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Abstract

Research in neural networks in the field of computer vision
has achieved remarkable accuracy for point estimation. How-
ever, the uncertainty in the estimation is rarely addressed.
Uncertainty quantification accompanied by point estimation
can lead to a more informed decision, and even improve
the prediction quality. In this work, we focus on uncertainty
estimation in the domain of crowd counting. With increas-
ing occurrences of heavily crowded events such as politi-
cal rallies, protests, concerts, etc., automated crowd analy-
sis is becoming an increasingly crucial task. The stakes can
be very high in many of these real-world applications. We
propose a scalable neural network framework with quantifi-
cation of decomposed uncertainty using a bootstrap ensem-
ble. We demonstrate that the proposed uncertainty quantifica-
tion method provides additional insight to the crowd count-
ing problem and is simple to implement. We also show that
our proposed method exhibits state-of-the-art performances
in many benchmark crowd counting datasets.

Introduction

Recently, convolutional neural networks (CNN) have been
shown to have successes in a wide range of tasks in com-
puter vision, such as object detection, image recognition,
face recognition, and image segmentation. Inspired by these
successes, many CNN based crowd counting methods have
been proposed. Along with density estimation techniques
(Lempitsky and Zisserman 2010), CNN based approaches
have shown outstanding performances over previous works
that were relying on handcrafted feature extraction.

With increasing occurrences of heavily crowded events
such as political rallies, protests, concerts, etc., automated
crowd analysis is becoming an increasingly crucial task.
The stakes can be very high in many of these real-world
applications. Hence, we ask the following question:

Question: Can we use the existing neural network based
methods for real-world crowd analysis?
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One problem with existing CNN methods is that they only
offer point estimates of counts (or density map) and do not
address the uncertainty in the prediction, which can come
from the model and also from data itself. When given a new
unlabeled crowd image, how much can we trust the output
of the model if it only provides a point estimate? Probabilis-
tic interpretations of outputs of the model via uncertainty
quantification are very important. Uncertainty quantifica-
tion accompanied by point estimation can lead to a more
informed decision, and even improve the prediction qual-
ity. This can is crucial for the practitioners of these crowd
counting methods. With the quantification of prediction con-
fidence at hand, one can treat uncertain inputs and special
cases explicitly. For instance, a crowd counting model might
return a density map (or a count) with less confidence (high
uncertainty) in some area of a given scene. In this case, the
practitioner could decide to pass the image – or the specific
part of the image that the model is uncertain about – to a
human for validation.

While Bayesian methods provide a mathematically plau-
sible framework to deal with uncertainty quantification, of-
ten these methods come with a prohibitively computational
cost. In this work, we propose a simple and scalable neural
network framework using a bootstrap ensemble to quantify
decomposed uncertainty for crowd counting. The key high-
lights of our work are:

• To the best of our knowledge, this work is the first to ad-
dress uncertainty quantification of neural network predic-
tions for crowd counting. Our method is shown to produce
accurate estimated uncertainty.

• Our method decomposes uncertainties coming from the
model and also from input data, which can be of indepen-
dent interest for image analysis.

• Our proposed method achieves state-of-the-art level
performances on multiple crowd counting benchmark
datasets. The proposed architecture is more efficient than
previously known state-of-the-art methods in terms of
computational complexity.

• Our proposed uncertainty quantification framework is
generic and independent of the architecture of an underly-
ing network. Combined with its simplicity for implemen-
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tation, we show the adaptability to other architecture.

Related Work
The previous literature on crowd counting problems can
be categorized into three kinds of approaches depend-
ing on methodology: detection-based, regression-based and
density-based methods.

Detection-based crowd counting is an approach to di-
rectly detect each of the target objects in a given image. A
typical approach is to utilize object detectors (Leibe, See-
mann, and Schiele 2005; Li et al. 2008; Wang and Yung
2009) often using moving-windows (Dollar et al. 2012).
Then, the counts of targets in an image are automatically
given as a byproduct of detection results. However, ob-
jects can be highly occluded in many crowded scenes and
many target objects can be in drastically different scales,
making detection much more challenging. These issues
make detection-based approaches infeasible in dense crowd
scenes.

Regression-based approaches (Chan and Vasconcelos
2009; Chen et al. 2012; Kumagai, Hotta, and Kurita 2017;
Ryan et al. 2009; Shang, Ai, and Bai 2016) are pro-
posed to remedy the occlusion problems which are obsta-
cles for detection-based methods. Regression-based meth-
ods directly map input crowd images to scalar values of
counts, hence bypassing explicit detection tasks. Particu-
larly, a mapping between image features and the crowd
count is learned. Typically the extracted features are used to
generate low-level information, which is learned by a regres-
sion model. Hence, these methods leverage better feature
extraction (if available) and regression algorithms for esti-
mating counts (Shang, Ai, and Bai 2016; Arteta et al. 2014;
Chan and Vasconcelos 2009; Chen et al. 2012; Seguı́, Pujol,
and Vitria 2015). However, these regression-based methods
mostly ignore the spatial information in the crowd images.

Density-based crowd counting, originally proposed in
(Lempitsky and Zisserman 2010), preserves both the count
and spatial distribution of the crowd, and have been shown
effective at object counting in crowd scenes. In an object
density map, the integral over any sub-region is the num-
ber of objects within the corresponding region in the im-
age. Density-based methods are generally better at handling
cases where objects are severely occluded by bypassing the
hard detection of every object, while also maintaining some
spatial information about the crowd. (Lempitsky and Zisser-
man 2010) proposes a method that learns a linear mapping
between the image feature and the density map. (Pham et
al. 2015) proposes learning a non-linear mapping using ran-
dom forest regression. However, earlier approaches still de-
pended on hand-crafted features.

Density-based crowd counting using CNN. In recent
years, the CNN based methods with density targets have
shown performances superior to the traditional methods
based on handcrafted features (Fu et al. 2015; Wang et al.
2015; Zhang et al. 2015). To address perspective issues,
(Zhang et al. 2016) leverages a multi-column network us-
ing convolution filters with different sizes in each column to
generate the density map. As a different approach to address
perspective issues, (Onoro-Rubio and López-Sastre 2016)

proposes taking a pyramid of input patches into a network.
(Sam, Surya, and Babu 2017) improves over (Zhang et al.
2016) and uses a switching layer to classify the crowd into
three classes depending on crowd density and to select one
of 3 regressor networks for actual counting. (Zhang et al.
2017) incorporates a multi-task objective, jointly estimat-
ing the density map and the total count by connecting fully
convolutional networks and recurrent networks (LSTM).
(Sindagi and Patel 2017b) uses global and local contexts to
generate a high-quality density map. (Li, Zhang, and Chen
2018) introduces the dilated convolution to aggregate multi-
scale contextual information and utilizes a much deeper ar-
chitecture from VGG-16 (Simonyan and Zisserman 2014).
(Cao et al. 2018) proposes an encoder-decoder network with
the encoder extracting multi-scale features with scale aggre-
gation modules and the decoder generating density maps by
using a set of transposed convolutions.

Limitations of the current state of the art: While den-
sity estimation and CNN based approaches have shown out-
standing performances in the problems of crowd counting,
less attention has been paid to assessing uncertainty in pre-
dictive outputs. Probabilistic interpretations via uncertainty
quantification are important because (1) lack of understand-
ing of model outputs may provide sub-optimal results and
(2) neural networks are subject to overfitting, so making de-
cisions based on point prediction alone may provide incor-
rect predictions with spuriously high confidence.

Uncertainty in Neural Networks

Much of the previous work on the Bayesian neural network
studied uncertainty quantification founded on parametric
Bayesian inference (Blundell et al. 2015; Gal and Ghahra-
mani 2016). In this work, we consider a non-parametric
bootstrap of functions.

Bootstrap ensemble

Bootstrap is a simple technique for producing a distribu-
tion over functions with theoretical guarantees (Bickel and
Freedman 1981). It is also general in terms of the class of
models that we can accommodate. In its most common form,
a bootstrap method takes as input a dataset D and a function
fθ. We can transform the original dataset D into K different
datasets {Dk}Kk=1’s of cardinality equal to that of the origi-
nal data D that is sampled uniformly with replacement.

Then we train K different models. For each model fθk , we
train the model on the dataset Dk. So each of these models
is trained on data from the same distribution but a different
dataset. Then if we want to approximate sampling from the
distribution of functions, we sample uniformly an integer k
from 1 to K and use the corresponding function fθk .

In cases of using neural networks as base models fθk ,
bootstrap ensemble maintains a set of K neural networks
{fθk}Kk=1 independently on K different bootstrapped sub-
sets of the data. It treats each network as independent sam-
ples from the weight distribution. In contrast to traditional
Bayesian approaches discussed earlier, bootstrapping is a
frequentist method, but with the use of the prior distribution,
it could approximate the posterior in a simple manner. Also,
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it scales nicely to high-dimensional spaces, since it only re-
quires point estimates of the weights. However, one major
drawback is that computational load increase linearly with
respect to the number of base models. In the following sec-
tion, we discuss how to mitigate this issue and still maintain
reasonable uncertainty estimates.

Measures of uncertainty

When we address uncertainty in predictive modeling, there
are two major sources of uncertainty (Kendall and Gal
2017):
1. epistemic uncertainty is uncertainty due to our lack of

knowledge; we are uncertain because we lack under-
standing. In terms of machine learning, this corresponds
to a situation where our model parameters are poorly de-
termined due to a lack of data, so our posterior over pa-
rameters is broad.

2. aleatoric uncertainty is due to genuine stochasticity in
the data. In this situation, an uncertain prediction is the
best possible prediction. This corresponds to noisy data;
no matter how much data the model has seen, if there is
inherent noise then the best prediction possible may be a
high entropy one.
Note that whether we apply a Bayesian neural network

framework or a bootstrap ensemble framework, the kind of
uncertainty which is addressed by either of the methods is
epistemic uncertainty only. Epistemic uncertainty is often
called model uncertainty and it can be explained away given
enough data (in theory as data size increases to infinity this
uncertainty converges to zero). Addressing aleatoric uncer-
tainty is also crucial for the crowd counting problem since
many crowd images do possess inherent noise, occlusions,
perspective distortions, etc. that regardless of how much data
the model is trained on, there are certain aspects the model
is not able to capture. Following (Kendall and Gal 2017), we
incorporate both epistemic uncertainty and aleatoric uncer-
tainty in a neural network for crowd counting. We discuss
how we operationalize in a scalable manner in the following
section.

Calibration of Predictive Uncertainty

Many methods for estimating predictive uncertainty often
fail to capture the true distribution of the data (Lakshmi-
narayanan, Pritzel, and Blundell 2017). For example, a 95%
posterior confidence interval may not contain the true out-
come for 95% of the time. In such a case, the model is
considered to be not calibrated (Kuleshov, Fenner, and Er-
mon 2018). Bootstrap ensemble methods we consider in
this work are also not immune to this issue. Hence, we ad-
dress this by incorporating a technique recently introduced
in (Kuleshov, Fenner, and Ermon 2018), which calibrates
any regression methods including neural networks. The pro-
posed procedure is inspired by Platt scaling (Platt and oth-
ers 1999) which recalibrates the predictions of a pre-trained
classifier in a post-processing step. (Kuleshov, Fenner, and
Ermon 2018) shows that the recalibration procedure applied
to Bayesian models is guaranteed to produce calibrated un-
certainty estimates given enough data.

Proposed Method

Single network with K output heads

Training and maintaining several independent neural net-
works is computationally expensive especially when each
base network is a large and deep neural network. To remedy
this issue, we adopt a single network framework that is scal-
able for generating bootstrap samples from a large and deep
neural network (Osband et al. 2016). The network consists
of a shared architecture — for example, convolution layers
— with K bootstrapped heads branching off independently.
Each head is trained only on its bootstrapped sub-sample of
the data as described in Section . The shared network learns
a joint feature representation across all the data, which can
provide significant computational advantages at the cost of
lower diversity between heads. This type of bootstrap can
be trained efficiently in a single forward/backward pass; it
can be thought of as a data-dependent dropout, where the
dropout mask for each head is fixed for each data point (Sri-
vastava et al. 2014).

Capturing epistemic uncertainty

To capture epistemic uncertainty in a neural network, we put
a prior distribution over its weights, for example a Gaussian
prior: [θs, θ1, ..., θK ] ∼ N (0, σ̃2), where θs is the parameter
of the shared network and θ1, ..., θK are the parameters of
bootstrap heads 1, ..,K. Let x be an image input and y be
a density output. Without loss of generality, we define our
pixel-wise likelihood as a Gaussian with mean given by the
model output: p (y|fθ(x)) = N (

fθ(x), σ
2
)
, with an obser-

vation noise variance σ2.
For brevity of notations we overload the term θk =

[θk, θs] since θs is shared across all samples. For each iter-
ation of training procedure, we sample the model parameter
θ̂k ∼ q(θ) where q(θ) is a bootstrap distribution. In other
words, at each iteration we randomly choose which head to
use to predict an output ŷ = fθ̂k(x). Then the objective is to
minimize the loss (for a single image x) given by the nega-
tive log-likelihood:

L(θ) = 1

D

∑
i

1

2σ2
‖yi − ŷi‖2 + 1

2
log σ2

where yi is the i-th pixel of the output density y correspond-
ing to input x and D is the number of output pixels. Note that
the observation noise σ2 which captures how much noise we
have in the outputs stays constant for all data points. Hence
we can further drop the second term (since it does not de-
pend on θ), but for the sake of consistency with the follow-
ing section where we discuss a heteroscedastic setting, we
leave it as is. Now, epistemic uncertainty can be captured by
the predictive variance, which can be approximated as:

Var(y) ≈ σ2 +
1

K

K∑
k=1

fθ̂k(x)
�fθ̂k(x)− E(y)�E(y) (1)

with approximated mean: E(y) ≈ 1
K

∑K
k=1 fθ̂k(x). Note

that during training procedure we randomly select one out-
put head but during test time we combine individual predic-
tions from K heads to compute the predictive mean and the
variance.
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Incorporating aleatoric uncertainty

In contrast to homoscedastic settings where we assume
the observation noise σ2 is constant for all inputs, het-
eroscedastic regression assumes that σ2 can vary with input
x (Le, Smola, and Canu 2005; Nix and Weigend 1994). This
change can be useful in cases where parts of the observation
space might have higher noise levels than others (Kendall
and Gal 2017). In crowd counting applications, it is often
the case that images may come from different cameras and
scenes. Also due to occlusion and perspective issues within
a single image, it is often the case that observation noise can
vary from one part of an image (or pixel) to another part (or
pixel).

Following (Kendall and Gal 2017), the network outputs
both the estimated density map y and the noise variance σ2.
Therefore, in our bootstrap implementation of the network,
the output layer has a total of K + 1 nodes — K nodes cor-
responding to an ensemble of density map predictions y and
an extra node corresponding to σ2. Let θσ be the parame-
ter corresponding to the output node of the noise variance
σ2. Now, as before, we overload the term θk = [θk, θs, θσ]
since θσ is shared across the bootstrap sampling. We draw a
sample of model parameters from the approximate posterior
given by bootstrap ensemble θ̂k ∼ q(θ). But this time as de-
scribed above, we have two parallel outputs, the density map
estimate ŷ and the noise variance estimate σ̂2:

[ŷ, σ̂2] = fθ̂k(x).

Then, we have the following loss given input image x
which we want to minimize:

L(θ) = 1

D

∑
i

1

2σ̂2
i

‖yi − ŷi‖2 + 1

2
log σ̂2

i .

Note that this loss contains two parts: the least square resid-
ual term which depends on the model uncertainty (epis-
temic uncertainty) and an aleatoric uncertainty regulariza-
tion term. Now, if the model predicts σ̂2 to be too high, then
the residual term will not have much effect on updating the
weights – the second term will dominate the loss. Hence, the
model can learn to ignore the noisy data, but is penalized for
that. In practice, due to the numerical stability of predict-
ing σ2 which should be positive, we predict the log variance
si := log σ2 instead of σ2 for the output (Kendall and Gal
2017).

Network architecture

The network architecture is composed of three major com-
ponents: (1) convolutional layers as the front-end for fea-
ture extraction, (2) a dilated convolutional for the back-end
which uses dilated kernels to deliver larger reception fields
and to replace pooling operations, and (3) the bootstrap en-
semble output layer. For the front end, we use ResNet-50
(He et al. 2016) as backbone. Note that ResNet-50 is much
deeper than VGG-16 but ResNet-50 (3.8B FLOPs) has much
lower complexity than VGG-16 (15.3B FLOPs). For dis-
cussion on dilated convolution, we refer the readers to (Li,
Zhang, and Chen 2018). For the output layer, we use the K

bootstrap ensemble heads for ŷ and another output for σ̂2.

Each output head in the bootstrap ensemble is a fully con-
nected layer. We call our network DUBNet where “DUB”
stands for decomposed uncertainty using bootstrap ensem-
ble. The details of the architecture are shown in Figure 1.

Training procedure

We initialize the front-end layers (the first 10 convolutional
layers) in our model with the corresponding part of a pre-
trained ResNet-50 (He et al. 2016). For the rest of the param-
eters, we initialize with a Gaussian distribution with mean 0
and standard deviation 0.01. Given a training dataset of in-
put images X = {x1, ..., xN} and corresponding ground
truth density maps Y = {y1, ..., yN}, at each iteration, we
sample uniformly at random k ∈ {1, ...,K} to choose an
output head k and predict [ŷn, ŝn] = fθ̂k(xn) for n-th image
as discussed in the previous sections. Algorithm 1 presents
a single-image batch training procedure. ŷn,i and ŝn,i are
the i-th pixel of the estimated density map and the log vari-
ance respectively corresponding to input image xn. Dn is
the number of output pixels of yn. Due to pooling opera-
tions, the number of output pixels is the same as the number
of input pixels. Adam optimizer (Kingma and Ba 2014) with
a learning rate of 10−5 is applied to train the model.

Algorithm 1 Decomposed Uncertainty using Bootstrap
Require: Input images {xn}Nn=1, GT density {yn}Nn=1

1: Initialize parameters θ
2: for each epoch do
3: for all n = 1 to N do
4: Sample a bootstrap head k ∼ Uniform{1, ...,K}
5: Compute predictions [ŷn, ŝn] = fθ̂k(xn)
6: Compute loss:

L(θk) = 1
Dn

∑
i

1
2 exp(ŝn,i)

‖yn,i − ŷn,i‖2 + 1
2 ŝn,i

7: Update θk using gradient dL(θk)
dθk

8: end for
9: end for

Recalibration of Predictive Uncertainty

Once we have a trained model fθ̂, we compute the mean
prediction μ(xn) = 1

K

∑
k fθ̂k(xn) for an input image xn.

Note that μ(xn) is a density map. We sum over all pixels
in μ(xn) to compute the predicted mean count C̄n. Simi-
larly, using the (pixel-wise) predictive variance in Eq.(1), we
compute the predictive standard deviation in counts σ̄n by
summing over all pixels. Then we construct a standardized
residual Zn = (Cn − C̄n)/σ̄n where Cn is the ground-truth
count for image xn and construct a quantile target P̂ (Zn)
which is the proportion of data whose standardized residual
is below Zn. Then using each pair (Zn, P̂ (Zn)), we fit an
isotonic regression model R. The recalibration procedure is
summarized in Algorithm 2.

Note that the recalibration dataset D̃ is constructed us-
ing a validation data (non-training data) and the model R is
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Figure 1: Network architecture of our proposed method, DUBNet. All convolutional layers use stride size 1 and SAME padding
to maintain the size of the output the same as the input size. For the front-end, all the convolutional blocks contain identity
shortcuts (He et al. 2016). Max-pooling layer is applied with 3×3 windows with stride size 2. The back-end layers use dilated
kernels with rate 2. The output layer branches out to K bootstrap heads and the extra log-variance output.

Algorithm 2 Uncertainty Recalibration
Require: {Cn, C̄n, σ̄}Nn=1 for validation data

1: Compute Zn = (Cn − C̄n)/σ̄n for all n
2: Construct a recalibration dataset:

D̃ =
{(

Zn, P̂ (Zn)
)}

n=1,...,N

where P̂ (z) = |{Cm | Zm ≤ z,m = 1, ..., N}|/N
3: Train a isotonic regression model R on D̃.

fitted on this dataset. Once R is learned, for a given quan-
tile p, (e.g. 0.95 and 0.05 for 90% confidence interval) one
can easily find Zp ∈ R such that R(Zp) ≈ p (since R is
a monotone function). When using at a test time where we
only have C̄n and σ̄n, we can construct a confidence bound
by computing C̄n + σ̄nZ

p.

Experiments

In this section, we first introduce datasets and experiment
details. We give the evaluation results and perform compar-
isons between the proposed method with recent state-of-the-
art methods. For all experiments, we used K = 10 heads for
DUBNet. We follow the standard procedure to generate the
ground truth density map using Gaussian kernels.

Evaluation metrics

For crowd counting evaluation, the count estimation error is
measured by two metrics, Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE), which are commonly
used for quantitative comparison in previous works. They
are defined as follows:

MAE =
1

N

N∑
n=1

|Ĉn − Cn|, RMSE =

√√√√ 1

N

N∑
n=1

(Ĉn − Cn)2

where N is the number of test samples, Cn is the true crowd
count for the n-th image sample and Ĉn is the corresponding
estimated count. Cn and Ĉn are given by the integration over

the ground truth density map
∑

i yn,i and over an estimated
density map

∑
i ŷn,i respectively, where i is the i-th pixel in

output images. Note that during test time we use predictive
mean over K bootstrap outputs as ŷ.

Ablation study

We performed ablation studies on UCF-CC 50 and UCF-
QNRF datasets to validate the efficacy of our proposed
method. We first compare our proposed architecture DUB-
Net with its variant which does not have a bootstrap ensem-
ble output and an aleatoric uncertainty output; hence has a
single fully connected layer in the output layer. We call this
variant ”DUBNet w/o DUB extension.”

Table 1: Ablation studies on bootstrap extension and adapt-
ability on different architecture

UCF-50 UCF-QNRF
Methods MAE MAE
DUBNet w/o DUB extension 258.4 120.9
DUBNet 243.8 105.6

CSRNet (Li et al 2018) 266.1 135.5
CSRNet + DUB extension 244.9 127.1

MCNN (Zhang et al. 2016) 377.6 277.0
MCNN + DUB extension 359.4 254.6

To test the adaptability of our framework to other architec-
ture, we applied the DUB extension to CSRNet (Li, Zhang,
and Chen 2018) with branching outputs and an aleatoric
uncertainty output. We also applied the same extension to
MCNN (Zhang et al. 2016). We compare with the vanilla
CSRNet and MCNN respectively. The results in Table 1
show that our proposed framework combining both aleatoric
and epistemic uncertainty contributes significantly to perfor-
mance on the evaluation data, and can be applied to other
architecture.

Performance comparisons

We evaluate our method on four publicly available crowd
counting datasets: ShanghaiTech (Zhang et al. 2016), UCF-
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Table 2: Estimation errors on ShanghaiTech A/B, UCF-CC 50, and UCF-QNRF datasets
ShanghaiTech A ShanghaiTech B UCF-CC 50 UCF-QNRF

Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE
MCNN (Zhang et al. 2016) 110.2 173.2 26.4 41.3 377.6 509.1 277 426
Cascaded-MTL (Sindagi and Patel 2017a) 101.3 152.4 20.0 31.1 322.8 397.9 252 514
Switch-CNN (Sam, Surya, and Babu 2017) 90.4 135.0 21.6 33.4 318.1 439.2 228 445
D-ConvNet (Shi et al. 2018) 73.5 112.3 18.7 26.0 288.4 404.7 - -
L2R (Liu, van de Weijer, and Bagdanov 2018) 73.6 112.0 13.7 21.4 279.6 388.9 - -
DensityNetwork (Idrees et al. 2018) - - - - - - 132 191
CSRNet (Li, Zhang, and Chen 2018) 68.2 115.0 10.6 16.0 266.1 397.5 135.5 207.4
ic-CNN (Ranjan, Le, and Hoai 2018) 68.5 116.2 10.7 16.0 260.9 365.5 - -
SANet (Cao et al. 2018) 67.0 104.5 8.4 13.6 258.4 334.9 - -
SFCN (Wang et al. 2019) 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4
CAN (Liu, Salzmann, and Fua 2019) 62.3 100.0 7.8 12.2 212.2 243.7 107 183
DUBNet (Ours) 64.6 106.8 7.7 12.5 243.8 329.3 105.6 180.5

CC 50 (Idrees, Soomro, and Shah 2015), and UCF-QNRF
(Idrees et al. 2018). For all datasets, we generate ground
truth density maps with fixed spread Gaussian kernel. We
compare our method with previously published work. In
each table, the previous work which provided code or have
been validated by a third party other than the original au-
thors have been listed above our method. For completeness,
we also list the recent work (without code or validation by
a third party) below our method and include the numbers
reported by the original authors. We highlight the best two
performances in each metric.

ShanghaiTech. The ShanghaiTech dataset (Zhang et al.
2016) contains 1198 annotated images with a total of
330,165 persons. This dataset consists of two parts: Part
A which contains 482 images and Part B which contains
716 images. Part A is randomly collected from the Inter-
net and contains mostly highly congested scenes. Part B
contains images captured from street views with relatively
sparse crowd scenes. We use the training and testing splits
provided by the authors: 300 images for training and 182 im-
ages for testing in Part A; 400 images for training and 316
images for testing in Part B.

UCF-CC 50. The UCF-CC 50 dataset (Zhang et al. 2015)
is a small dataset which contains only 50 annotated crowd
images. However, the challenging aspect of this dataset is
that there is a large variation in crowd counts which range
from 94 to 4543. Along with this variation, the limited
number of images makes it a challenging dataset for the
crowd counting tasks. Since training and test data split is
not provided, as done in the previous literature (Li, Zhang,
and Chen 2018; Zhang et al. 2015), We use 5-fold cross-
validation to evaluate the performance of the proposed
method.

UCF-QNRF. The UCF-QNRF dataset was recently intro-
duced by (Idrees et al. 2018). It is currently the largest crowd
dataset which contains 1,535 images with dense crowds with
many of them being high-resolution images. Approximately
1.25 million people were annotated with dot annotations
These images come with a wider variety of scenes and con-
tains the most diverse set of viewpoints, densities, and light-
ing variations. The ground truth counts of the images in the

dataset range from 49 to 12,865. Meanwhile, the median
and the mean counts are 425 and 815.4, respectively. The
training dataset contains 1,201 images, with which we train
our model. Some of the images are so high-resolution that
we faced memory issues in GPU while training. Hence, we
down-sampled images that contain more than 3 million pix-
els. Then, we test our model on the remaining 334 images in
the test dataset.

Results The results in Table 2 show that our proposed
method is within the top two performers (highlighted in
bold) for almost all the benchmark datasets we consider. One
thing to note is that our uncertainty quantification framework
is not limited to the proposed architecture, but is potentially
adaptable to the other state-of-the-art architecture (as shown
in the ablation study).

Estimated uncertainty validation

Estimated uncertainty is meaningful if it can capture the
true distribution of the data. As mentioned earlier in the
paper, we can validate whether the estimated uncertainty is
well-calibrated or not by checking whether the estimated p
quantile confidence interval (CI) contains the true outcome
p fraction of the time. Table 3 shows the fraction of test data
in each dataset whose ground truth falls in 90% CI.1 The
results suggest that our estimated uncertainty is accurate.

Table 3: Calibration results of estimated uncertainty
Dataset Ground truth in 90% CI
ShanghaiTech A 0.907
ShanghaiTech B 0.915
UCF-QNRF 0.890

Discussion on estimated uncertainty

Figure 2 visualize the samples along with estimated density
maps and their epistemic and aleatoric uncertainty from test
evaluations on the ShanghaiTech data and the UCF-QNRF

1UCF-CC 50 dataset is not included since the uncertainty recal-
ibration is difficult to perform due to the limited data size.
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Figure 2: Qualitative results of DUBNet on the ShanghaiTech and the UCF-QNRF datasets. For each image, we demonstrate the
ground truth density maps and counts, the estimated density maps and estimated counts with 90% confidence interval. We also
present both estimated epistemic and aleatoric uncertainty quantification. More red color means higher uncertainty. Epistemic
uncertainty captures the model’s lack of knowledge about the data. Aleatoric uncertainty captures inherent noise in the data.

data. The results demonstrate that the model is generally less
confident (i.e. higher epistemic uncertainty) in dense crowd
regions of the images, which is natural. There appears to be a
certain level of a positive correlation between epistemic and
aleatoric uncertainty which is expected – since the common
issues in crowd images such as occlusion and perspective
issues are typically correlated with higher crowd density,
this can cause both epistemic and aleatoric uncertainty to be
higher. But, we also observe a notable difference in the es-
timated measures of uncertainty in the samples. We observe
that aleatoric uncertainty is more prominent in areas where
the image itself has more noise (for example, lighting glare
in the second image in Figure 2) and occlusions (right side
along the horizontal centerline in the first image in Figure 2).
We can observe that even in very crowded scenes, when oc-
clusions and noise are less prominent, the estimated aleatoric
uncertainty can be low – for example, the stadium image (the
third image in Figure 2) shows very low aleatoric uncertainty
over the entire image since there are rarely occlusions or per-
spective issues due to the stadium seating configuration.

Conclusion

In this paper, we present a scalable and effective framework
that can incorporate uncertainty quantification in prediction
for crowd counting. The main component of the framework
is combining shared convolutional layers and bootstrap en-
sembles to quantify uncertainty which is decomposed into
epistemic and aleatoric uncertainty. Our proposed frame-
work is generic, independent of the architecture choices,
and also easily adaptable to other CNN based crowd count-
ing methods. The extensive experiments demonstrate that
the proposed method, DUBNet, has the state-of-the-art level

performance on all benchmark datasets considered, and pro-
duces calibrated and meaningful uncertainty estimates.
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Onoro-Rubio, D., and López-Sastre, R. J. 2016. Towards
perspective-free object counting with deep learning. In European
Conference on Computer Vision, 615–629. Springer.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016. Deep
exploration via bootstrapped dqn. In Advances in neural informa-
tion processing systems, 4026–4034.
Pham, V.-Q.; Kozakaya, T.; Yamaguchi, O.; and Okada, R. 2015.
Count forest: Co-voting uncertain number of targets using random
forest for crowd density estimation. In Proceedings of the IEEE
International Conference on Computer Vision, 3253–3261.

Platt, J., et al. 1999. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods. Ad-
vances in large margin classifiers 10(3):61–74.
Ranjan, V.; Le, H.; and Hoai, M. 2018. Iterative crowd counting.
In Proceedings of the European Conference on Computer Vision
(ECCV), 270–285.
Ryan, D.; Denman, S.; Fookes, C.; and Sridharan, S. 2009. Crowd
counting using multiple local features. In Digital Image Comput-
ing: Techniques and Applications, 2009. DICTA’09., 81–88. IEEE.
Sam, D. B.; Surya, S.; and Babu, R. V. 2017. Switching con-
volutional neural network for crowd counting. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, 6.
Seguı́, S.; Pujol, O.; and Vitria, J. 2015. Learning to count with
deep object features. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 90–96.
Shang, C.; Ai, H.; and Bai, B. 2016. End-to-end crowd counting via
joint learning local and global count. In Image Processing (ICIP),
2016 IEEE International Conference on, 1215–1219. IEEE.
Shi, Z.; Zhang, L.; Liu, Y.; Cao, X.; Ye, Y.; Cheng, M.-M.; and
Zheng, G. 2018. Crowd counting with deep negative correlation
learning. In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 5382–5390.
Simonyan, K., and Zisserman, A. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.
Sindagi, V. A., and Patel, V. M. 2017a. CNN-based cascaded
multi-task learning of high-level prior and density estimation for
crowd counting. In Advanced Video and Signal Based Surveillance
(AVSS), 2017 14th IEEE International Conference on, 1–6. IEEE.
Sindagi, V. A., and Patel, V. M. 2017b. Generating high-quality
crowd density maps using contextual pyramid CNNs. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1861–1870.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.
Wang, L., and Yung, N. H. 2009. Crowd counting and segmenta-
tion in visual surveillance. In Image Processing (ICIP), 2009 16th
IEEE International Conference on, 2573–2576. IEEE.
Wang, C.; Zhang, H.; Yang, L.; Liu, S.; and Cao, X. 2015. Deep
people counting in extremely dense crowds. In Proceedings of the
23rd ACM international conference on Multimedia, 1299–1302.
ACM.
Wang, Q.; Gao, J.; Lin, W.; and Yuan, Y. 2019. Learning from
synthetic data for crowd counting in the wild. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
8198–8207.
Zhang, C.; Li, H.; Wang, X.; and Yang, X. 2015. Cross-scene
crowd counting via deep convolutional neural networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2015 IEEE Confer-
ence on, 833–841. IEEE.
Zhang, Y.; Zhou, D.; Chen, S.; Gao, S.; and Ma, Y. 2016. Single-
image crowd counting via multi-column convolutional neural net-
work. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 589–597.
Zhang, S.; Wu, G.; Costeira, J. P.; and Moura, J. M. 2017. FCN-
RLSTM: Deep spatio-temporal neural networks for vehicle count-
ing in city cameras. In Computer Vision (ICCV), 2017 IEEE Inter-
national Conference on, 3687–3696. IEEE.

11806


