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Abstract

We present a simple and effective image super-resolution al-
gorithm that imposes an image formation constraint on the
deep neural networks via pixel substitution. The proposed al-
gorithm first uses a deep neural network to estimate interme-
diate high-resolution images, blurs the intermediate images
using known blur kernels, and then substitutes values of the
pixels at the un-decimated positions with those of the corre-
sponding pixels from the low-resolution images. The output
of the pixel substitution process strictly satisfies the image
formation model and is further refined by the same deep neu-
ral network in a cascaded manner. The proposed framework
is trained in an end-to-end fashion and can work with exist-
ing feed-forward deep neural networks for super-resolution
and converges fast in practice. Extensive experimental results
show that the proposed algorithm performs favorably against
state-of-the-art methods.

1 Introduction
Single image super-resolution (SR) aims to estimate a high
resolution (HR) image from a low resolution (LR) image.
It is a classical image processing problem and has received
active research efforts in the vision and graphics community
within the last decade. The renewed interest is due to the
widely-used high-definition devices in our daily life, such
as iPhoneXS (2436×1125), Pixel3 (2960×1440), iPad Pro
(2732×2048), SAMSUNG Galaxy note9 (2960×1440), and
4K UHDTV (4096 × 2160). There is a great need to super-
resolve existing LR images so that they can be pleasantly
viewed on high-definition devices.

Recently significant progress has been made by using
convolutional neural networks (CNNs) in a regression way.
For example, numerous methods (Dong et al. 2014; Kim,
Lee, and Lee 2016a; 2016b; Shi et al. 2016; Lim et al. 2017;
Ledig et al. 2017; Dong, Loy, and Tang 2016; Zhang et al.
2018c) develop feed-forward networks with advanced net-
work architectures (e.g., residual network (He et al. 2016),
attention model (Zhang et al. 2018a)) or optimization strate-
gies to learn the LR-to-HR mapping. These methods are effi-
cient and outperform conventional hand-crafted prior-based
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Figure 1: Super-resolution result (×4). Our algorithm uses
the image formation of super-resolution to constrain a deep
neural network via pixel substitution, which generates the
images satisfying the image formation model and better re-
covers structural details.

methods by large margins. However, as the SR problem is
highly ill-posed, using feed-forward networks may not be
sufficient to estimate the LR-to-HR mapping. In particular,
the reconstructed HR images often do not strictly satisfy the
image formation model of SR.

To address this issue, several methods improve feed-
forward networks with feedback schemes, such as re-
implementing iterative back-projection method (Irani and
Peleg 1991) by deep CNNs (Haris, Shakhnarovich, and
Ukita 2018), using deep CNNs as image priors to constrain
the solution space in a variational setting (Zhang et al. 2017),
using the image formation model in a feedback step to con-
strain the training process (Pan et al. 2018). However, these
algorithms all regenerate LR images from the reconstructed
intermediate HR results. The downsampling operation leads
to information loss and thus makes these algorithms hard to
estimate the details and structures (e.g., Figure 1(f)).

We note that the LR image is usually assumed to be ob-
tained by a convolution followed by a downsampling pro-
cess on the HR image. Under this assumption, at the un-
decimated positions, the LR image should have the same
pixel values as the blurred HR image which is obtained by
applying a convolution operation to the clear HR image.
Thus, we should impose this image formation constraint in
the network architecture to generate high-quality images.

However, it is challenging to apply the hard image forma-
tion constraint to deep neural networks, because it requires
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a feedback loop. To this end, we propose a cascaded archi-
tecture to efficiently learn the network parameters. The al-
gorithm first generates an intermediate HR image by a deep
neural network and then uses the LR image to update the in-
termediate HR image based on the image formation process.
The updated intermediate HR image is further refined by the
same deep neural network. Extensive experiments show that
the proposed algorithm based on this cascaded manner con-
verges quickly and can generate high-quality images with
clear structures.

2 Related Work

We briefly discuss methods most relevant to this work and
refer interested readers to (Yang, Ma, and Yang 2014) for
comprehensive reviews.

The method by (Dong et al. 2014) is the first to develop
a CNN method for SR, named as SRCNN. Kim et al. show
that the SRCNN algorithm is less effective at recovering im-
age details and propose a residual learning algorithm using
a 20-layer CNN (Kim, Lee, and Lee 2016a). In (Kim, Lee,
and Lee 2016b), Kim et al. introduce a deep recursive con-
volutional network (DRCN) using recursive-supervision and
skip connections. The recursive learning algorithm is fur-
ther improved by (Tai, Yang, and Liu 2017), where both
global and local learning are used to increase the perfor-
mance. However, these methods usually upscale LR images
to the desired spatial resolution using bicubic interpolation
as input to a network, which is less effective for the details
restoration as the bicubic interpolation method usually re-
moves details (Shi et al. 2016).

As a remedy, the sub-pixel convolutional layer (Shi et
al. 2016) or deconvolution layer (Dong, Loy, and Tang
2016) are developed based on SRCNN. In (Lai et al. 2017),
the Laplacian Pyramid Super-Resolution Network (Lap-
SRN) is proposed to predict sub-band residuals on vari-
ous scales progressively. Based on the sub-pixel convolu-
tional layer, several algorithms develop the networks with
advanced architectures and strategies, e.g., dense skip con-
nection (Tong et al. 2017; Zhang et al. 2018c), dual-state
recurrent models (Han et al. 2018), residual channel at-
tention method (Zhang et al. 2018a). These algorithms are
effective for super-resolving LR images but usually tend
to smooth some structural details. To generate more re-
alistic images, Generative Adversarial Networks (GANs)
with both pixel-wise and perceptual loss functions have
been used to solve the SR problem (Ledig et al. 2017;
Sajjadi, Scholkopf, and Hirsch 2017). Recent work (Bulat,
Yang, and Tzimiropoulos 2018) first uses GANs to gener-
ate more realistic training images then trains GANs with the
generated training images for SR. Motivated by the genera-
tive network in (Ledig et al. 2017), the method by (Lim et
al. 2017) removes some unnecessary non-linear active func-
tions in the generator (Ledig et al. 2017) and propose an En-
hanced Deep Super-Resolution (EDSR) network to super-
resolve images. However, all these methods directly pre-
dict the nonlinear LR-to-HR mapping based on feed-forward
networks. They do not explore the domain knowledge of the
SR problem and tend to fail at recovering fine image details.

To generate high-quality images that satisfy the image for-
mation constraint, Wang et al. propose a sparse coding net-
work (SCN) based on the sparse representation prior (Wang
et al. 2015). In (Zhang et al. 2017), Zhang et al. learn a CNN
as an image prior to constrain the iterative back-projection
algorithm (Irani and Peleg 1991). More recently, the deep
neural networks with feedback schemes have been used in
SR. Haris et al. improve the conventional iterative back-
projection algorithm using CNNs (Haris, Shakhnarovich,
and Ukita 2018). Pan et al. propose a GAN model with an
image formation constraint for image restoration (Pan et al.
2018). However, these algorithms need to regenerate low-
resolution images in the feedback step which accordingly in-
crease the difficulty for the details and structures restoration.
Moreover, the image formation in these methods is used as
a soft constraint, which does not directly help the SR re-
sults (Pan et al. 2018). Using the image formation as a hard
constraint is first introduced by (Shan et al. 2008) in the vari-
ational framework. This method (Shan, Jia, and Agarwala
2008) uses the pixel substitution to ensure that the gener-
ated SR results satisfy the image formation of SR in a hard
way. However, it cannot effectively recover the details and
structures as only the sparsity of gradient prior is used.

In this work, we revisit the idea of pixel substitution to
impose the hard image formation constraint in a deep neural
network. The proposed algorithm explores the information
from both HR images and LR inputs by a deep neural net-
work in a regression way and is able to generate the results
satisfying the image formation model, thus facilitating the
high-quality image restoration.

3 Image Formation Process

We first describe the image formation process of the SR
problem and then derive the image formation constraint.
Given a HR image I , the process of generating the LR image
L is usually defined as

L =↓s (k ⊗ I), (1)

where k denotes the blur kernel, ⊗ denotes the convolution
operator, and ↓s denotes the downsampling operation with a
scale factor s. Mathematically, this image formation process
can be rewritten as

L = DKI, (2)
where K denotes the filtering matrix corresponding to the
blur kernel k; D denotes the downsampling operation; L and
I denote the vector forms of L and I .

Applying the upsampling matrix, i.e., D�, we have

D�L = D�DKI, (3)

where D�D is a selection matrix which is defined as

D�D(x, y) =

{
1, x = y = ds,
0, otherwise, (4)

where x and y denote pixel locations; d = {1, . . . , P}, and
P denotes the number of the pixels in L. If D�D(x, x) = 1,
we denote x as the un-decimated position. The constraint (3)
indicates that the pixel value of x in L is equal to the pixel
value of sx in the blurred high resolution image B = KI
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Figure 2: An overview of the proposed method. The image formation constraint is enclosed in the dotted red box, which is used
to constrain a deep CNN for super-resolution. At each stage, our algorithm first generates an intermediate HR image I by a deep
CNN model and updates the intermediate HR image I according to the image formation of SR by the pixel substitution (5).
The updated image B̂ is then taken as an input for the next stage. The network is solved in a cascaded manner and generates
better high-quality images.

Table 1: Network parameters. ResBlock denotes the residual
block (He et al. 2016) which is used in (Lim et al. 2017).

Layers Conv1 ResBlock Conv2 Conv3
Filter size 3 3 3 3
Filter numbers 256 256 256 3
Stride 1 1 1 1

at the un-decimated positions. In the following, we will use
the image formation constraint (3) to guide our SR algorithm
so that it can generate high-resolution images satisfying this
constraint.

4 Proposed Algorithm

The analysis above inspires us to use the image forma-
tion process to constrain the deep neural networks for SR.
Specifically, we first generate an intermediate HR image I
from a LR image L by a deep neural network. Then we ap-
ply the convolution kernel to I and use pixel substitution
(Section 4.2) to enforce the image formation constraint in
the feedback step, as shown in Figure 2. In the following,
we will explain the details of the proposed algorithm.

4.1 Intermediate HR image estimation

The effectiveness of using deep CNNs to super-resolve im-
ages has been extensively validated in SR problems. Our
goal here is not to propose a novel network structure but
to develop a new framework to constrain the generated SR
results using the image formation process. Thus, we can use
an existing network architecture, such as EDSR (Lim et al.

2017), SRCNN (Dong et al. 2014), and VDSR (Kim, Lee,
and Lee 2016a). In this paper, we use similar network ar-
chitecture by (Lim et al. 2017) as our HR image estimation
sub-network. Figure 2 shows the proposed network architec-
ture for one stage of the proposed cascaded approach. The
parameters of the network are shown in Table 1, where we
use 32 ResBlocks and 0.1 as the residual scaling factor (Lim
et al. 2017).

4.2 Pixel substitution

Let I be the output of the HR image estimation sub-network.
If I is the ground truth HR image, the equality in the SR
formation model (3) strictly holds. Thus, to enforce the in-
termediate HR image I to be close to the ground truth HR
image, we adopt the pixel substitution operation (Shan et
al. 2008). Specifically, we first obtain the upsampled image
D�L by applying the upsampling matrix D� to the LR im-
age L. Then we obtain the blurred intermediate HR image
B and by applying the blur kernel K to the intermediate HR
image I. The output of the pixel substitution operation is

B̂(x) =

{
D�L(x), x = ds,
B(x), otherwise. (5)

Empirically, we find that the approximation scheme for im-
age formation process converges well, as shown in the sup-
plemental material.

4.3 Cascaded training

As the proposed algorithm consists of both intermediate HR
image estimation and pixel substitution, we perform these
two steps in a cascaded manner. Let Θ denote the model pa-
rameters of the proposed network, and {Ln, Ingt}Nn=1 denote
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Table 2: Quantitative evaluations of the state-of-the-art super-resolution methods on the benchmark datasets (Set5, Set14, B100,
Urban100, Manga109, and DIV2K) in terms of PSNR and SSIM.

Set5 Set14 B100 Urban100 Manga109 DIV2K (validation)
Algorithms Scale PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Bicubic ×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339 32.45/0.9040
A+ ×2 36.54/0.9544 32.28/0.9056 31.21/0.8863 29.20/0.8938 35.37/0.9680 34.56/0.9330
SRCNN ×2 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663 34.59/0.9320
FSRCNN ×2 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710 34.74/0.9340
VDSR ×2 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750 35.43/0.9410
LapSRN ×2 37.52 0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740 35.31/0.9442
MemNet ×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740 NA/NA
DRCN ×2 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.57/0.9730 35.45/0.940
EDSR ×2 38.19/0.9609 33.92/0.9195 32.35/0.9019 32.97/0.9358 39.20/0.9783 36.56/0.9485
RDN ×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780 36.52/0.9483
DBPN ×2 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775 36.37/0.9475
Ours ×2 38.26/0.9614 33.99/0.9200 32.37/0.9020 33.09/0.9365 39.26/0.9784 36.60/0.9487

Bicubic ×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556 29.66/0.8310
A+ ×3 32.58/0.9088 29.13/0.8188 28.29/0.7835 26.03/0.7973 29.93/0.9120 31.09/0.8650
SRCNN ×3 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117 31.11/0.8640
FSRCNN ×2 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210 31.25/0.8680
VDSR ×3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340 31.76/0.8780
LapSRN ×3 33.82/0.9227 29.87/0.8320 28.82/0.7980 27.07/0.8280 32.21/0.9350 31.22/0.8600
MemNet ×3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369 NA/NA
DRCN ×3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 30.97/0.8860 31.79/0.8770
EDSR ×3 34.68/0.9293 30.52/0.8462 29.26/0.8096 28.81/0.8658 34.19/0.9485 32.75/0.8933
RDN ×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484 32.73/0.8929
Ours ×3 34.75/0.9298 30.61/0.8466 29.29/0.8102 28.97/0.8683 34.14/0.9490 32.79/0.8939

Bicubic ×4 28.42/0.8104 26.00/0.7027 25.96 0.6675 23.14/0.6577 24.89/0.7866 28.11/0.7750
A+ ×4 30.28/0.8603 27.32/0.7491 26.82/0.7087 24.32/0.7183 27.03/0.8510 29.28/0.8090
SRCNN ×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555 29.33/0.8090
FSRCNN ×4 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610 29.36/0.8110
VDSR ×4 31.35/0.8830 28.02/0.7680 27.29/0.0726 25.18/0.7540 28.83 0.8870 29.82/0.8240
LapSRN ×4 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900 29.88/0.8250
MemNe ×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942 NA/NA
DRCN ×4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.97/0.8860 29.83/0.8230
EDSR ×4 32.48/0.8985 28.80 0.7876 27.72/0.7419 26.65/0.8032 31.03/0.9156 30.73/0.8445
RDN ×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151 30.71/0.8442
DBPN ×4 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137 30.66/0.8424
Ours ×4 32.56/0.8995 28.80/0.7882 27.73/0.7422 26.72/0.8053 31.06/0.9169 30.74/0.8450

a set of N training samples. Following (Lim et al. 2017), we
use the L1 norm as the loss function:

J (Θ) =
1

N

N∑
n=1

T∑
t=1

‖Int − Ingt‖1, (6)

where Int is the output of the network at the t-th stage (it-
eration) and T denotes the number of stages. We learn the
model parameter Θ from {Ln, Ingt}Nn=1 by minimizing the
loss function (6).

5 Experimental Results

We examine the proposed algorithm using publicly avail-
able benchmark datasets and compare it to state-of-the-art
single image SR methods. Due to the extensive experiments
performed, we only show a small portion of the results in
the main paper. Please see the supplementary document for
more results.

5.1 Parameter settings and training data

In the learning process, we use the ADAM opti-
mizer (Kingma and Ba 2014) with parameters β1 = 0.9,
β2 = 0.999, and ε = 10−8. The minibatch size is set to be
1. The learning rate is initialized to be 10−4. We use a Gaus-
sian kernel in (3) with the same settings used in (Shan et
al. 2008). We empirically set T = 3 as a trade-off between
accuracy and speed. In the first stage, we use the same up-
sampling layer as (Lim et al. 2017) to upsample the features
before the Conv3 layer.

For fair comparisons, we first follow standard protocols
adopted by existing methods (e.g., (Haris, Shakhnarovich,
and Ukita 2018; Lim et al. 2017; Zhang et al. 2018b;
2018c)) to generate LR images using bicubic downsampling
from the DIV2K dataset (Timofte et al. 2017) for training
and use the Set5 (Bevilacqua et al. 2012) as the validation
test set. Then, we evaluate the effectiveness of our algorithm
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Figure 3: Visual comparisons for 4× SR from the Urban100 dataset. The proposed algorithm generates much better results with
fine detailed structures.

Figure 4: Results on real example (×4). The proposed method recovers much clearer images with better detailed structures.

when LR images are obtained with different image forma-
tion models of SR in Section 6. We implement our algo-
rithm based on the PyTorch version of (Lim et al. 2017).
The code and trained models are publicly available on the
authors websites.

5.2 Comparisons with the state of the art

To evaluate the performance of the proposed algorithm,
we compare it against state-of-the-art algorithms including
A+ (Timofte, Smet, and Gool 2014), SRCNN (Dong et al.
2014), FSRCNN (Dong, Loy, and Tang 2016), VDSR (Kim,
Lee, and Lee 2016a), LapSRN (Lai et al. 2017), Mem-
Net (Tai et al. 2017), DRCN (Kim, Lee, and Lee 2016b),
DRRN (Tai, Yang, and Liu 2017), EDSR (Lim et al.
2017), RDN (Zhang et al. 2018c), and DBPN (Haris,
Shakhnarovich, and Ukita 2018). We use the benchmark
datasets: Set5 (Bevilacqua et al. 2012), Set14 (Zeyde,
Elad, and Protter 2010), B100 (Martin et al. 2001), Ur-
ban100 (Huang, Singh, and Ahuja 2015), Manga109 (Mat-
sui et al. 2017), and DIV2K (validation set) (Timofte et al.
2017) to evaluate the performance. These datasets contain
different image diversities, e.g., the Set5, Set14, and B100
datasets consist of natural scenes; Urban100 mainly con-
tains urban scenes with details in different frequency bands;
Manga109 is a dataset of Japanese manga; DIV2K (valida-
tion set) contains 100 natural images with 2K resolution. We

use the PSNR and SSIM to evaluate the quality of each re-
covered image.

Table 2 summarizes the quantitative results on these
benchmark datasets for the upsampling factors of 2, 3, and
4. Overall, the proposed method performs favorably against
the state-of-the-art methods.

Figure 3 shows SR results with a scale factor of 4 by
the evaluated methods. The results by the feed-forward
models (Dong et al. 2014; Dong, Loy, and Tang 2016;
Kim, Lee, and Lee 2016a; Lai et al. 2017; Lim et al. 2017;
Zhang et al. 2018c) do not recover the structures well. The
DBPN algorithm (Haris, Shakhnarovich, and Ukita 2018)
adopts a feedback network to super-resolve images using in-
formation from the LR images. However, this method needs
to regenerate LR featrues from intermediate HR features.
Consequently, the information at un-decimated pixels would
get lost, which makes it hard to estimate the details and
structures. The results in Figure 3(j) show that the structures
of the images super-resolved by the DBPN method are not
recovered well. In contrast, the proposed method recovers
finer image details and structures than the state-of-the-art al-
gorithms.

Real examples. We further evaluate our algorithm using real
images (Figure 4). Our algorithm generates much clearer im-
ages with better detailed structures than those by the state-
of-the-art methods (Kim, Lee, and Lee 2016a; Dong et al.

11811



Figure 5: Effectiveness of the image formation constraint
(×4). The image formation plays an important role for the
details and structures estimation.

Table 3: Effectiveness of the image formation constraint in
SR with the scale factor 2. “w/ only one stage” means the
baseline method (Lim et al. 2017). “Stage 1”, “Stage 2”,
“Stage 3” denote the intermediate results from stages 1, 2,
and 3 of the proposed method, respectively. Other notations
are detailed in the main context.

Dataset Set5 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

w/o conv. & (5) 38.20/0.9612 32.33/0.9017 32.78/0.9347 39.07/0.9780
w/ only one stage 38.19/0.9609 32.35/0.9019 32.97/0.9358 39.20/0.9783
one stage with (7) 38.22/0.9613 32.33/0.9014 32.82/0.9351 39.00/0.9777
Stage 1 38.23/0.9613 32.34/0.9017 32.86/0.9350 39.15/0.9782
Stage 2 38.27/0.9614 32.36/0.9020 33.04/0.9362 39.26/0.9784
Stage 3 38.26/0.9614 32.37/0.9020 33.09/0.9365 39.26/0.9784

2014; Lai et al. 2017; Lim et al. 2017). For example, all
the four letters in our result are legible, especially “A” (Fig-
ure 4(i)).

6 Analysis and Discussions

We have shown that enforcing the image formation con-
straint using pixel substitution leads to an algorithm that out-
performs state-of-the-art methods. To better understand the
proposed algorithm, we perform further analysis, compare it
with related methods, and discuss its limitations.

Effectiveness of the image formation constraint. As our
cascaded architecture uses a basic SR network several times,
one may wonder whether the performance gains merely
come from the use of a larger network. To answer this ques-
tion, we remove the pixel substitution step from our cas-
caded network architecture (denoted as “w/o conv. & (5)”)
for fair comparisons. The comparisons in Figure 5(d) and (f)
demonstrate the benefit of using the image formation con-
straint in generating clearer images with finer details and
structures. We note that there is little performance improve-
ment by simply cascading a basic SR network several times
to increase the network capacity (Figure 5(d)). The results
in Table 3 show that using the image formation constraint of
SR consistently improves SR results, which further demon-
strates the effectiveness of this constraint.

Figure 7 shows some intermediate HR images from the
proposed method. We note that the structural details are bet-
ter recovered with more stages. This further demonstrates

Figure 6: Comparisons of the results by different back-
projection methods (×4). The DBPN method based on the
iterative back-projection algorithm (Irani and Peleg 1991) is
less effective for the edges restoration due to the additional
downsampling operation.

that using the image formation constraint in a deep CNN
helps the restoration of the structural details.

As the proposed network architectures are similar to those
used in (Lim et al. 2017), the proposed algorithm with only
one stage would reduce to the feed-forward model (Lim et
al. 2017) to some extent. Both the quantitative evaluations in
Table 3 and comparisons in Figure 5(c) show that only using
one feed-forward model does not generate high-quality HR
images.

We further note that an alternative approach is to add the
image formation model (1) to the loss function to constrain
the network training instead of using feedback scheme,
where the new loss function is defined as

�p(I; Igt;L) = ‖I − Igt‖1 + λ‖ ↓s (k ⊗ I)− L‖1, (7)
where λ is a weight parameter. We empirically set λ = 0.01
for fair comparisons in this paper. We denote this baseline
method as “one stage with (7)”. We quantitatively evalu-
ate this baseline model on the benchmark datasets. Both the
quantitative results in Table 3 and visual comparison (Fig-
ure 5(e)) demonstrate that adding the image formation loss
to the overall loss function does not always improve the per-
formance.
Closely-related methods. Several notable methods (Haris,
Shakhnarovich, and Ukita 2018; Shan et al. 2008) improve
the back-projection algorithm (Irani and Peleg 1991) for sin-
gle image SR. The DBPN algorithm (Haris, Shakhnarovich,
and Ukita 2018) extends the back-projection method (Irani
and Peleg 1991) using a deep neural network. It needs a
downsampling operation after obtaining intermediate HR
images in the feedback stage. As the information at un-
decimated pixels of the intermediate HR images may be
lost due to the downsampling operation, DBPN is less effec-
tive at recovering details and structures (Figure 6(e)). The
method (Shan et al. 2008) first proposes pixel substitution to
enforce the image formation constraint in an iterative opti-
mization scheme. However, this method cannot effectively
restore the edges and textures (Figure 6(d)) because only the
sparsity of gradient prior is used. In contrast, our algorithm
uses pixel substitution to constrain the deep CNN. Both the
edges and textures are well recovered (see Figure 6(f)).
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Table 4: Evaluations of the regenerated LR images (×2).
Dataset Set5 B100 Urban100 Manga109

PSNR/MSE PSNR/MSE PSNR/MSE PSNR/MSE
DBPN 61.60/0.0462 60.07/0.0704 59.00/0.0944 60.41/0.0658
Ours 72.06/0.0045 66.29/0.0264 65.04/0.0360 67.56/0.0189

Table 5: Results (×2) on “Set5” with noisy input images.
Noise level 1% 2% 3% 4%
EDSR 38.19/0.9610 35.96/0.9387 35.03/0.9272 34.30/0.9179
RDN 38.16/0.9609 35.69/0.9382 35.02/0.9272 34.20/0.9176
Ours 38.21/0.9611 36.01/0.9389 35.06/0.9275 34.34/0.9184

We further examine whether the estimated HR images sat-
isfy the image formation constraint. To this end, we apply
the image formation to the estimated HR images to generate
the LR images and use the PSNR and mean squared error
(MSE) as the metrics. The MSE values in Table 4 indicate
that the results generated by the proposed method satisfy the
image formation model well.

Robustness to general degradation models of SR. We
have shown that using the image formation constraint can
make the deep CNNs more compact thus facilitating the SR
problem when the degradation model is approximated by
the Bicubic downsmapling operation in Section 5.1. We fur-
ther evaluate the proposed algorithm when the degradation
model is approximated by the Bicubic downsmapling with
noise. To generate LR images for training, we add Gaussian
noise to each LR image used in Section 5.1, where the noise
level ranges from 0 to 10%. Table 5 shows that our algo-
rithm is robust to image noise due to the cascaded optimiza-
tion method. More results about other degradation models
are included in the supplementary document.

All above results on both synthetic and real-world im-
ages demonstrate that the proposed algorithm can generalize
well even though the image formation constraint is based on
known blur kernels.

Limitations. As our algorithm uses a cascaded architecture,
it increases the computation. We examine the running time
of the proposed algorithm and compare it with state-of-the-
art methods on the Set5 dataset, as shown in Table 6. Al-
though the proposed algorithm is able to generate better
results, it takes slightly more running time compared with
the feed-forward models, e.g., (Kim, Lee, and Lee 2016a;
Lim et al. 2017).

In addition, as our algorithm uses the known image forma-
tion of SR to approximate the unknown degradation model
of SR, it is less effective when this approximation does not
hold. Figure 8 shows an example with significant JPEG com-
pression artifacts, where the image formation model of SR
does not approximate the degradation caused by the image
compression well. Our algorithm exacerbates the compres-
sion artifacts, while the results by the feed-forward models
have few artifacts. Building the compression process into the
network architecture is likely to reduce these artifacts.

Figure 7: Effectiveness of the proposed cascaded algorithm
(×4). (c) denotes the results with only one stage. (d)-(f) de-
note the intermediate HR images from stage 1, 2, and 3, re-
spectively.

Figure 8: The proposed algorithm is less effective when the
image formation of SR does not hold. Using the image for-
mation of SR to super-resolve images with JPEG compres-
sion artifacts would exaggerate the artifacts (Best viewed on
high-resolution display with zoom-in).

Table 6: Running time performance on the Set5 dataset with
a scale factor of 2. The testing environment is on a ma-
chine with an Intel Core i7-7700 CPU and an NVIDIA GTX
1080Ti GPU.

Methods VDSR EDSR RDN DBPN Ours
Running time (/s) 0.41 1.22 3.31 0.42 6.70

7 Concluding Remarks

We have introduced a simple and effective super-resolution
algorithm that exploits the image formation constraint. The
proposed algorithm first uses a deep CNN to estimate an
intermediate HR image and then uses pixel substitution to
enforce the intermediate HR image to satisfy the image for-
mation model at the un-decimated pixel positions. Our cas-
caded architecture can be applied to existing feed-forward
super-resolution networks. Both quantitative and qualitative
results show that the proposed algorithm performs favorably
against state-of-the-art methods.
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