a
conscious trade-off between realism and scale. The language
obtained is synthetic, but it is used by millions of people to
see, hear, and follow instructions every day, which we feel
justifies its inclusion in this ‘real-world’ problem setting.
We believe the problem of grounding such a language is a
sensible step to solve before attempting the same with nat-
ural language; similar trends can be seen in the visual ques-
tion answering community (Hudson and Manning 2019;
Johnson et al. 2017). Figure 1 shows a few examples of our
driving directions, with more in the appendix or easily found
by using Google Maps for directions.

3.2 Agent Interface

To capture pragmatics of navigation, we model the agent’s
observations using Google Street View first-person view in-
terface combined with instructions from Google Maps. We

1An open-source environment built with Google Street View for
navigation research: http://streetlearn.cc
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Dataset/Paper #routes Isteps Actions Type Nat. Lang. Public Disjoint Split

StreetNav 613,000 125 Discretised Outdoor
Room-to-Rooma 7,200 6 Discretised Indoor
Touchdownb 9,300 35 Simplified Outdoor
Formulaic Mapsc 74,000 39 Simplified Outdoor

Table 1: Comparison of real world navigation datasets. a: (Anderson et al. 2018), b: (Chen et al. 2019), c: (Cirik, Zhang, and
Baldridge 2018). Steps denotes the average number of actions required to successfully complete a route. Room-to-room and
StreetNav use more complex (Discretised) action space than Touchdown and Formulaic Maps (Simplified, where agents always
face a valid trajectory and cannot waste an action going against a wall or sidewalk). Nat. Lang. denotes whether natural language
instructions are used. Disjoint split refers to different environments that can be used in train and test times.

Environment #routes Avg: len steps instrs |instr|
NYC train 580,415 1,194 128 4.0 7.1
NYC valid 10,000 1,184 125 3.7 8.1
NYC test 10,000 1,180 123 3.8 7.9
NYC larger 3,923 1,667 174 6.5 8.1
Pittsburgh test 8,474 998 106 3.8 6.6

Table 2: Dataset statistics: the number of routes, their av-
erage length in meters and in environment steps, the aver-
age number of instructions per route and average number of
words per instruction.

therefore mimick the experience of a user following writ-
ten navigation instructions. At each time step, the agent re-
ceives an observation and a list of instructions with match-
ing thumbnails. Observations and thumbnails are RGB im-
ages taken from Google Street View, with the observation
image representing the agent’s field of view from the cur-
rent location and pose. The instructions and thumbnails are
drawn from the Google Directions API and describe a route
between two points. n instructions are matched with n ` 1
thumbnails, as both the initial start and the final goal are in-
cluded in the list of locations represented by a thumbnail.

RGB images are 600 crops from the panoramic image that
are scaled to 84-by-84 pixels. We have five actions: move
forward, slow (˘100), and fast rotation (˘300). While mov-
ing forward, the agent takes the graph edge that is within its
viewing cone and most closely aligned to the agent’s current
orientation; the lack of a suitable graph edge results in a NO-
OP. Therefore, the first challenge for our agent is to learn to
follow a street without going onto the sidewalk. The episode
ends automatically if the agent reaches the last waypoint or
after 1000 time steps. This, combined with the difficult ex-
ploration problem (the agent could end up kilometres away
from the goal) forces the agent to plan trajectories.

Table 1 lists differences and similarities between our and
related, publicly available datasets with realistic visuals and
topologies, namely Room-to-Room (Anderson et al. 2018),
Touchdown (Chen et al. 2019) and Formulaic Maps (Cirik,
Zhang, and Baldridge 2018).

3.3 Variants of the StreetNav Task

To examine how an agent might learn to follow visually
grounded navigation directions, we propose three task vari-
ants, with the increasing difficulty. They share the same un-
derlying structure, but differ in how directions are presented
(step-by-step, or all at once) and whether any feedback is
given to agents when reaching intermediate waypoints.

Task 1: List + Goal Reward The LIST + GOAL REWARD
task mimics the human experience of following printed di-
rections, with access to the complete set of instructions
and referential images but without any incremental feed-
back as to whether one is still on the right track. Formally,
at each step the agent is given as input a list of directions
d “ xd1, d2, . . . dN y where di “ tιi, tsi , tei u (instruction,
start and end thumbnail).2 ιi “ xιi,1, ιi,2, . . . ιi,M y where
ιi,j is a single word token. tsi , t

e
i are thumbnails in R

3ˆ84ˆ84.
The number of directions N varies per route and the number
of words M varies according to the instruction.

An agent begins each episode in an initial state s0 “
xv0, θ0y at the start node and heading associated with the
given route, and is given an RGB image x0 corresponding
to that state. The goal is defined as the final node of the
route, G. The agent must generate a sequence of actions
xs0, a0, s1, a1, . . . sT y, with each action at leading to a mod-
ified state st`1 and corresponding observation xt`1.

The episode ends either when a maximal number of ac-
tions is reached T ą Tmax, or when the agent reaches
G. The goal reward Rg is awarded if the agent reaches
the final goal node G associated with the given route, i.e.
rt “ Rg if vt “ G. This is a hard RL task, with a sparse
reward.

Task 2: List + Incremental Reward This task uses the
same presentation of instructions as the previous task (the
full list is given at every step), however we mitigate the chal-
lenge of exploration by increasing the reward density. In ad-
dition to the goal reward, a smaller reward Rw is awarded,
as the input for the agent, for the successful execution of in-
dividual directions, meaning that the agent is given positive
feedback when reaching any of the waypoints for the first
time: rt “ xRw if vt P Vw ^@iăt vt ‰ viy`xRg if vt “ Gy
where Vw denotes the set of all the waypoints in the given

2Note that tei “ tsi`1 for all 1 ă i ă N
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route. This formula simplifies learning of when to switch
from one instruction to another.

Task 3: Step-by-Step In the simplest variant, agents are
provided with a single instruction at a time, automatically
switching to the next instruction whenever a waypoint it
reached, similar to the human experience of following direc-
tions given by GPS. Thereby two challenges that the agents
have to solve in the previous tasks—‘when to switch’ and
‘what instruction to switch to’—are removed. As in the List
+ Incremental Reward task, smaller rewards are given as
waypoints are reached.

3.4 Training and Evaluation

Reward shaping can be used to simplify exploration and to
make learning more efficient. We use early rewards within a
fixed radius at each waypoint and the goal, meaning that an
agent will receive fractional rewards once it is within a cer-
tain distance (50m). Reward shaping is only used for train-
ing, and never during evaluation. We report the percentage of
goals reached by a trained agent in an environment (training,
validation or test). Agents are evaluated for 1 million steps
with a 1,000 step limit per route, which is sufficiently small
to avoid any success by random exploration of the map. We
do not consider waypoint rewards as a partial success, and
we give a score 1 only if the final goal is reached.

4 Architectures

We approach the challenge of grounded navigation with a
deep reinforcement learning framework and formalise the
learning problem as a Markov Decision Process (MDP). Let
us consider an environment R P S from the suite of the envi-
ronments S. Our MDP is a tuple consisting of states that be-
long to the environment, i.e. S P R, together with the possi-
ble directions D “ tdlul P E , and possible actions A. Each
direction d is a sequence of instructions, and pairs of thumb-
nails, i.e. d “ xd1, . . . , dny where di “ tιi, tsi , tei u (instruc-
tion, starting thumbnail, ending thumbnail). The length of d
varies between the episodes. Each state s P S is associated
with a real location, and has coordinates c and observation
x which is an RGB image of the location. Transitions from
state to state are limited to rotations and movements to new
locations that are allowed by the edges in the connectivity
graph. The reward function, R : S ŚD Ñ R, depends on
the current state and the final goal dg .

Our objective, as typical in the RL setting, is to
learn a policy π that maximises the expected reward
ErRs. In this work, we use a variant of the REIN-
FORCE (Williams 1992) advantage actor-critic algorithm
Eπ rřt ∇θ log πpat|st,d; θqpRt ´ Vπpstqqs, where Rt “řT´t

j“0 γjrt`j , rrtst is a binary vector with one at t where
the final destination is achieved within the 1-sample Monte
Carlo estimate of the return, γ is a discounting factor, and T
is the episode length.

In the following, we describe methods that transform in-
put signals into vector representations and are combined
with a recurrent network to learn the optimal policy π˚ “
argmaxπ EπrRs via gradient descent. We also describe sev-

eral baseline architectures: simple adaptations of existing
RL agents as well as ablations of our proposed architectures.

4.1 Input-to-Multimodal Representation

We use an LSTM to transform the text instructions into
a vector. We also use CNNs to transform RGB images,
both observations and thumbnails, into vectors. Using deep
learning architectures to transform raw inputs into a uni-
fied vector-based representation has been found to be very
effective. Since observations and thumbnails come from
the same source, we share the weights of the CNNs. Let
ι “ LSTMθ1pιq, x “ CNNθ2pxq, ts “ CNNθ2ptsq, and
te “ CNNθ2pteq be vector representations of the instruc-
tion, observation, start-, and end-thumbnail respectively.

We use a three-layer MLP, with 256 units per layer, whose
input is a concatenation of these vectors representing sig-
nals, and whose output is their merged representation. We
use this module twice, 1) to embed instructions and the cor-
responding thumbnails i “ MLPpιi, tsi , tei q, 2) to embed this
output with the current observation, i.e. p “ MLPpx, iq. The
output of the second module is input to the policy network.
This module is shown to be important in our case.

4.2 Previous Reward and Action

Optionally, we input the previous action and obtained
reward to the policy network. In that case the pol-
icy should formally be written as πpat|st, at´1,d; θq or
πpat|st, at´1,Rt´1,d; θq. Note that adding the previous re-
ward is only relevant when intermediate rewards are given
for reaching waypoints, in which case the reward signal can
be explicitly or implicitly used to determine which instruc-
tion to execute next, and that this architectural choice is un-
available in LIST + GOAL REWARD (Section 3.3).

4.3 Non-attentional Architectures

We introduce two architectures which are derived from the
IMPALA agent and adapted to work in this setting (Espe-
holt et al. 2018). The agent does not use attention but rather
observes all the instructions and thumbnails at every time
step. To accomplish this, we either concatenate the represen-
tations of all inputs (AllConcat) or first sum over all instruc-
tions and then concatenate this summed representation with
the observation (AllSum), before passing the result of this
operation as input to the multi-modal embedding modules.

With this type of the architecture, the agent does not ex-
plicitly decide ‘when to switch’ or ‘what to switch to’, but
rather relies on the policy network to learn a suitable strategy
to use all the instructions. When explicitly cued by the way-
point reward as an input signal, the decision when to move
to the next instruction should be reasonably trivial to learn,
while more problematic when trained or tested without that
signal. Note that the concatenated model will not be able to
transfer to larger numbers of instructions.

4.4 Attentional Architectures

We also consider architectures that use attention to select an
instruction to follow as well as deciding whether to switch to
a new instruction. We hypothesise that by factoring this out
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Figure 2: Architecture of an agent with attention. Feature
representations are computed for the observation and for all
directions, using a CNN and a LSTM. The attention mod-
ule selects a thumbnail and passes it and the associated text
instruction to the first multimodal MLP, whose output is con-
catenated with the image features and fed through the sec-
ond MLP before being input to the policy LSTM. The policy
LSTM outputs a policy π and a value function V . Colours
point to components that share weights.

of the policy network, the agent will be capable of general-
ising to a larger number of instructions, while the smaller,
specialised components could allow for easier training.

First, we design an agent that implements the switching
logic with a hard attention mechanism, since selecting only
one instruction at a time seems appropriate for the given
task. Hard attention is often modelled as a discrete decision
processes and as such difficult to incorporate with gradient-
based optimisation. We side-step this issue by conditioning
the hard attention choice on an observation(x) / thumbnail
(ti) similarity metric, and then selecting the most suitable
instruction via a generalisation of the max-pooling operator,
i.e., ti˚ “ argmaxti

rsoftmaxp´||ti ´ x||2qs. This results in
a sub-differentiable model which can then be combined with
other gradient-based components (Malinowski et al. 2018).

We implement the ‘when to switch’ logic as follows:
when the environment signals the reaching of waypoints to
the model, switching becomes a function of that. However,
when this is not the case – as in LIST + GOAL REWARD–
we use the thumbnail-observation representation similarity
to determine whether to switch:

it “
"
i˚, if softmaxp´||ti˚ ´ x||2q ą τ

it´1, otherwise

where the threshold parameter τ is tuned on the validation
set. As this component is not trained explicitly, we can in

practice train agents by manually switching at waypoint sig-
nals and only use the threshold-based switching architecture
during evaluation.

Finally, we also adapted a ‘soft’ attention mechanism
from Yang et al. (2016) that re-weights the representations
of instructions instead of selecting just one instruction. We
use hi “ Wa tanh pWxx ` Wttiq to compute the unnor-
malised attention weights. Here, x, ti P R

d are image and
i-th thumbnail representations respectively. The normalised
weights pi “ softmaxphiq are used to weight the instruc-
tions and thumbnails, i.e. ι̂ “ ř

i piιi, t̂ “ ř
i piti, with the

resultant representation being fed to the policy module.

4.5 Baselines and Ablations

To better understand the environment and the complexity of
the problem, we have conducted experiments with various
baseline agents.

Random and Forward We start with two extremely sim-
ple baselines. An agent choosing a random action at any
point, and another agent always selecting the forward ac-
tion. These baselines are mainly to verify that the environ-
ment is sufficiently complex to prevent success by random
exploration over the available number of steps.

No-Directions We train and evaluate an agent that only
takes observations x as input and ignores the instructions,
thus establishing a baseline agent that, presumably, will do
little more than memorise the training data or perhaps dis-
cover exploitable regularities in the environment. We com-
pare NoDir, which uses the waypoint reward signal when
available, and NoSignal which does not. The former natu-
rally has more strategies available to exploit the game.

No-Text and No-Thumbnails To establish the relative
importance of text instructions and waypoint thumbnails we
further consider two variants of the agent where one of these
inputs is removed. The NoThumb agent is built on top of
the no-attention architecture (Section 4.3), while the NoText
version is based on the attentional architecture (Section 4.4).

Student and Teacher Forcing on Ground-truth Labels
In addition to our main experiments, we also consider a sim-
ple, supervised baseline. Here, we use multinomial regres-
sion of each predicted action from the agent’s policy to the
ground-truth action, similarly to Anderson et al. (2018). For
every waypoint, we compute the shortest path from the cur-
rent agent location, and derive the optimal action sequence
(turns and forward movements) from this. In Student forc-
ing, the agent samples an action according to the learnt pol-
icy, whereas in Teacher forcing, the agent always executes
the ground-truth action. Note that the forcing is only done
during training, not evaluation. In contrast to our main ex-
periments with RL agents, this baseline requires access to
ground-truth actions at each time step, and it may overfit
more easily.
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5 Experiments and Results

Here we describe the training and evaluation of the proposed
models on different tasks outlined in Section 3, followed by
analysis of the results in Section 5.2.

5.1 Experimental Setup

Training, Validation, and Test In all experiments, four
agents are trained for a maximum of 1 billion steps3. We
use an asynchronous actor-critic framework with importance
sampling weights (Espeholt et al. 2018). We choose the best
performing agent through evaluation on the validation envi-
ronment, and report mean and standard deviation over three
independent runs on the test environments.

Curriculum Training As the StreetNav suite is composed
of tasks of increasing complexity, we can use these as a natu-
ral curriculum. We first train on the STEP-BY-STEP task, and
fine-tune the same agent by continuing to train on the LIST
+ INCREMENTAL REWARD task. Agents that take waypoint
reward signals as input are then evaluated on the LIST +
INCREMENTAL REWARD task, while those that do not are
evaluated on the LIST + GOAL REWARD task.

Visual and Language Features We train our visual en-
coder end-to-end together with the whole architecture us-
ing 2-layer CNNs. We choose the same visual architecture
as Mirowski et al. (2018) for the sake of the comparison
to prior work, and since this design decision is computa-
tionally efficient. In two alternative setups we use 2048 di-
mensional visual features from the second-to-last layer of
a ResNet (He et al. 2016) pre-trained on ImageNet (Rus-
sakovsky et al. 2015) or on the Places dataset (Zhou et al.
2017). However, we do not observe improved results with
the pre-trained features. In fact, the learnt ones consistently
yield better results. We assume that owing to the end-to-end
training and large amount of data provided, agents can learn
visual representations better tailored to the task at hand than
can be achieved with the pre-trained features. We report our
results with learnt visual representations only.

We encode the text instructions using a word-level LSTM.
We have experimented with learnt and pre-trained word em-
beddings and settled on Glove embeddings (Pennington,
Socher, and Manning 2014).

Stochastic MDP To reduce the effect of memorisation,
we inject stochasticity into the MDP during training. With
a small probability p “ 0.001 the agent cannot execute its
‘move forward’ action.

5.2 Results and Analysis

Table 3 presents the STEP-BY-STEP task, where ‘what to
switch to’ and ‘when to switch’ are abstracted from the
agents. Table 4 contains the LIST + INCREMENTAL RE-
WARD results and contains the main ablation study of this

3We randomly sample learning rates (1e´4 ď λ ď 2.5e´4)
and entropy (5e´4 ď σ ď 5e´3) for each training run.

Model Training Valid. Test

NYC Pittsburgh

Random 0.8˘0.2 0.8˘0.1 0.8˘0.2 1.3˘0.4

Forward 0.7˘0.3 0.2˘0.2 0.9˘0.1 0.6˘0.1

NoSignal 3.5˘0.2 1.9˘0.6 3.5˘0.3 5.2˘0.6

NoDir 57.0˘1.1 51.6˘0.9 41.5˘1.2 15.9˘1.3

NoText 84.5˘0.7 58.1˘0.5 47.1˘0.7 16.9˘1.4

NoThumb 90.7˘0.3 67.3˘0.9 66.1˘0.9 38.1˘1.7

Student 94.8˘0.9 4.6˘1.4 5.5˘0.9 0.9˘0.2

Teacher 95.0˘0.6 22.9˘2.7 23.9˘1.9 8.6˘0.9

All-*` 89.6˘0.9 69.8˘0.4 69.3˘0.9 44.5˘1.1

Hard-A` 83.5˘1.0 74.8˘0.6 72.7˘0.5 46.6˘0.8

Soft-A` 89.3˘0.2 67.5˘1.4 66.7˘1.1 37.2˘0.6

Table 3: STEP-BY-STEP (instructions are given one at a time
as each waypoint is reached): Percentage of goals reached.
Higher is better. ˘ denotes standard deviation over 3 in-
dependent runs of the agent. `: Note that AllConcat and
AllSum are equivalent in this setup. Further, the attention
components of Soft-A and Hard-A are not used here, but re-
sults differ from the All-* agents due to the additional multi-
modal projections used in those models.

work. Finally, Table 6 shows results on the most challenging
LIST + GOAL REWARD task.

The level of difficulty between the three task variants is
apparent from the relative scores. While agents reach the
goal over 50% of the time in the STEP-BY-STEP task as well
as in New York for the LIST + INCREMENTAL REWARD
task, this number drops significantly when considering the
LIST + GOAL REWARD task. Below we discuss key find-
ings and patterns that warrant further analysis.

NoDir and Waypoint Signalling Even though the NoDir
agent has no access to instructions, it performs surprisingly
well; on some tasks even on par with other agents. Detailed
analysis of the agent behaviour shows that it achieves this
performance through a clever strategy: It changes the cur-
rent direction based on the previous reward given to the
agent (signalling a waypoint has been reached). Next, it cir-
cles around at the nearest intersection, determines the direc-
tion of traffic, and turns into the valid direction. Since many
streets in New York are one-way, this strategy works surpris-
ingly well. However, when trained and evaluated without the
access to waypoint signal, it fails as expected (NoSignal in
Table 3, NoDir in Table 6).

Non- vs. Attentional Architectures As expected, in the
STEP-BY-STEP task performance of non-attentional agents
is on par with the attentional ones (Table 3). However, in
LIST + INCREMENTAL REWARD the AllConcat agent has
the upper hand over other models (Table 4). Unlike Hard-A,
this agent can simultaneously read all available instructions,
however, at the cost of possessing a larger number of weights
and lack of generalisation to a different number of instruc-
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Model Training Valid. Test

NYC Pittsburgh

NoText 53.5˘1.2 43.5˘0.5 32.6˘2.1 15.8˘1.7

NoThumb 69.7˘0.7 58.7˘2.1 52.4˘0.4 33.9˘2.2

AllConcat 64.5˘0.6 61.3˘0.9 53.6˘1.1 33.5˘0.2

AllSum 59.9˘0.5 51.1˘1.1 41.6˘1.0 19.1˘1.4

AllSum tuned 84.4˘0.4 57.7˘0.8 48.3˘0.9 22.1˘0.9

Hard-A 55.4˘1.8 51.1˘1.1 42.6˘0.7 24.0˘0.5

Hard-A tuned 62.5˘1.1 57.9˘0.5 42.9˘0.6 22.5˘2.0

Soft-A 74.8˘0.4 52.2˘1.0 43.2˘2.2 23.0˘0.9

Soft-A tuned 82.7˘0.1 57.9˘2.1 44.1˘1.8 26.6˘0.5

Table 4: LIST + INCREMENTAL REWARD: Percentage of
goals reached. Higher is better. ˘ denotes standard deviation
over 3 independent runs of the agent. tuned denotes agents
that were first trained on STEP-BY-STEP and subsequently
directly on the LIST + INCREMENTAL REWARD task.

Model Number of instructions

2 3 4 5 6 7 8

NoDir 72.3 59.4 49.2 44.1 31.5 28.0 11.9
NoSignal 5.4 1.4 2.2 0.7 0.1 0.1 0.0

AllSum 68.0 57.9 43.8 37.1 24.0 20.9 9.5
Hard-A 66.7 56.7 48.7 40.4 29.5 29.1 9.2
Hard-A tuned 71.9 62.9 52.1 45.7 32.8 33.8 15.1
Soft-A 75.4 62.0 46.7 41.7 29.7 26.2 7.3
Soft-A tuned 72.4 62.7 54.8 46.1 31.0 28.2 12.3

Table 5: Comparison of results on the LIST + INCREMEN-
TAL REWARD task with a larger number of instructions than
encountered during training. Number is percentage of goals
reached.

tions. That is, Hard-A and AllSum have roughly N times
fewer parameters than AllConcat, where N is the number of
instructions.

We observe that the Soft-A agent quite closely mirrors the
performance of the AllSum agent, and indeed the attention
weights suggest that the agent pursues a similar strategy by
mixing together all available instructions at a time. There-
fore we drop this architecture from further consideration.

As an architectural choice, AllConcat is limited. Unlike
the other models it cannot generalise to a larger number of
instructions (Table 5). The same agent also fails on the hard-
est task, LIST + GOAL REWARD (Table 6).

On the LIST + GOAL REWARD, where reward is only
available at the goal, Hard-A outperforms the other mod-
els, mirroring its superior performance when increasing
the number of instructions. This underlines our motivation
for this architecture in decoupling the instruction following
from the instruction selection aspect of the problem.

Supervised vs RL agents While the majority of our
agents use RL, Student and Teacher are trained with a dense

Model Training Valid. Test

NYC Pittsburgh

NoDir 3.5˘0.2 1.9˘0.6 3.5˘0.3 5.2˘0.6

AllConcat 23.0˘0.8 7.4˘0.2 11.3˘1.8 9.3˘0.8

AllSum step 6.7˘1.1 4.1˘0.3 5.6˘0.1 7.2˘0.4

AllSum list 13.2˘2.0 3.2˘0.3 6.7˘1.1 5.3˘1.2

Hard-A step 18.5˘1.3 13.8˘1.3 17.3˘1.2 12.1˘1.1

Hard-A list 21.9˘2.8 14.2˘0.4 16.9˘1.2 10.0˘1.3

Table 6: LIST + GOAL REWARD: Percentage of goals
reached. Higher is better. ˘ denotes standard deviation over
3 independent runs of the agent. Switching thresholds for
the attention agent are tuned on the validation data. step and
list denote whether the agents were trained in the STEP-BY-
STEP or LIST + INCREMENTAL REWARD setting.

signal of supervision (Section 4.5). The results in Table 3
show that the supervised agents can fit the training distribu-
tion, but end up generalising poorly. We attribute this lack of
robustness to the highly supervised nature of their training,
where the agents are never explicitly exposed to the conse-
quences of their actions during training and hence never de-
viate from the gold path. Moreover, the signal of supervision
for Student turns the agent whenever it makes a mistake, and
in our setting each error is catastrophic.

Transfer We evaluate the transfer capabilities of our
agents in a number of ways. First, by training, validating and
testing the agents in different parts of Manhattan, as well as
testing the agents in Pittsburgh. The RL agents all transfer
reasonably well within Manhattan and to a lesser extent to
Pittsburgh. The drop in performance there can mostly be at-
tributed both to different visual features across the two cities
and a more complex map (see Figure 3).

As discussed earlier, we also investigated the performance
of our agents on a task with longer lists of directions than
observed during training (Table 5). The declining numbers
highlight the cost of error propagation as a function of the
number of directions.

NoText and NoThumb As agents have access to both
thumbnail images and written instructions to guide them to
their goal, it is interesting to compare the performance of
two agents that only use either one of these two inputs. The
NoThumb agent consistently performs better than the No-
Text agent, which suggests that language is the key compo-
nent of the instructions. Also note how NoThumb, which is
based on the AllConcat architecture, effectively matches that
agent’s performance across all tasks, suggesting that thumb-
nails can largely be ignored for the success of the agents. No-
Text outperforms the directionless baseline (NoDir), mean-
ing that the thumbnails by themselves also carry some valu-
able information.

11779



Figure 3: Left: Map of Manhattan with training, validation
and test areas, overlaid with the heat map of goal locations
reached (blue) or missed (red) on training and validation
data, using a Hard-A agent trained on the List + Incremental
Reward task. Bottom right: Pittsburgh area used for testing.
Top right: trajectories with color-coded attention index pre-
dicted by a Hard-A agent with a learned switcher and trained
on the List + Goal Reward task; we show successful trajec-
tories on validation (a and b) and on training (c and d) data,
as well as two trajectories with missed goal (e and f).

6 Conclusions and Future Work

Generalisation poses a critical challenge to deep RL ap-
proaches to navigation, but we believe that the common
medium of language can act as a bridge to enable strong
transfer in novel environments. We have presented a new
language grounding and navigation task that uses realistic
images of real places, together with real (if not natural)
language-based directions for this purpose.

Aside from the StreetNav environment and related anal-
yses, we have proposed a number of models that can act
as strong baselines on the task. The hard-attention mecha-
nism that we have employed is just one instantiation of a
more general idea which can be further explored. Other nat-
ural extensions to the models presented here include adding
OCR to the vision module and developing more structured
representations of the agents’ state. Given the gap between
reported and desired agent performance here, we acknowl-
edge that much work is still left to be done.
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