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Abstract

Subtracting the backgrounds from the video frames is an im-
portant step for many video analysis applications. Assum-
ing that the backgrounds are low-rank and the foregrounds
are sparse, the robust principle component analysis (RPCA)-
based methods have shown promising results. However, the
RPCA-based methods suffered from the scale issue, i.e., the
�1-sparsity regularizer fails to model the varying sparsity of
the moving objects. While several efforts have been made
to address this issue with advanced sparse models, previous
methods cannot fully exploit the spatial-temporal correlations
among the foregrounds. In this paper, we proposed a novel
spatial-temporal Gaussian scale mixture (STGSM) model
for foreground estimation. In the proposed STGSM model,
a temporal consistent constraint is imposed over the esti-
mated foregrounds through nonzero-means Gaussian mod-
els. Specifically, the estimates of the foregrounds obtained in
the previous frame are used as the prior for these of the cur-
rent frame, and nonzero means Gaussian scale mixture mod-
els (GSM) are developed. To better characterize the temporal
correlations, the optical flow has been used to model the cor-
respondences between foreground pixels in adjacent frames.
The spatial correlations have also been exploited by consid-
ering that local correlated pixels should be characterized by
the same STGSM model, leading to further performance im-
provements. Experimental results on real video datasets show
that the proposed method performs comparably or even better
than current state-of-the-art background subtraction methods.

1 Introduction
Estimating the foregrounds in a video sequence is an impor-
tant step for many video analysis applications, e.g., video
surveillance (Liu, Wu, and Lin 2015), vehicle navigation
(Unzueta et al. 2012), and object detection (Zhou, Yang, and
Yu 2013). As a fundamental research problem, foreground
estimation (also called background subtraction) has attracted
increasing attentions in the past decade. Due to the dynamic
backgrounds, camera motion, illumination change, and ir-
regular objects motion issues, separating video frames into
the foreground and the background components is rather
challenging.
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Numerous background subtraction methods have been
proposed. Early strategies for this task tried to classify the
background and foreground pixels by learning pixel clas-
sification models, such as the Gaussian Mixture Models
(GMM) ((Stauffer and Grimson 1999);(Chen et al. 2018)),
local binary pattern (LBP) models (Heikkilä and Pietikäinen
2006), and the neural network models (Gemignani and
Rozza 2016). Despite the efficiency of these pixel-based
methods, they have limitations in exploiting global video
structures, e.g., the spatial-temporal correlations among the
backgrounds, leading to degraded performance for complex
scenarios. Based on the assumption that the backgrounds
are low-rank and the foregrounds are sparse, the robust
principle component analysis (RPCA) model (Candès et al.
2011) has been used for background subtraction ((Xin et
al. 2015);(Gao, Cheong, and Wang 2014);(Cao, Yang, and
Guo 2016)). By exploiting the global video structures and
the sparse prior, the RPCA-based methods have achieved
promising results.

Despite their effectiveness, the RPCA-based methods suf-
fered from two major issues, i.e., the scale issue and the ig-
norance of the dependencies among the foreground pixels.
The scale issue is due to the fact that the fixed �1-norm spar-
sity regularizer fails to characterize the varying sparsity of
the moving objects of different sizes. To address this issue,
the RPCA-based methods consisting of two-pass processes
have been proposed ((Gao, Cheong, and Wang 2014);(Liu et
al. 2015);(Liu et al. 2018)). The supports of the underlying
foregrounds were initially estimated in the first pass. Based
on the detected supports, the structured sparsity was then ex-
ploited with tuned regularization parameters in the second
pass for better performance. In (Yong et al. 2018), Hong et
al. proposed a mixture of Gaussian (MoG) model to model
the noise and the foregrounds. By updating the model pa-
rameters frame by frame, the MoG-based method performs
better than classic RPCA-based methods. However, it cannot
fully exploit the spatial correlations between the foreground
pixels. To exploit the spatial correlations of the foreground
pixels, in (Ebadi and Lzquierdo 2018) tree-structured spar-
sity regularizer was proposed. However, the temporal cor-
relations has not been exploited in (Ebadi and Lzquierdo
2018). More recently, Gaussian scale mixture (GSM) mod-
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els have also been proposed to model the foregrounds (Shi
et al. 2018), where each foreground pixel was modeled as
a point-wise product of a hidden positive multiplier and
a Gaussian variable. The hidden positive multipliers were
jointly estimated along with the foregrounds with a struc-
tured sparse prior. Despite its effectiveness, it relied on ac-
curate segmentation of the video frames and also ignored the
temporal dependence between adjacent frames.

In this paper, we propose a spatial-temporal Gaussian
scale mixture (STGSM) model for foreground estimation.
Different from (Shi et al. 2018), nonzero-mean GSM mod-
els are proposed, where the foregrounds estimated in pre-
vious frames are used as a prior for the estimates of the
current frame. To better model the temporal correlations,
optical flow is used to model the correspondences between
the foreground pixels in adjacent frames. Moreover, instead
of using the sparse hyper prior as in (Shi et al. 2018), we
propose a nonzero-mean Gaussian prior for the hidden pos-
itive multipliers, using the estimates of the hidden posi-
tive multipliers estimated in the previous frame. The max-
imum a posterior (MAP) estimation problem with the pro-
posed STGSM model can be efficiently solved via alternat-
ing minimizations. Experimental results on the real video
datasets show that the proposed method performs compara-
ble or even better than current state-of-the-art background
subtraction methods.

2 Related Works

In this section, we briefly review the works related to the
proposed STGSM model for background subtraction, ie., the
RPCA-based methods and the Gaussian scale mixture model
based methods for image restoration.

2.1 RPCA-based background subtraction
methods

Let X = [x1, · · · ,xT ] ∈ R
N×T denote the input video

frames, where xi ∈ R
N is the vectorized t-th frame, and

L = [l1, · · · , lT ] ∈ R
N×T and S = [s1, · · · , sT ] ∈ R

N×T

are the background and foreground components, respec-
tively. Assuming that the backgrounds of the video frames
are low-rank and the foregrounds are sparse, the RPCA
model attacked the background subtraction problem by solv-
ing the following objective function

(L,S) = argmin
L,S

||X −L−S||22+ η||L||∗+λ||S||1, (1)

where || · ||∗ denotes the nuclear norm. The above opti-
mization problem can be solved by alternatively optimizing
L and S. Though the RPCA method is effective for back-
ground subtration, it suffers from the scale issue, i.e., the �1-
sparsity regularizer with fixed parameter λ cannot well char-
acterize the varying sparsity of the moving objects of differ-
ent sizes. To address this issue, two-passes RPCA methods
has been proposed (Gao, Cheong, and Wang 2014);(Liu et
al. 2015), where the supports of the moving objects were first
detected and the regularization parameters were set based on
the detected moving objects. However, these methods were
heuristic and their performances depended on the accuracy
of the initial estimates of the foregrounds. In ((Yong et al.

2018)) the mixture of Gaussian model has been proposed
to model the foregrounds. By jointly learning the model
parameters and the foregrounds, it performed better than
the RPCA method. However, the spatial correlations among
the foreground pixels have not been considered. In (Ebadi
and Lzquierdo 2018) the tree-structured sparsity model has
been used to exploit the spatial correlations among fore-
ground pixels. To group the correlated pixels, a super-pixel
based segmentation method was used. A structured sparsity
norm was then imposed over the group pixels. However, this
method ignored the strong temporal correlations among the
foreground pixels of adjacent frames.

2.2 GSM models for sparse signal modeling

As an effective statistical modeling tool, GSM models have
shown promising results for image restoration (Portilla et
al. 2003);(Dong et al. 2015). In (Portilla et al. 2003), the
GSM models were used to model the wavelet coefficients,
and the wavelet coefficients were recovered by a Bayesian
least-square estimator. In (Dong et al. 2015), with the hyper
prior (i.e., the Jeffrey’s prior) Dong et al. proposed a GSM
model-based image sparse coding method, where both the
multipliers and the sparse coefficients were jointly estimated
from the degraded image.

Recently, the zero-mean GSM model has also been em-
ployed to model the foregrounds (Shi et al. 2018). The spa-
tial correlations of the foreground pixels have also been con-
sidered by imposing the same sparse prior over the pixels be-
long to the same homogeneous regions. Though promising
results have been obtained in (Shi et al. 2018), the rich tem-
poral correlations have not been exploited. In this paper, we
propose a spatial-temporal GSM (STGSM) model to char-
acterize both the spatial and temporal correlations among
the foregrounds of adjacent frames. Specifically, the fore-
grounds pixels estimated in previous frames are used as a
prior in the proposed STGSM model, leading to significant
improvements of the background subtraction performance.

3 Spatial-temporal GSM model for

foreground estimation

In this section, we first briefly review the GSM model for
foreground modeling (Shi et al. 2018) and then present the
proposed spatial-temporal GSM model for foreground esti-
mation.

3.1 GSM modeling of foregrounds

In GSM modeling, each foreground pixel st,i is expressed
as a point-wise product of a positive scalar multiplier and
a Gaussian variable, i.e., st,i = θt,iαt,i, where st,i is
the i-th entry of st, and st,i is modeled with a zero-
mean Gaussian distribution with standard deviation θt,i.
A hyper prior p(θt,i) is further used to model θt,i. Then,
the GSM model of st,i can be expressed as, p(st,i) =∫∞
0

p(st,i|θt,i)p(θt,i)dθt,i, which in general cannot be ex-
pressed in an analytical form for most choices of p(θ). Thus,
the joint estimation of st and θt are considered in the maxi-
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mum a posterior (MAP) estimator by maximizing

log p(S,Θ,L|X) ∝ log p(X|S,L) + log p(S,Θ,L)

= log p(X|S,L) + log p(L) + log p(S|Θ) + log p(Θ),
(2)

where p(X|S,L) is the Gaussian likelihood term and Θ =
[θ1, · · · ,θT ] ∈ R

N×T denote the matrix of the positive
multipliers. In (Shi et al. 2018) the Jeffrey’s prior p(θt,i) =

1
θt,i+ε was used to model θt,i, where ε is a small constant
for numerical stability, and the prior of L was modeled as
p(L) ∝ exp(−η||L||∗). By assuming S are i.i.d., substitut-
ing p(θt,i) and p(st,i|θt,i) into Eq. (2) leads to the following
objective function

(A,Θ,L) = argmin
A,Θ,L

||X −L−Θ�A||2F + 2ησ2
n||L||∗

+ σ2
n||A||2F + 4σ2

n

T∑
t=1

N∑
i=1

log(θt,i + ε),

(3)

where Θ � A = S, A = [α1, · · · ,αT ] ∈ R
N×T denote

the matrix of the Gaussian variables αt,i,� is the point-wise
product, and σ2

n is the variance of the Gaussian noise. By
jointly estimating Θ and A, the scale issue of the RPCA-
based methods can be well addressed, leading to signifi-
cantly improvements.

3.2 Temporal GSM model for foreground
estimation

In (Shi et al. 2018) the foreground images st were estimated
independently, ignoring the temporal correlations. To ad-
dress this issue, we propose temporal GSM models for fore-
ground estimation. Instead of modeling st with zero-mean
Gaussian functions, we model st with nonzero-mean Gaus-
sian functions, as

p(st|θt) =
N∏

i=1

p(st,i|θt,i) =
N∏

i=1

1√
2πθt,i

exp(− (st,i − μt,i)
2

2θ2t,i
),

(4)
where μt,i is the mean of st,i. Considering the strong corre-
lations between st−1 and st, t = 2, · · · , T , we propose to
compute μt from the estimate of st−1, as μt = f(ŝt−1),
where ŝt−1 denotes an estimate of st−1 and f(·) is a prede-
fined function that will be discussed later. For the hyper prior
p(θt), instead of using the Jeffrey’s prior we also propose to
model θt with nonzero-mean Gaussian functions as

p(θt) =

N∏
i=1

p(θt,i) =

N∏
i=1

1√
2πδ

exp(− (θt,i − νt,i)
2

2δ2
),

(5)
where νt denotes the expectations of θt and δ denotes the
variance of θt,i, which is fixed for all θt,i. Similar to st, we
also compute νt from the estimate of θt−1 of the previous
frame, as νt = f(θ̂t−1). By substituting p(st) and p(θt)
defined in Eqs. (4) and (5) into the MAP estimator of Eq.
(2), we can obtain a novel objective function, as follows

(A,Θ,L) = argmin
A,Θ,L

||X −L−Θ�A||2F + 2ησ2
n||L||∗

+ σ2
n

T∑
t=1

||αt − βt||2 + 2σ2
n

T∑
t=1

log(θt + ε)

+
σ2
n

δ

T∑
t=1

||θt − νt||22,
(6)

where we have used S = Θ�A, and βt denotes the mean
of αt that is computed as βt,i = μt,i/(θ̂t,i + ε), wherein
θ̂t,i denotes an estimate of θt,i. In our implementation, we
recursively calculate βt,i using the estimate of θt,i in each
iteration.

3.3 Estimation of the expectations

As described in the above subsection, we use the estimates
of st−1 and θt−1 of the previous frame to compute the
means of st and θt, as μt = f(ŝt−1) and νt = f(θ̂t−1).
The simplest function of f(·) is the identity function, i.e.,
μt = ŝt−1 and νt = θ̂t−1. However, due to the motions be-
tween the objects in the adjacent frames, the identity func-
tion is inaccurate. To compensate the motions, we use the
optical flow to warp the previously estimated foregrounds
for alignment and set μt and νt as

μt = wt,t−1(ŝt−1), νt = wt,t−1(θ̂t−1), (7)
where wt,t−1 denotes the operator that warps an image using
the optical flow estimated between xt−1 and xt. For the first
frame, we set μ1 = 0 and ν1 = 0 and use the Jeffrey’s prior
for θ1 for the first frame. For efficiency, in this work we use
the total variation based optical flow estimation method (Liu
et al. 2008) to compute the optical flow.

3.4 Spatial-temporal GSM model for foreground
estimation

To exploit the spatial correlations among the neighboring
pixels, we try to group the foreground pixels st into K
groups using a pixel grouping method and characterize the
pixels of the same group by the same GSM model. The
Gaussian prior exploiting the spatial-temporal correlations
can then be expressed as

p(st|θt) =
K∏

k=1

∏
j∈Gk

1√
2πθt,k

exp(− (st,j − μ̃t,k)
2

2θ2t,k
), (8)

where Gt,k denotes the k-th pixel group of the t-th frame,
(μ̃t,k, θt,k) are the mean and variance of the pixels of Gt,k.
Accordingly, the structured hyper prior of θt can be formu-
lated as

p(θt) =
K∏

k=1

1√
2πδ

exp(− (θt,k − ν̃t,k)
2

2δ2
). (9)

The expectations μ̃t,k and ν̃t,k for Gt,k are computed as

μ̃t,k =
1

|Gt,k|
∑

j∈Gt,k

μt,j , ν̃t,k =
1

|Gt,k|
∑

j∈Gt,k

νt,j , (10)
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where |Gt,k| denotes the number of pixels in Gt,k.
A simple pixel grouping method is to divide the im-

age into non-overlapped blocks. A better pixel grouping
method can be obtained by a segmentation method, e.g.,
the superpixel-based method. For simplicity, here each fore-
ground image is divided into many non-overlapped blocks
(in our implementation 5 × 5 blocks were adopted). Then,
the proposed spatial-temporal GSM (STGSM) model based
foreground estimation method can be obtained by substitut-
ing Eqs. (8) and (9) into the MAP estimator of Eq. (2), as

(A,Θ,L) = argmin
A,Θ,L

T∑
t=1

K∑
k=1

∑
j∈Gt,k

(xt,j − lt,j − θt,kαt,j)
2

+ 2ησ2
n||L||∗ + σ2

n

T∑
t=1

K∑
k=1

∑
j∈Gt,k

(αt,j − β̃t,k)
2

+ 2σ2
n

T∑
t=1

K∑
k=1

|Gt,k| log(θt,k + ε)

+
σ2
n

δ

T∑
t=1

K∑
k=1

|Gt,k|(θt,k − ν̃t,k)
2,

(11)

where β̃t,k = μ̃t,k/(θ̂t,k + ε), wherein θ̂t,k denotes an esti-
mate of θt,k that is recursively updated in each iteration.

4 Optimization Algorithm

The proposed objective function of Eq. (11) can be solved
by alternatively solving two subproblems, i.e., the S-
subproblem and L-subproblem, as will be described as fol-
lows.

4.1 The S-subproblem

For fixed L, S can be updated by solving a sequence of the
following optimization problems

(αt,θt) = argmin
αt,θt

K∑

k=1

∑

j∈Gt,k

(rt,j − θt,kαt,j)
2

+ σ2
n

K∑

k=1

∑

j∈Gt,k

(αt,j − β̃t,k)
2 +

σ2
n

δ

K∑

k=1

|Gt,k|(θt,k − ν̃t,k)
2

+ 2σ2
n

K∑

k=1

|Gt,k| log(θt,k + ε), t = 1, · · · , T,

(12)

where rt,j = xt,j − lt,j . The above optimization problem
can be solved by alternatively updating θt and αt.

The update of θt. For fixed αt, θt can be updated by
minimizing

θt = argmin
θt

K∑

k=1

∑

j∈Gt,k

(rt,j − θt,kαt,j)
2

+ 2σ2
n

K∑

k=1

|Gt,k| log(θt,k + ε) +
σ2
n

δ

K∑

k=1

|Gt,k|(θt,k − ν̃t,k)
2

(13)

Since each θt,k is independent, solving the above equation
equals to solving a sequence of scalar optimization prob-
lems, as

θt,k = argmin
θt,k

1

|Gt,k|
∑

j∈Gt,k

(rt,j − θt,kαt,j)
2

+ 2σ2
n log(θt,k + ε) +

σ2
n

δ
(θt,k − ν̃t,k)

2,

(14)

which can be further re-written as
θt,k =argmin

θt,k

aθ2t,k + 2bθt,k + 2c log(θt,k + ε) + d,

s. t. θt,k ≥ 0,
(15)

wherein d denotes a constant independent on θt,k, a, b, and
c are given by

a =
1

|Gt,k|
∑

j∈Gt,k

α2
t,j +

σ2
n

δ
,

b = −( 1

|Gt,k|
∑

j∈Gt,k

rt,jαt,j +
σ2
n

δ
ν̃t,k),

c = σ2
n.

(16)

To solve Eq.(15), we take f(θt,k)
dθt,k

= 0 and a closed-form so-
lution can be derived, where f(θt,k) denotes the right hand
side of Eq. (15). The solution to Eq. (15) can then be ob-
tained as

θt,k =

{
0, if (b+ aε)2 − 4a(c+ bε) < 0
minθt,k{f(0), f(θ∗)}, otherwise (17)

where θ∗ is given by

θ∗ =
−(b+ aε)±√

(b+ aε)2 − 4a(c+ bε)

2a
. (18)

The update of αt. For fixed θt, αt can be updated by
minimizing

min
αt

K∑
k=1

∑
j∈Gt,k

(rt,j−θt,kαt,j)
2+σ2

n

K∑
k=1

∑
j∈Gt,k

(αt,j−β̃t,k)
2,

(19)
which can be easily solved in a closed-form, i.e.,

αt = (Λ�
t Λ+ σ2

nI)
−1(Λ�

t rt + σ2
nβ̃t), (20)

where Λt = diag(θki) is a diagonal matrix, ki denotes the
ki-th group that the i-th foreground pixel belongs to. Since
the matrix to be inverted is diagonal, Eq. (20) can be com-
puted efficiently.

4.2 The L-subproblem

With fixed S, the background component L can be updated
by solving

L = argmin
L
||X − S −L||2F + 2ησ2

n||L||∗, (21)

which can be solved by a singular value thresholding (SVT)
operator (Cai, Candès, and Shen 2010). However, the com-
putational complexity of SVT is very high, as the singu-
lar value decomposition (SVD) has to be performed on the
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entire matrix L. Instead, we employ the stochastic opti-
mization method (Feng, Xu, and Yan 2013) to solve the L-
subproblem, and reexpress the nuclear-norm as

||L||∗ = inf
D∈RN×r,Z∈RT×r

{1
2
(||D||2F + ||Z||2F )

s. t. L = DZ�},
(22)

where L is factorized into a product of two matrixes, i.e.,
L = DZ, and r denotes the up bound of the rank of L. D
is treated as the bases of a low-dimensional space and Z the
representation coefficients. Then, the L-subproblem can be
reformulated as

(D, zt) = argmin
D,zt

T∑
t=1

{||xt −Dzt − st||22 + ησ2
n||zt||22}

+ ησ2
n||D||2F ,

(23)

where zt is the t-th row of Z.
The update of zt. With a fixed D, zt can be updated by

minimizing

zt = argmin
zt

||xt −Dzt − st||22 + ησ2
n||zt||22, (24)

which admits a closed-form solution

zt = (D�D + ησ2
nI)

−1D�(xt − st). (25)

The update of D. Similar to (Shi et al. 2018), we use
the online learning method of (Feng, Xu, and Yan 2013) to
update D. With an estimate of zt, the objective function for
updating D in the t-th iteration can be defined as

D(t) = argmin
D

1

t

t∑
i=1

1

2
||xi −Dzi − si||2F +

ησ2
n

2t
||D||2F ,

(26)
which can be re-written as

D(t) = argmin
D

1

2
Tr[D�(At + ησ2

nI)D]− Tr(D�Bt),

(27)
where At and Bt are computed via

At ← At−1 + ztz
�
t ,

Bt ← Bt−1 + (xt − st)z
�
t ,

(28)

where A0 = 0 and B0 = 0. Note that Eq. (27) can be
efficiently solved by using the block-coordinate descent with
warm restarts (Bertsekas 1999). Specifically, each column of
D can be updated individually while keeping other columns
fixed, as

d
(t+1)
i ← d

(t)
i +

1

Ãi,i

(bi −D(t)ãi), (29)

where di denotes the i-th column of D, Ã = At+ησ2
nI , bi

and ãi are the i-th column vectors of Bt and Ã, respectively.
The bilateral random projections method of (Zhou and Tao
2012) is used to initialize D(0), as

D(0) = Y1(P
�
2 Y1)

−1Y �
2 , (30)

where P1 ∈ R
W×r, P2 ∈ R

H×r, Y1 = Y P1, Y2 = Y �P2,
Y ∈ R

H×W denotes the first frame in matrix form, and H
and W are the height and width of the frames. The overall
algorithm of the proposed foreground estimation method is
summarized in Algorithm 1. In Algorithm 1, we set K = 2
for the inner loop and found that it was sufficient for conver-
gence and good results.

Algorithm 1 Proposed STGSM model based Foreground
Estimation Method
• Initialization:

(1) Set parameter η, σ2
n, δ, A0 ∈ R

r×r = 0 and B0 ∈
R

N×r = 0;
(2) Initialize D(0) ∈ R

N×r via Eq.(30).
• Outer loop: for t = 1, 2, ......, T , do

(1)Inner loop (solving Eqs. (12) and (24) ) for k =
1, 2, · · · ,K, do

(a) Update θt via Eq.(17);
(b) Update αt via Eq.(20);
(c) Compute st = θt �αt;
(d) Update zt via Eq.(25).

End for
(2) Update the background component lt.

(a) Update Dt via Eq. (29);
(b) Compute lt = Dtzt.

• End for

5 Experiment results

The proposed methods were implemented under the Mat-
lab platform. The major parameters of the proposed methods
were empirically set as, r = 15, η = 400

N , σ2
n = 1.05×10−3,

and δ = 0.01, which are the same for all test sequences.
The performances of the proposed methods are evaluated
on two benchmark datasets, i.e., the perception test image
sequences (PTIS) (Li et al. 2004) and the change detec-
tion (CD) 2012 (Goyette et al. 2012) datasets, containing
40 videos. The pixel values of the videos are normalized to
the range of [0, 1]. The F-measure is used to evaluate the
performance of the proposed methods, defined as

F-measure = 2
precision · recall
precision + recall

,

precison =
TP

TP + FP
, recall =

TP
TP + FN

(31)

where TP (true positives) is the number of pixels correctly
classified as foreground, FP (false positives) the number of
pixels incorrectly classified as foreground, and FN (false
negatives) the numbers of foreground pixels incorrectly clas-
sified as background.

Method
Category Baseline Dynamic

Bac.Gro.
Camera

Jitter Shadows Thermal Inter.
Obj. Mot. average

GSM 93.00 83.00 81.00 87.00 82.00 69.00 82.50
Proposed TGSM 93.4 83.91 81.24 89.41 82.30 86.47 86.12

Proposed STGSM 95.92 86.22 85.63 92.98 85.07 89.67 89.25

Table 1: F -measure (%) performance of the variants of the
proposed methods on CD 2012 dataset.
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Method
Video Shopping Mall Lobby Curtain Fountain Campus Hall Bootstrap Escalator Water Surface Average

PCP (Candès et al. 2011) 66.78 62.18 81.28 63.74 40.69 50.25 56.78 63.54 39.76 58.33
PBAS(Hofmann et al.2012) 71.77 56.74 72.48 62.04 69.50 61.92 55.38 31.13 89.02 63.33
DECOLOR(zhou et al.2013) 68.06 56.52 81.58 82.76 73.29 53.20 56.86 75.46 79.65 69.71

LRSSD (Liu et al. 2015) 73.62 73.13 83.57 83.71 76.13 72.22 58.42 72.14 90.50 75.93
TVRPCA(gao et al.2016) − 75.00 − 80.00 77.00 69.00 69.00 66.00 88.00 −

OMoGMF+TV (Yong et al. 2018) 72.43 83.47 92.54 82.53 65.88 77.20 61.17 66.37 93.14 77.19
SGSM-BS-block (Shi et al. 2018) 77.70 83.78 79.12 86.44 77.93 74.96 79.05 69.11 71.21 77.70

SGSM-BS (Shi et al. 2018) 79.89 86.02 93.54 87.16 83.15 77.59 78.75 71.70 92.88 83.41
Proposed STGSM 80.29 86.53 92.56 86.44 80.35 80.49 77.07 71.55 93.23 83.17

Table 2: Performance of F -measure (%) on Perception Test Images Sequences dataset.

Water
Surface

Bootstrap

Hall

Fountain

(a) frame (b) background (c) groundtruth (h) Proposed
STGSM

(f) DECOLOR (g) SGSM-BS(e) PBAS(d) PCP

Figure 1: Background subtraction results on 4 videos from PTIS dataset by the test methods. (a) Original frame; (b) back-
ground; (c) Groundtruth foreground mask ;(d)PCP (Candès et al. 2011);(e)PBAS(Hofmann, Tiefenbacher, and Rigoll 2012) (f)
DECOLOR (Zhou, Yang, and Yu 2013); (g) SGSM-BS (Shi et al. 2018); (h) Proposed STGSM. (White represents correctly
detected foreground, red represents missing pixels, and blue represents false alarm pixels.)

Method
Category

Baseline
Dynamic
Bac.Gro.

Camera
Jitter

Shadows Thermal
Inter.

Obj. Mot.
average

SOBS(Maddalena 2012) 93.33 66.86 70.51 77.86 69.23 59.18 72.83
TVRPCA(gao et al.2016) 91.33 65.92 74.82 79.50 70.19 58.78 73.42

DECOLOR(zhou et al.2013) 92.15 70.84 74.77 54.18 81.27 81.34 77.63
WeSamBE(Jiang et al.2018) 94.13 74.40 79.76 86.86 79.62 73.92 81.48
SuBSENSE(St-Charles2015) 95.03 81.77 81.52 89.86 81.71 65.69 82.60

CNN(Babaee et al.2018) 95.80 87.61 89.90 93.04 75.83 60.98 83.86
SGSM-BS (Shi et al. 2018) 95.00 85.00 82.00 89.00 85.00 82.00 86.00
DSPSS(Ebadi et al.2018) 96.64 90.57 86.62 91.77 73.28 78.70 86.26

STSHBM (Chen et al. 2018) 95.34 91.20 85.03 83.49 89.30 85.79 88.36
Proposed STGSM 95.92 86.22 85.63 92.98 85.07 89.67 89.25

Table 3: Performance of F -measure (%) of the test methods
on CD 2012 dataset.

5.1 Ablation study

To verify the effects of the proposed temporal and spa-
tial regularization terms, we implemented three variants of
the proposed method, i.e., the GSM model without consid-
ering the spatial-temporal correlations, the temporal GSM
model based foreground estimation method (denoted as
TGSM), and the proposed spatial-temporal GSM model
based method (denoted as STGSM). The experimental re-
sults on CD 2012 dataset are shown in Table 1. From Table
1, it can be seen that the TGSM method outperforms the
GSM method by a large margin. By exploiting the local spa-
tial correlations, the STGSM performs better than TGSM.

5.2 CD 2012 dataset

We compared the proposed STGSM method with several
state-of-the-art background subtraction methods, including
two RPCA-based methods, i.e., the SGSM-BS (Shi et al.
2018) and the DSPSS (Ebadi and Lzquierdo 2018) methods,
and the pixel classification based method, i.e., STSHBM
method (Chen et al. 2018). For fair comparisons, the re-
sults of the other methods were obtained from their pa-
pers or the website of the CD 2012 dataset, or generated by
running their source codes. From Table 3, we can see that
the proposed method outperformed all the other competing
methods. The proposed STGSM method outperformed the
SGSM-BS method of (Shi et al. 2018) by up to 3.25% in av-
erage, verifying the effectiveness of the proposed STGSM
models. Fig. 2 shows some visual results generated by the
test methods on several videos of CD 2012 dataset1. It can
be seen that the proposed method performed better than the
other methods.

5.3 PTIS dataset

We also compared the proposed method with other meth-
ods on the PTIS dataset (Li et al. 2004), which contains
9 real videos covering a variety of scenarios including dy-
namic background and static background with short-time

1We only show the visual results of the test methods that we can
find from their websites.
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boulevard

traffic

(a) frame (b) background (c) groundtruth (h) Proposed
STGSM

(d) DECOLOR (e) SuBSENSE (f) SOBS

boats

winter 
Driveway

library

(g) SGSM-BS

Figure 2: Background subtraction results on 5 videos from CD 2012 dataset by the test methods. (a) Original frame; (b)
background; (c) Groundtruth foreground mask ; (d) DECOLOR (Zhou, Yang, and Yu 2013); (e) SuBSENSE (St-Charles,
Bilodeau, and Bergevin 2015);(f) SOBS (Maddalena and Petrosino 2012); (g) SGSM-BS (Shi et al. 2018); (h) Proposed
STGSM. (White represents correctly detected foreground, red represents missing pixels, and blue represents false alarm pixels.)

lingering objects. Table 2 shows the F-measure results of
the test methods. From Table 2, we can see that the proposed
STGSM method outperformed the other methods, except the
SGSM-BS method (Shi et al. 2018) that used a superpixel-
based segmentation method for grouping correlated pixels.
The proposed STGSM method performed much better than
the SGMS-BS-block method (Shi et al. 2018) that also used
the block-based pixel grouping method. More experimental
results are referred to the supplementary material.

5.4 Computational complexity

The complexity of the proposed method consists of three
parts: 1) the computing st that is O(N); 2) the updating zt
that is O(Nr2); 3) the updating Dt that is O(Nr2). The
overall complexity of the proposed method for T frames is
O(TNr2). Here, we have not included the complexity of
estimating optical flow, which is not the focus of this work.

Table 4 shows the running time of the test methods (only
the methods whose codes are available are shown) on 100
rgb frames of size 128×160, where STGSM-wo denotes the
proposed method where optical flows have been already esti-
mated. The main computational cost of the proposed method
is the estimation of the optical flow, which takes up about
75% time cost. The proposed methods were implemented
with Matlab platform on an Intel Core i7-8700K 3.4GHz
CPU, and can be accelerated with parallel computation tech-
nique for real-time applications.

6 Conclusions

To address the scale issue of the RPCA model for foreground
estimation, we proposed a novel spatial-temporal Gaussian
scale mixture models (GSM) for foreground estimation.

Method GMM
(Zivkovic 2004)

DECOLOR
(zhou et al.2013)

LRSSD
(Liu et al. 2015)

OMoGMF+TV
(Yong et al. 2018)

Time(s) 0.18 3455.62 255.31 14.13

Method TVRPCA
(gao et al.2016)

SGSM-BS
(Shi et al. 2018)

Proposed
STGSM

Proposed
STGSM-wo

Time(s) 84.40 27.39 41.49 10.32

Table 4: Running time on 100 rgb frames of size 128× 160.

Specifically, nonzero-means Gaussian functions were used
to model both the foreground pixels and the hidden positive
multipliers. By estimating the means of the foreground pix-
els and multipliers from the estimates of the previous frame,
the temporally correlations of the foregrounds can be effec-
tive exploited. Moreover, the GSM models were further ex-
tended to exploit the local spatial correlations by considering
that correlated pixels should be characterized by the same
distribution. Experimental results on real challenging video
datasets show that the proposed method outperforms most
of current background subtraction methods.
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