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Abstract

Action recognition has been a widely studied topic with a
heavy focus on supervised learning involving sufficient la-
beled videos. However, the problem of cross-domain action
recognition, where training and testing videos are drawn from
different underlying distributions, remains largely under-
explored. Previous methods directly employ techniques for
cross-domain image recognition, which tend to suffer from
the severe temporal misalignment problem. This paper pro-
poses a Temporal Co-attention Network (TCoN), which
matches the distributions of temporally aligned action fea-
tures between source and target domains using a novel cross-
domain co-attention mechanism. Experimental results on
three cross-domain action recognition datasets demonstrate
that TCoN improves both previous single-domain and cross-
domain methods significantly under the cross-domain setting.

Introduction
Action recognition has long been studied in the computer vi-
sion community because of its wide range of applications in
sports (Soomro and Zamir 2014), healthcare (Ogbuabor and
La 2018), and surveillance systems (Ranasinghe, Al Ma-
chot, and Mayr 2016). Recently, motivated by the success of
deep convolution networks in tasks on still images, such as
image recognition (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016) and object detection (Girshick 2015; Ren et
al. 2015), various deep architectures (Wang et al. 2016; Tran
et al. 2015) have been proposed for video action recognition.
When large amounts of labeled videos are available, deep
learning methods can achieve state-of-the-art performance
on several benchmarks (Kay et al. 2017; Kuehne et al. 2011;
Soomro, Zamir, and Shah 2012).

Although current action recognition approaches achieve
promising results, they mostly assume that the testing data
follows the same distribution as the training data. Indeed,
the performance of these models degenerate significantly
when applied to datasets with different distributions due to
domain shift. This greatly limits the application of current
action recognition models. An example of domain shift is il-
lustrated in Fig. 1, in which the source video is from a movie
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Figure 1: Illustration of our proposed temporal co-attention
mechanism. Since different video segments represent dis-
tinct action stages, we propose to align segments that have
similar semantic meanings. Key segment pairs that are more
similar (denoted by thicker arrows) are assigned higher co-
attention weights, thus contributing more during the cross-
domain alignment stage. Here we show two samples with the
action Archery from HMDB51 (left) and UCF101 (right).

while the target video depicts a real-world scene. The chal-
lenge of domain shift motivates the problem of cross-domain
action recognition, where we have a target domain that con-
sists of unlabeled videos and a source domain that consists
of labeled videos. The source domain is related to the target
domain but is drawn from a different distribution. Our goal
is to leverage the source domain to boost the performance of
action recognition models on the target domain.

The problem of cross-domain learning, also known as
domain adaptation, has been explored on still image ap-
plications such as image recognition (Long et al. 2015;
Ganin et al. 2017), object detection (Chen et al. 2018), and
semantic segmentation (Hoffman et al. 2017). For still im-
age problems, source and target domains differ mostly on
appearance, and typical methods minimize a distribution
distance within a latent feature space. However, for action
recognition, source and target actions also differ temporally.
For example, actions may appear at different time steps or
last for different lengths in different domains. Thus, cross-
domain action recognition requires matching action feature
distributions between domains both spatially and tempo-
rally. Current action recognition methods typically generate
features per-frame (Wang et al. 2016) or per-segment (Tran
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et al. 2015). Previous cross-domain action recognition meth-
ods directly match segment feature distributions (Jamal et
al. 2018) or with weights based on an attention mechanism
(Chen et al. 2019). However, segment features can only rep-
resent parts of the action and may even be irrelevant to the
action (e.g., background frames). Naively matching segment
feature distributions would ignore the temporal order of seg-
ments and can introduce noisy matchings with background
segments, which may be sub-optimal.

To address this challenge, we propose a Temporal Co-
attention Network (TCoN). We first select segments that are
critical for cross-domain action recognition by investigating
temporal attention, which is a widely used technique in ac-
tion recognition (Sharma, Kiros, and Salakhutdinov 2015;
Girdhar and Ramanan 2017) that helps the model focus on
segments more related to the action. However, the vanilla at-
tention mechanism fails when applied to the cross-domain
setting. This is because many key segments are domain-
specific, as they might not exist in one domain although
they do in the other. Thus when calculating the attention
score for a segment, apart from its self-importance, whether
it matches with those in the other domain should also be
taken into consideration. Only segments that are action-
informative and also common in both domains should be
paid close attention to. This motivates our design a novel
cross-domain co-attention module, which calculates atten-
tion scores for a segment based on both its action informa-
tiveness as well as cross-domain similarity.

We further design a new matching approach by forming
“target-aligned source features” for target videos, which are
derived from source features but aligned with target features
temporally. Concatenating such target-aligned source seg-
ment features in temporal order naturally forms action fea-
tures for source videos that are temporally aligned with tar-
get videos. Then, we match the distributions of the concate-
nated target-aligned source features with the concatenated
target features to achieve cross-domain adaptation. Experi-
mental results show that TCoN outperforms previous meth-
ods on several cross-domain action recognition datasets.

In summary, our main contributions are as follows: (1) We
design a novel cross-domain co-attention module to concen-
trate the model on key segments shared by both domains,
extending the traditional self-attention to cross-domain co-
attention; (2) We propose a novel matching mechanism to
enable distribution matching on temporal-aligned features;
We also conduct experiments on three challenging bench-
mark datasets, and the results suggest that the proposed
TCoN achieves state-of-the-art performance.

Related Work
Video Action Recognition. With the success of deep Con-
volutional Neural Networks (CNNs) on image recognition
(Krizhevsky, Sutskever, and Hinton 2012), many deep ar-
chitectures have been proposed to tackle action recogni-
tion from videos (Feichtenhofer, Pinz, and Zisserman 2016;
Wang et al. 2016; Tran et al. 2015; Carreira and Zisser-
man 2017; Zhou et al. 2018; Lin, Gan, and Han 2018). One
branch of work is based on 2D CNNs. For instance, Two-
Stream Network (Feichtenhofer, Pinz, and Zisserman 2016)

utilizes an additional optical flow stream to better leverage
temporal information. Temporal Segment Network (Wang
et al. 2016) proposes a sparse sampling approach to remove
redundant information. Temporal Relation Network (Zhou
et al. 2018) further presents Temporal Relation Pooling to
model frame relations at multiple temporal scales. Tempo-
ral Shifting Module (Lin, Gan, and Han 2018) shifts feature
channels along the temporal dimension to model temporal
information efficiently. Another branch involves using 3D
CNNs that learn spatio-temporal features. C3D (Tran et al.
2015) directly extends the 2D convolution operation to 3D.
I3D (Carreira and Zisserman 2017) leverages pre-trained 2D
CNNs such as ImageNet pre-trained Inception V1 (Szegedy
et al. 2015) by inflating 2D convolutional filters into 3D.
However, all these works suffer from the spatial and tempo-
ral distribution gap between domains, which imposes chal-
lenges for cross-domain action recognition.

Domain Adaption. Domain Adaptation aims to solve the
cross-domain learning problem. In computer vision, previ-
ous work mostly focuses on still images. These methods
fall into three categories. The first category focuses on min-
imizing distribution distances between source and target do-
mains. DAN (Long et al. 2015) minimizes the MMD dis-
tance between feature distributions. DANN (Ganin et al.
2017) and CDAN (Long et al. 2018) minimize the Jensen-
Shannon divergence between feature distributions with ad-
versarial learning (Goodfellow et al. 2014). The second
category exploits techniques on semi-supervised learning.
RTN (Long et al. 2016) exploits entropy minimization while
Asym-Tri (Saito, Ushiku, and Harada 2017) uses pseudo
labels. The third category groups all the image translation
methods. Hoffman et al. (Hoffman et al. 2017) and Murez
et al. (Murez et al. 2018) translate source labeled images to
the target domain to enable supervised learning there. In this
work, we adapt the first two categories of methods to videos
as there is no sophisticated video translation method yet.

Cross-Domain Action Recognition. Despite the success of
previous domain adaptation methods, cross-domain action
recognition remains largely unexplored. Bian et al. (Bian,
Tao, and Rui 2012) is the first to tackle this problem, which
learns bag-of-words features to represent target videos and
then regularizes the target topic model by aligning topic
pairs across domains. However, their method requires par-
tial target labeled data. Tang et al. (Tang et al. 2016) learns
a projection matrix for each domain to map all features into
a common latent space. Liu et al. (Liu et al. 2019) employs
more domains under the assumption that domains are bijec-
tive and trains the classifier with a multi-task loss. However,
these methods assume deep video-level features available,
which are not yet mature enough. Another work (Jamal et al.
2018) employs the popular GAN-based image domain adap-
tation approach to match segment features directly. Very re-
cently, TA3N (Chen et al. 2019) proposes to attentively adapt
segments that contribute the most to the overall domain shift
by leveraging the entropy of domain label predictor. How-
ever, both deep models suffer from temporal misalignment
between domains since they only match segment features.
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Figure 2: Our proposed TCoN framework. We first generate
source and target features fs and f t with a feature extrac-
tor Gf . The co-attention module uses fs and f t to generate
ground-truth attention scores for source video (as) and pre-
dicted score for target video (ât), which the classifier uses to
make predictions. At the same time, the co-attention module
generates target-aligned source features f̂ t, which the dis-
criminator receives to enable temporally aligned distribution
matching (see Figs. 3 and 4 for details).

Temporal Co-attention Network (TCoN)

Suppose we have a source domain consisting of Ns labeled
videos Ds = {V s

i , yi}Ns
i=1 and a target domain consisting of

Nt unlabeled videos Dt = {V t
i′}Nt

i′=1. The two domains are
drawn from two different underlying distributions ps and pt,
but they are related and share the same label space. We will
also provide analysis for the case where they do not share the
same space in later section. The goal of cross-domain action
recognition is to design an adaptation mechanism to transfer
the recognition model learned from the source domain to the
target domain with a low classification risk.

In addition to the appearance gap similar to the image
case, there are two other main challenges that are specific
to cross-domain action recognition. First, not all frames are
useful under the cross-domain setting. Non-key frames con-
tain noisy background information unrelated to the action,
and even key frames can exhibit different cues for different
domains. Second, current action recognition networks can-
not generate holistic action features for the entire action in
the video. Instead, they produce features of segments. Since
segments are not temporally aligned between videos, it is
hard to construct features for the entire action. To attack
these two challenges, we design a co-attention module to fo-
cus on segments that contain important cues and are shared
by both domains, which addresses the first challenge. We
further leverage the co-attention module to generate tempo-
rally target-aligned source features. This enables distribution
matching on temporally aligned features between domains,
thus addressing the second challenge.

Architecture

Fig. 2 shows the overall architecture of TCoN. During train-
ing, given a source and target video pair, we first partition
each source video into Ks segments and each target video
into Kt segments uniformly. We use vsij to denote the j-th
segment in the i-th source video, and vti′j′ is similarly de-
fined for the target video. Then, we generate features f∗

ij

(∗ ∈ (s, t)) for each segment with a feature extractor Gf ,
which is a 2D or 3D CNN, i.e., f∗

ij = Gf (v
∗
ij). Next, we use

the co-attention module to calculate the co-attention matrix
between this source and target video pair, from which we
further derive the source and target attention score vectors,
as well as the target-aligned source feature f̂ t. Then, the dis-
criminator module performs distribution matching given the
source, target, and target-aligned source features. Finally, a
shared classifier Gy accepts the source and target features
together with their attention scores, to predict the labels ŷ∗i .
For label prediction, we follow the standard practice, where
we first predict per-segment labels and then weighted-sum
segment predictions by attention scores.

Cross-Domain Co-Attention

Co-attention was originally used in NLP to capture the inter-
actions between questions and documents to boost the per-
formance of question answering models (Xiong, Zhong, and
Socher 2016). Motivated by this, we propose a novel cross-
domain co-attention mechanism to capture correlations be-
tween videos from two domains. To the best of our knowl-
edge, this is the first time that co-attention is explored under
the cross-domain action recognition setting.

The goal of the co-attention module is to model relations
between source and target video pairs. As shown in Fig. 3,
given a pair of source and target videos V s

i and V t
i′ , and their

segment features fs
ij |Ks

j=1 and f t
i′j′ |Kt

j′=1, we use k to index
video pairs, i.e., pair(k) = (i, i′), which denotes that video
pair k is composed of the source video V s

i and the target
video V t

i′ . We first calculate a self-attention score vector assi
and atti′ for each video:

assij =
1

Ks − 1

∑

j̄ �=j

〈fs
ij̄ , f

s
ij〉, (1)

atti′j′ =
1

Kt − 1

∑

j̄′ �=j′
〈f t

i′ j̄′ , f
t
i′j′〉, (2)

where assij and atti′j′ are the j-th and j′-th element of assi and
atti′ , respectively. 〈·, ·〉 denotes the inner-product operation.
Self-attention score vectors measure the intra-domain im-
portance of a segment within a video. After we obtain these
self-attention score vectors, we then derive each (j, j′)-th el-
ement of the cross-domain similarity matrix Ast

k as astjj′ =

〈fs
ij , f

t
i′j′〉. Note that for clarity, we drop the pair index k for

astjj′ . Each element astjj′ measures the cross-domain similar-
ity between segment pair vsij and vti′j′ . Finally, we calculate
the cross-domain co-attention score matrix Aco

k by

Aco
k =

(
assi (atti′ )

T
)�Ast

k , (3)
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Figure 3: Structure of the co-attention module. It first cal-
culates the co-attention matrix Aco from source and target
features fs and f t. Then, source (S-G-attention) and target
(T-G-attention) ground-truth attention as and at as well as
target-aligned source features f̂ t are derived from Aco. at
is used to train the target attention network, which predicts
target attention (T-attention) ât for test time use.

where � represents element-wise multiplication. As can be
seen from this process, in the co-attention matrix Aco

k , only
the elements corresponding to those segment pairs vsij and
vti′j′ with high assij , atti′j′ and astjj′ would be assigned high
values, which means that only key segment pairs that are
also common for both domains will be paid high attention
to. Thus, this co-attention matrix effectively reflects the cor-
relations between source and target video pairs. Also, key
segments (those with only high assij or atti′j′ ) or common seg-
ments (those with only high astjj′ ) are not ignored, but paid
less attention to. Only segments that are neither important
nor common are discarded as they are essentially noise and
do not help with the task.

For each segment, we derive attention scores from the
above co-attention matrix by averaging its co-attention
scores with all segments in the other video. We generate the
ground-truth attention asi and ati′ for V s

i and V t
i′ as follows,

as
i =

1

Ms
i

∑

i∈pair(k)

∑

row

Aco
k , (4)

ati′ =
1

M t
i′

∑

i′∈pair(k)

∑

column

Aco
k , (5)

where
∑

row and
∑

column are summation with respect to
rows and columns, respectively. Ms

i is the number of re-
lated pairs to V s

i and M t
i′ is defined similarly. All the atten-

tion vectors sum to 1. Since we should not assume access
to source videos during testing time, we further use an at-
tention network Ga, which is a fully-connected network, to
predict attention scores for target videos:

ât
i′j′ = Ga(f

t
i′j′), (6)

where âti′j′ is the j′-th element of the predicted attention.
We further calculate the loss for the attention network with
supervision from the ground-truth attention:

Ca =
1

Nt

Nt∑

i′=1

La(â
t
i′ ,a

t
i′), (7)

where La is the regression loss. With the source and target
attention, the final classification loss is thus:

f̂ t

f t

fs

Segment-level Discriminator

Video-level Discriminator

Gseg
d

Gv
d

dseg

dv

Ld

Ld

Discriminator

Figure 4: Structure of the discriminator. Source fs and
target-aligned source f̂ t segment features are input to the
segment-level discriminator to ensure that f̂ t does follow
the source feature distribution. Target f t and target-aligned
source f̂ t video features are input to the video-level discrim-
inator to enable temporally aligned distribution matching.

Cy =
1

Ns

Ns∑

i

Ly(

Ks∑

j=1

as
ijGy(f

s
ij), y

s
i )

+
1

Nt

Nt∑

i′
Ly(

Kt∑

j′=1

ât
i′j′Gy(f

t
i′j′), y

t
i′),

(8)

where Ly is the cross-entropy loss for classification. We
train the classifier using source videos with ground-truth la-
bels. Similar to previous work (Saito, Ushiku, and Harada
2017), we also use target videos that have high label predic-
tion confidence as training data, where the predicted pseudo-
labels serve as the supervision. This helps preserve the λ
term in the error bound derived in Theorem 1 in (Ben-David
et al. 2007). Note that the total number of source and tar-
get video pairs is quadratic to the size of dataset, which is
very large. For efficiency and co-attention with higher qual-
ity, we only calculate co-attention for video pairs with simi-
lar semantic information, i.e., video pairs with similar label
prediction probability (which acts as a soft label).

Temporal Adaptation

Fig. 4 illustrates the video-level discriminator we employ to
match the distributions of target-aligned source and target
video features, and the segment-level discriminator we use
to match target-aligned source and source segment features.

For each pair k of video V s
i and V t

i′ , the target-aligned
source segment feature f̂ t

kj′ |Kt

j′=1 is calculated as follows,

f̂ t
kj′ =

Ks∑

j=1

(Aco
k )jj′f

s
ij , (9)

where (Aco
k )jj′ is the (j, j′)-th element of Aco

k . Note that
after we get Aco

k , we further normalize each column of
it with a softmax function to keep the norm of target-
aligned source features same as source features. Each target-
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aligned source segment feature is thus derived by weighted-
summing source segment features, where the weight is
the co-attention score between the target segment feature
and each source segment feature. Thus, each target-aligned
source segment feature preserves the semantic meaning of
the corresponding target segment and falls on the source dis-
tribution. We concatenate segment features f̂ t

kj′ |Kt

j′=1 as F̂ t
k

and f t
i′j′ |Kt

j′=1 as F t
i′ in temporal order, which then naturally

form as action features. Furthermore, F t
i′ and all correspond-

ing F̂ t
k are strictly temporally aligned since segments at the

same time step express the same semantic meaning.
Then, we can derive the domain adversarial loss to match

video distributions of target-aligned source features and tar-
get features. To further ensure the target-aligned source fea-
tures to fall in the source feature space, we also match
the segment distributions of target-aligned source features
and source features. The loss for the video-level Cdv and
segment-level Cds discriminators are defined as follows,

Cdv =
1

Nt

∑

i′
Ld(G

v
d(F

t
i′), dv) +

1

Nst

∑

k

Ld(G
v
d(F̂

t
k), dv),

(10)

Cds =
1

NsKs

∑

i,j

Ld(G
seg
d (fs

ij), dseg)

+
1

NstKt

∑

k,j′
Ld(G

seg
d (f̂ t

kj′), dseg),
(11)

where Nst is the number of all pairs and Ld is the binary
cross-entropy loss. The video domain label dv is 0 for target-
aligned source features and 1 for target features. The seg-
ment domain label dseg is 0 for target-aligned source seg-
ment features and 1 for target segment features.

Optimization

We perform optimization in the adversarial learning manner
(Ganin et al. 2017). We use θf , θa, θy , θvd and θsegd to denote
the parameters for Gf , Ga, Gy , Gv

d and Gseg
d and optimize:

min
θf ,θa,θy

Cy + λaCa − λd(Cdv − Cds), (12)

min
θv
d
,θ

seg
d

Cdv + Cds, (13)

where λa and λd are trade-off hyper-parameters.
With the proposed Temporal Co-attention Network that

contains an attentive classifier as well as a video- and a
segment-level adversarial networks, we can simultaneously
align the source and target video distributions while also
minimize the classification error within both source and tar-
get domains, thus address the cross-domain action recogni-
tion problem in an effective way.

Experiments

Most prior work was done on small-scale datasets
such as (UCF101-HMDB51)1 (Tang et al. 2016),
(UCF101-HMDB51)2 (Chen et al. 2019) and UCF50-
Olympic Sports (Jamal et al. 2018). For fair comparison
with these works, we also evaluate our proposed method
on these datasets. Moreover, we construct a large-scale
cross-domain dataset, namely Jester (S)-Jester (T) (S for

source, T for target), and further conduct experiments
there. For (UCF101-HMDB51)1, (UCF101- HMDB51)2
and UCF50-Olympic Sports, we follow the prior works to
construct the datasets by selecting the same action classes
in two domains, while for Jester, we merge sub-actions into
super-actions and split half of sub-actions into each domain.
Please refer to the supplementary material for full details.

There are different types and extent of domain gap
present in different datasets. For (UCF101-HMDB51)1,
(UCF101-HMDB51)2 and UCF50-Olympic Sports, the do-
main gap is caused by appearance, lighting, camera view-
point, etc., but not the action. Whereas for Jester, the gap
arises from different action dynamics instead of other factors
(since data samples from the same dataset but different sub-
actions constitute a single super-action class). Hence, mod-
els trained on Jester suffer more from the temporal misalign-
ment problem. Together with being at a larger scale, Jester
is considered to be much harder than the other datasets.

We compare TCoN with single-domain methods (TSN
& C3D & TRN) pre-trained on the source dataset, several
cross-domain action recognition methods including a shal-
low learning method CMFGLR (Tang et al. 2016), deep
learning methods DAAA (Jamal et al. 2018) and TA3N
(Chen et al. 2019), as well as a hybrid model which directly
applies state-of-the-art domain adaptation method CDAN
(Long et al. 2018) to videos. We mainly use TSN (Wang et
al. 2016) as our backbone, but for a fair comparison with the
prior work, we also conduct experiments using C3D (Tran
et al. 2015) and TRN (Zhou et al. 2018).

Training Details

For TSN, C3D and TRN, we train on source and test on
target directly. For shallow learning methods, we use deep
features from the source pre-trained model as input. For the
hybrid model, we apply domain discriminator in CDAN to
segment features and the consensus domain discriminator
output of all segments as final output. For DAAA and TA3N,
we use their original training strategy. For TCoN, since the
target attention network is not well-trained at the beginning,
we use uniform attention at the first few iterations and plug
it in when the loss of the attention network is lower than a
certain threshold. To train TCoN more efficiently, we only
calculate co-attention for segment pairs within mini-batchs.

We implement TCoN with the PyTorch framework
(Paszke et al. 2017). We use the Adam optimizer (Kingma
and Ba 2014) and set the batch size to 64. For TSN and
TRN-based models, we adopt the BN-Inception (Ioffe and
Szegedy 2015) backbone pre-trained on ImageNet (Deng
et al. 2009). The learning rate is initialized to 0.0003 and
decreases by 1

10 every 30 epochs. We adopt the same data
augmentation technique as in (Wang et al. 2016). For C3D-
based models, we strictly follow the settings in (Jamal et
al. 2018) and use the same base model (Tran et al. 2015)
pre-trained on Sports-1M dataset (Karpathy et al. 2014). We
initialize the learning rate for the feature extractor to 0.001
while 0.01 for classifier since it is trained from scratch. The
trade-off parameter λd is increased gradually from 0 to 1 as
in DANN (Ganin and Lempitsky 2014). For the number of
segments, We do grid search for each dataset in [1, minimum
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Table 1: Accuracy (%) of TcoN and compared methods on three datasets based on the TSN backbone. R + F denotes the results
obtained by combining predictions from RGB and Flow models, which are calculated by averaging the logits (before softmax)
from RGB and Flow models and then selecting the class with the highest entry in the obtained logits.

Method (HMDB51 → UCF101)1 UCF50 → Olympic Sports Olympic Sports → UCF50 Jester (S) → Jester (T)
RGB Flow R + F RGB Flow R + F RGB Flow R + F RGB Flow R + F

TSN (Wang et al. 2016) 82.10 76.86 83.11 80.00 81.82 81.75 76.67 73.34 74.47 51.70 49.89 50.56
CMFGLR (Tang et al. 2016) 85.14 78.45 84.85 81.06 79.64 80.23 77.43 77.05 78.89 52.52 54.34 53.36
DAAA (Jamal et al. 2018) 88.36 89.93 91.31 88.37 88.16 89.01 86.25 87.00 87.93 56.45 55.92 57.63
CDAN (Long et al. 2018) 90.09 90.96 91.86 90.65 90.46 91.77 90.08 90.13 90.57 58.33 55.09 59.30
TCoN (ours) 93.01 96.07 96.78 93.91 95.46 95.77 91.65 93.77 94.12 61.78 71.11 72.24

Table 2: Accuracy (%) of TCoN and DAAA on two tasks with UCF50-Olympic Sports dataset based on C3D backbone.

Method UCF50 → Olympic Sports Olympic Sports → UCF50
RGB Flow R + F RGB Flow R + F

C3D (Tran et al. 2015) 82.13 ±0.52 81.12 ±0.85 83.05 ±0.65 83.16 ±0.75 81.02 ±0.97 83.79 ±0.82
DAAA (Jamal et al. 2018) 91.60 ±0.18 89.16 ±0.26 91.37 ±0.22 89.96 ±0.35 89.11 ±0.47 90.32 ±0.43
TCoN (ours) 94.73 ±0.12 96.03±0.15 95.92 ±0.14 92.88 ±0.28 94.25 ±0.22 94.77 ±0.25

Table 3: Accuracy (%) of TCoN and TA3N (Chen et al.
2019) based on TRN backbone using only RGB input (U:
UCF50 / UCF101, O: Olympic Sports, H: HMDB51).

Method U → O O → U (U → H)2 (H → U)2 J(S) → J(T)
TA3N 98.15 92.92 78.33 81.79 60.11
TCoN 96.82 96.79 87.24 89.06 62.53

Table 4: Accuracy (%) of TCoN compared with baselines
when non-overlapping classes exist between domains.

Method (HMDB51 → UCF101)all
TSN (Wang et al. 2016) 66.81
TRN (Zhou et al. 2018) 68.07
DAAA (Jamal et al. 2018) 71.45
TCoN (ours) 75.23

video length] on a validation set. Please refer to supplemen-
tary material for the actual numbers.

Experimental Results

The classification accuracies on three datasets using TSN-
based TCoN are shown in Table 1. We can observe that the
proposed TCoN outperforms all baselines on all datasets.
In particular, TCoN improves previous methods with the
largest margin on Jester, where temporal information is
much more important, and temporal misalignment is more
severe. Both CDAN and DAAA use segment features and
minimize the Jensen-Shannon divergence of segment fea-
ture distributions between domains. The higher accuracy of
TCoN demonstrates the importance of temporal alignment
in distribution matching. We also notice that the Flow model
consistently outperforms the RGB model for TCoN, indicat-
ing that TCoN well utilizes temporal information.

We also compare with DAAA (Jamal et al. 2018) under
their experiment setting with the C3D backbone. From Table
2, we can observe that TCoN outperforms DAAA on both
tasks, which further suggests the efficacy of the proposed

Table 5: Accuracy (%) of TCoN and its variants.

Method Jester (S) → Jester (T)
RGB Flow R + F

TCoN - SAdNet 61.23 68.23 71.13
TCoN - TAdNet 58.76 64.56 65.48
TCoN - CoAttn 57.25 56.93 57.95
TCoN - Attn 59.03 62.74 63.13
TCoN 61.78 71.11 72.24

co-attention and distribution matching mechanism.
Moreover, we compare with the state-of-the-art cross-

domain action recognition method TA3N (Chen et al. 2019)
on two datasets they used, namely UCF50-Olympic Sports
and (UCF101-HMDB51)2 (which is slightly different from
(UCF101-HMDB51)1 in 3 out of the 12 shared classes), as
well as Jester. And we use the same backbone TRN (Zhou
et al. 2018) and input modality (RGB) as theirs. The results
from Table 3 show that on the datasets they used, TCoN out-
performs TA3N on 3 out of 4 tasks and on par with it on
the other. Moreover, TCoN achieves better performance on
Jester, which again corroborates that TCoN can well handle
not only the appearance gap but also the action gap.

To test whether our model is robust when the two domains
do not share the same action space during training, we con-
duct experiments on (HMDB51 → UCF101)all, where we
train TCoN on data from all classes in HMDB51, but only
test on the shared classes between two domains (it is impos-
sible to predict those non-overlapping target classes). The
results from Table 4 show that TCoN still outperforms its
baselines, suggesting the robustness of it in this case.

Analysis

Ablation Study. We compare TCoN with its four variants:
(1) TCoN - SAdNet is the variant without the segment-
level discriminator; (2) TCoN - TAdNet is the variant with-
out using target-aligned source features but directly match-
ing the source and concatenated target features with one
discriminator; (3) TCoN - CoAttn is the variant with no
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(a) DAAA segment features (b) TCoN segment features (c) DAAA video features (d) TCoN video features

Figure 5: t-SNE visualization of features from DAAA (Jamal et al. 2018) and our TCoN. The first two figures are segment
features, while the last two are video features. Different colors represent different classes. � stands for source features. ◦
denotes target features. × represents target-aligned source features.

High

Low

Figure 6: Co-attention matrix visualization for a video pair
from UCF50 → Olympic Sports.

co-attention computation. For the attentive classifier, we
use self-attention instead; (4) TCoN - AttnClassifier is
the variant where we directly average the classifier outputs
from all segments instead of weighing them with attention
scores generated from the co-attention matrix. The abla-
tion study results on Jester (S) → Jester (T) are shown in
Table 5, from which we can make the following observa-
tions: (1) TCoN outperforms TCoN-SAdNet on all modali-
ties, demonstrating that the segment feature distribution for
target-aligned source and source features are not exactly the
same and a segment-level discriminator helps match the dis-
tributions; (2) TCoN outperforms TCoN-TAdNet by a large
margin. This proves that target-aligned source features ease
the temporal misalignment problem and improve distribu-
tion matching; (3) TCoN beats TCoN-CoAttn. This verifies
the necessity of co-attention, which reflects both segment
importance and similarity, in cross-domain action recogni-
tion; (4) TCoN outperforms TCoN-Attn, indicating that seg-
ments contribute to the prediction differently and it is crucial
to focus on those informative ones.
Visualization of Co-Attention. We further visualize the co-
attention matrix between a video pair on the UCF50 →
Olympic Sports dataset. The visualization is shown in Fig.

6, where the left video is from the source, and the top video
is from the target. According to the co-attention matrix, we
can observe that the first four frames of the target domain
match the last four frames in the source domain, and the
co-attention matrix assigns high values for these pairs. The
first two frames of the source video show the person prepar-
ing his body for discus throw, which is not actually discus
throw, thus are not considered as key frames. The last two
frames of the target video are for the ending stage of the
action, which are important but do not exist in the source
video. This proves that our co-attention mechanism exactly
focuses attention on segments containing key action parts
that are similar across source and target domains.
Feature Visualization. We also plot the t-SNE embedding
(Donahue et al. 2014) for both segment and video features
for DAAA and TCoN on Jester in Fig. 5(a) - 5(d). For
DAAA, we visualize the source (triangle) and target (cir-
cle) features. For TCoN, we visualize target-aligned source
features (cross) as well. From Fig. 5(a) and 5(b), we can ob-
serve that the segment features from different classes (shown
in different colors) are mixed together, which is expected
since segments cannot represent the entire action. In TCoN,
the distributions of source and target-aligned source segment
features are indistinguishable, demonstrating the effective-
ness of our segment-level discriminator. From Fig. 5(c) and
5(d), we can observe that for video features, TCoN has a
better cluster structure than DAAA. In particular, in Fig.
5(d), those points representing target-aligned source fea-
tures lie between source and target feature points, suggesting
that they actually bridge source and target features together.
This sheds light on how the proposed distribution matching
mechanism draws the target action distribution closer to the
source by leveraging the target-aligned source features.

Conclusion

In this paper, we propose TCoN to address cross-domain
action recognition. We design a cross-domain co-attention
mechanism, which guides the model to pay more attention
to common key frames across domains. We further intro-
duce a temporally aligned distribution matching technique
that enables distribution matching of action features. Exten-
sive experiments on three benchmark datasets verify that our
proposed TCoN achieves state-of-the-art performance.
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