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Abstract

Video understanding is a research hotspot of computer vi-
sion and significant progress has been made on video ac-
tion recognition recently. However, the semantics informa-
tion contained in actions is not rich enough to build powerful
video understanding models. This paper first introduces a new
video semantics: the Behavior Adverb (BA), which is a more
expressive and difficult one covering subtle and inherent char-
acteristics of human action behavior. To exhaustively decode
this semantics, we construct the Videos with Action and Ad-
verb Dataset (VAAD), which is a large-scale dataset with a se-
mantically complete set of BAs. The dataset will be released
to the public with this paper. We benchmark several repre-
sentative video understanding methods (originally for action
recognition) on BA and action recognition. The results show
that BA recognition task is more challenging than conven-
tional action recognition. Accordingly, we propose the BA
Understanding Network (BAUN) to solve this problem and
the experiments reveal that our BAUN is more suitable for
BA recognition (11% better than I3D). Furthermore, we find
these two semantics (action and BA) can propel each other
forward to better performance: promoting action recognition
results by 3.4% averagely on three standard action recogni-
tion datasets (UCF-101, HMDB-51, Kinetics).

Introduction

Recognizing semantic labels in visual data is an essential
computer vision task. It is worth noting that these semantic
labels are part of our language system – we can use lan-
guage to describe these semantics. For example, object de-
tection/recognition (Ren et al. 2015; Redmon and Farhadi
2016) can be considered as exploiting “noun” in visual data.
To understand “verb”, action recognition (Donahue et al.
2015; Wu et al. 2015; Srivastava, Mansimov, and Salakhudi-
nov 2015; Yue-Hei Ng et al. 2015; Karpathy et al. 2014;
Ji et al. 2013) has been extensively studied. Moreover, “ad-
jective” labels (e.g., cool, dark, beautiful) can be explored
through attribute learning (Petrosino and Gold 2010). But till
now, few works have focused on an important kind of words
— “Adverb”, which can properly express the attributes of
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Figure 1: BA examples. As a rich video semantics, BA can
describe the mood, attitude and action attributes. Note that
each BA presents diverse patterns on different actions.

action, as well as the attitude and mood of the subject. From
the viewpoint of language research (White 1991), these con-
cepts convey more sensitive semantics compared with nouns
and verbs, making them a suitable choice for developing
video understanding models! Motivated by these, we pro-
pose a new task: BA recognition (Fig. 1).

Note that the BA recognition task is different from fine-
grained actions task. Compared to fine-grained action cate-
gories, BA categories own different feature space. For exam-
ple, Latin dance can be finely categorized into Rumba, Cha-
cha and so on, which requires the model to extract subtle
dance features, but still action-related features. But for BA,
the model needs to distinguish “professionally” and “ama-
teurishly”, “happily” and “sadly”, which requires the model
to understand the video meticulously and capture relatively
action-irrelevant features since the same BA may present di-
verse movement patterns in different actions.

To dissect this new video semantics, we build a new
benchmark: Videos with Action and Adverb Dataset
(VAAD), containing 150k video clips, covering 2K action-
adverb pairs (e.g., “smoking sadly”) over 200 action cate-
gories described by 51 adverb categories, where three types
of BA that can respectively describe the subject’s mood,
attitude and action attributes (e.g., “quietly” and “easily”)
are included. We highlight three features of VAAD. Firstly,
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there is an average of 11 distinct adverbs modifying each
action (no dull actions that can only be labeled by few ad-
verbs). Secondly, our adverb categories are based on se-
mantics rather than words, for example, we do not take
“smoke sadly” and “smoke sorrowfully” as different cate-
gories. Thirdly, the dataset is multi-labeled, where an action
can be labeled with multiple BAs expressing mood, attitude
and action attributes simultaneously.

As the first attempt, we propose the BA Understanding
Network (BAUN) for this task. Firstly, the mood related
BAs are modeled by extracting facial expression features
of the target person. Secondly, we adopt a Spatial-Temporal
Separated Module (STSM) which extracts the temporal and
spatial features separately to understand the deeper-level
temporal-spatial information. Thirdly, a group of BAs is
hard to recognize such as “inexorably” and “frightenedly”,
which often needs to be identified in conjunction with other
objects in context. To deal with this, we propose the Image
Relation Network (IRN) to explore the relations in the video.
Finally, we utilize the conditional distribution between ac-
tion and BA as prior knowledge to further improve the per-
formance of the multi-task recognition (on action and BA).

We conduct comprehensive experiments to show the chal-
lenge of BA recognition and evaluate our BAUN. Results
reveal that: 1) BA recognition is a challenging task for cur-
rent video understanding models. 2) BAUN enjoys accuracy
gains from the elaborate structure, substantially better than
the 3D CNN model. 3) The two semantics, BA and action,
can propel each other forward to better performance.

We evaluate our BAUN on both BA and action recogni-
tion tasks. For BA recognition, it achieves 11% relative im-
provements on VAAD over I3D model (Carreira and Zis-
serman 2017). For action recognition, accuracy increases
by 2.5% averagely on VAAD, UCF-101 (Soomro, Zamir,
and Shah 2012), HMDB-51 (Kuehne, Jhuang, and others )
and Kinetics (Kay et al. 2017). Furthermore, we transfer the
models pre-trained on VAAD with BA semantics to UCF-
101, HMDB-51 and Kinetics, and performances improve on
action recognition task as expected.

Related Work
Action Datasets and Models Action recognition has made
great progress in the past few years due to many excel-
lent datasets, from small simple datasets like KTH (Laptev
2005) and UCF-101 to large-scale, real-world datasets
such as YouTube-8M (Abu-El-Haija and others 2016),
Sport-1M (Karpathy et al. 2014) and Kinetics (Kay et al.
2017). Some works step to temporal localization. Activi-
tyNet (Caba Heilbron et al. 2015), AVA (Gu, Sun, and others
2017) and Charades (Sigurdsson et al. 2016) contain large
numbers of videos with action labels attached to time (AVA
also involves spatial localization).

For action recognition tasks, some works extract features
from video frames separately and then fuse them together,
where RNN is widely used (Donahue et al. 2015; Wu et
al. 2015; Srivastava, Mansimov, and Salakhudinov 2015;
Pang et al. 2019) and many pooling methods have been de-
veloped (Yue-Hei Ng et al. 2015; Karpathy et al. 2014). An-
other idea is to adopt methods similar to 2D image tasks, in-

cluding C3D (Ji et al. 2013), I3D (Carreira and Zisserman
2017) and SlowFast Network (Feichtenhofer et al. 2018),
which inflate 2D CNNs into 3D, endowing them with an ad-
ditional temporal dimension equally. Besides, other related
works employ methods like optical flow (Simonyan and Zis-
serman 2014), trajectories (Wang et al. 2011), and pose es-
timation (Maji, Bourdev, and Malik 2011) to deal with tem-
poral information.
Video Captioning and Human Expression BA and VAAD
are related to video captioning and expression tasks since
video captioning entails predicting adverbs and many com-
mon emotional adverbs are included in expression tasks. For
video captioning, there are many datasets designed for it,
such as MSR-VTT (Xu et al. 2016), YouTube2Text (Guadar-
rama et al. 2013), and ActivityNet Captions (Krishna et al.
2017). For expression tasks, many models like (Fan et al.
2016) and (Ng et al. 2015) are built on the benchmarks:
Emotiw2016 (Dhall et al. 2016), MMI (Valstar and Pantic
2010) and HUMAINE (Douglas-Cowie et al. 2007). The
expression recognition mainly focuses on faces, while BA
recognition requires recognizing subject’s mood and attitude
from body language, not merely from facial expressions.
Relational Reasoning Structures Relational reasoning is
a fundamental property of intelligent species. Relation Net-
work (Santoro et al. 2017) addresses it by computing a func-
tion on the feature embedding at all pairs of positions in its
input. In (Zhou et al. 2018), the authors focus on exploring
the temporal dependencies among video frames. Moreover,
relation between objects is also adopted to enhance the ob-
ject detection performance (Hu et al. 2018). We adopt the
relation model to explore the interactions among the tar-
get people which are crucial for BA recognition. Unlike the
above works, we do not treat it as a bag model, but instead,
we add positional information into the representation.

Videos with Action and Adverb Dataset

Data Collection The data is collected from the existing
datasets, including the Kinetics, UCF101, and HMDB51.
Defining the BA-Action Lexicon We fix the action list
first, then make the BA list according to it, and finally group
them into BA-action pairs. We adopt language prior knowl-
edge (0.2 million video descriptions) to choose the actions
which are frequently accompanied by adverbs, so that we
can get rid of “dull” actions. To get a relatively complete
list of adverbs, we exploit the Corpus of Contemporary
American English, an authoritative corpus of American En-
glish (Davies 2008) which provides the frequencies of the
commonly used words. Based on the word frequencies, we
choose 113 most frequently used action adverbs. After re-
moving the synonyms, there are 51 adverbs left. We build
BA-action pairs based on the their frequencies provided by
the N-gram data 1. Every action has about 11 appropriate
adverbs and we have 2K adverb-action pairs in total.
Video Annotating Process Annotation is implemented in
human instance level, because some actions like “kiss” and
“hug” involve more than one player, and we need to annotate
them respectively. We propose a semi-automatic annotation

1https://www.ngrams.info/
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Figure 2: Pipeline of our BAUN. 3D Convolution Network takes the RGB/Flow images concatenated with expression features
as inputs and takes charge of extracting short-term temporal-spatial features. Spatial-Temporal Separated Module (STSM) is
adopted to split spatial and temporal features and endow the network with a larger temporal receptive field. Image Relation
Network (IRN) consisting of a RN and 2D positional encoding has a large spatial receptive field and can effectively exploit
the context relations. We stack 3 STSR Modules (N=3) to build the recognition model and the conditional distribution between
action and BA is utilized as constraints in the final classification.

framework to effectively localize human instance, where the
human bounding box is only labeled at the first frame, and
we utilize object tracking model MDNet (Nam and Han
2015), the winner of the VOT-2015 challenge (Kristan et al.
2015) for the following frames. To improve the robustness
of annotation, we adopt the Faster-RCNN (Girshick 2015)
based human detector to adjust tracking bounding box by
averaging the two results. During annotating, the annotator
is only required to monitor the tracking results and correct
them, which greatly reduces the workload of labeling.

BAs are used to depict concepts that are more subjective
than objects and actions. Annotating by only one person may
cause ambiguity. Therefore, each video is assigned to three
different annotators to annotate the BA. We make sure that
those three annotators should possess diverse backgrounds
(e.g., nationality, age, gender, education background). After
annotation, in order to guarantee the labels consistency, we
compare the annotations from the three annotators and rela-
bel the videos suffering large label distance d (>1.6), which
is defined based on Manhattan distance:

dv = avg(
∑

i<j

|av,i − av,j |), (1)

where av,i denotes the i-th annotation of the video v.
Dataset Statistics and Discussion In total, there are 51
BAs, 200 actions, 2K BA-action pairs, and 150K videos
in VAAD. A target person may be annotated with more
than one BA and the average number of BAs per per-
son is 1.81. There are more samples of common adverbs
(such as “happily” or “slowly”) than specific ones (such as
“calmly”). “But this is how it should be! Recognition mod-
els need to operate on realistic “long tailed” action distribu-
tions rather than being scaffolded using artificially balanced
datasets.” (Gu, Sun, and others 2017)

BA Semantics and BAUN

In this section, we will analyze the intrinsic difficulties of
BA semantics, introduce our solution: BA Understanding
Network (BAUN) and conduct in-depth discussions on why
its structures work properly for BA semantics. The BAUN

consists of five important modules: Expression Model, 3D
Convolutional Network, STSM, IRN and Conditional Dis-
tribution Aggregator as illustrated in Fig. 2. To strengthen
the feature extraction capability, we integrate the 3D Convo-
lutional Network, STSM and IRN into the Spatial-Temporal
Separated Relation Module (STSR Module) and stack 3 of
them in the pipeline (N=3).

Mood Related BAs & Expression Model

Different from action recognition, BA is required to under-
stand the mood of target person, such as “sadly” and “hap-
pily’, which can be conveyed efficiently through facial ex-
pressions. Therefore, we adopt the expression model (Fan et
al. 2016) to facilitate indicating the target’s mood.

We concatenate the expression features fe ∈
R

C1×T×H×W extracted by the expression model with the
original RGB or optical flow images x ∈ R

C2×T×H×W to
generate the concatenated input xc ∈ R

(C1+C2)×T×H×W :
fe = EprModel(x) (2)
xc = Concat(x,Deconv(fe)) (3)

where C, T,H,W are the channel number, time stamps, the
height and width of the feature map, EprModel is the ex-
pression model and Concat is the concatenation operation.
Note that fe is deconvolved to the same size as x.

3D Convolutional Network

3D convolutional networks (3DCN) are widely used on
video-related tasks (Carreira and Zisserman 2017; Feicht-
enhofer et al. 2018; Ji et al. 2013). We adopt it as the ba-
sics of our model to generate the temporal-spatial features
fb = 3DCN(xc) for it can efficiently process the informa-
tion in a local manner by its convolutional kernels.

We adopt the Inception (Szegedy et al. 2015) module and
similar with the I3D (Carreira and Zisserman 2017), its spe-
cific settings in each STSR Module are listed in table 1.

Deeper Spatial-Temporal Features & STSM

Compared with action, BA encodes deeper spatial and tem-
poral information. Almost all the actions can be identified
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Table 1: Structure of the 3DCN in BAUN.
Module 3DCN Settings

STSR Module 1
3D Conv Layer

MaxPooling
3 × 3D Conv Layer

STSR Module 2 2 × Inception Module
STSR Module 3 5 × Inception Module

by the shape changes of objects, which can be further sum-
marized into a displacement pattern recognition problem.
For example, to distinguish “walk” and “run”, the model
pays attention to the displacement of the legs and arms, and
obviously, “run” brings drastic displacements. Whereas for
BA, only recognizing displacement is less effective. For ex-
ample, when punching a sandbag, “heavily” and “lightly”
punching share nearly the same displacement pattern. Here,
BA models need to pay more attention to the pattern of
“speed” and “strength”. Compared with “displacement”,
they are deeper concepts because they are the first and sec-
ond order derivative of “displacement” with regard to time.
Our Solution Simultaneously improving the spatial and
temporal (S&T) processing ability leads to higher comput-
ing overhead, and from another perspective, the parame-
ters in kernel are hard to be co-adaptive to both S&T fea-
tures (Pang et al. 2019). Therefore, we go down to consider
processing the S&T information separately and propose the
Spatial-Temporal Separated Module (STSM). There are two
flows in STSM, one temporal flow for extracting long-term
temporal features with less spatial interventions, one spatial
flow for maintaining spatial features. In this way, the tem-
poral direction possesses longer receptive fields and it can
reduce the learning burdens of the spatial direction as well.

With the basic features fb ∈ R
C×T×H×W generated by

the 3D Convolutional Network, the temporal flow first ex-
tracts the temporal features with less spatial interventions:

f
(t,h,w)

b = f
(t,h,w)
b w1 + b1 (4)

ft = AveragePooling(f b) (5)

where f b is the linear element-wise transformation of the
original features fb and f

(t,h,w)

b denotes the feature vector of
the pixel at position (t, h, w) in the feature maps. In practice,
Eq. 4 can be implemented as convolutions with kernel size
(1,1,1). ft is the temporal features generated by reducing the
spatial resolution with an average pooling operation.

With the temporal features, we generate the long-term
temporal features on them, which can be expressed as:

flt = TempNet(ft) (6)

where TempNet is the network that combines the temporal
features among all the time stamps, and we utilize the bi-
directional ConvLSTM (Xingjian et al. 2015) to implement
it. The bi-directional setting allows the model to take both
the previous and subsequent time stamps into account. With
the pre-long-term features flt, we adopt a sigmoid function
to obtain the final long-term features f lt = Sigmoid(flt).

The spatial flow is a shallow 3D convolution network and
we merge the spatial features generated by it with the above

Figure 3: Effects of 2D positional encoding. Left: The sam-
ple input to IRN without 2D positional encoding, whose lo-
cation information is lost. Right: The raw sample image
with correct location distribution, which can be recovered
with 2D positional encoding on the left image. Here IRN
is designed to explore the relation between the two people
as the red masks show in the right image, and we adopt 2D
positional encoding to maintain the relative position cues.

long-term temporal features to produce a combined one fc:

fc = Conv(fb)×Deconv(f lt) + fb (7)

where × denotes element-wise production and f lt is decon-
volved to the same size as fb. With the sigmoid function, the
temporal flow can be regarded as a control gate. Here, “+fb”
denotes a residual connection.

Context BAs & Image Relation Network

Some BAs need to be identified in conjunction with other
person in context, and this is not necessary in conventional
action recognition tasks. For example, to understand a tar-
get is running “in fear”, the model needs to notice that there
is someone chasing after him/her, and to understand some-
one is behaving “pitilessly”, the model needs to detect that
he/she is ignoring someone’s begging. This can be seen as
a visual reasoning task which cannot be successfully solved
as a conventional pattern recognition task and this kind of
reasoning is widely required in psychologically relevant and
relatively subjective BAs. To deal with this, we adopt a
simple but powerful reasoning model (Santoro et al. 2017),
which achieves the state-of-the-art on CLEVR (Johnson et
al. 2017), combine it with a 2D positional encoding method
and propose the Image Relation Network (IRN).
Network Structure The IRN works in the image level.
With the video level feature fc from STSM, the IRN treats it
as a group of image level features [f (0)s , f

(1)
s , ..., f

(T )
s ]. Every

pixel in the image level feature maps is treated as an elemen-
tary unit and the relation is calculated among these pixels.
For a image level feature map fs ∈ R

C×H×W , the network
flattens it into fs ∈ R

C×(H∗W ). Following (Santoro et al.
2017), the relation features fr can be calculated as:

e(i) = ReLU(f (i)s we + be) (8)

r(i,j) = gθ([e
(i), e(j)]) (9)
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fr = fφ(
∑

i<j

r(i,j)) (10)

where f
(i)
s is the feature vector of pixel i in the image level

feature maps, e is the elements needed by the relation net-
work, r(i,j) is the relation vector of element e(i) and e(j),
and fr summarizes the relations, which has a receptive field
as large as the feature map. We implement gθ and fφ as
MLPs with ReLU activation function. The final video-level
features after IRN can be described as:

ff = [f (0)r , f (1)r , ..., f (T )
r ] + fc (11)

2D Positional Encoding The above Image Relation Net-
work is a bag model and the location information of each
pixel is easily lost, as shown in Fig. 3. In order to better
capture location information, similar with the 1D positional
encoding of Transformer (Vaswani et al. 2017), we propose
a 2D positional encoding method to keep pixel’s location
information by adding the encoding with the feature maps:
fs ← fs + E , and the encoding E ∈ R

HF×WF×CE follows:

ζ(p, c) =

⎧⎨
⎩

p

224c/CE
, c = 2k

p

224(c−1)/CE
, c = 2k + 1

(12)

E((px, py), c) =
{
sin(ζ(px, c)) + cos(ζ(py, c)), c = 2k

cos(ζ(px, c))− sin(ζ(py, c)), c = 2k + 1
(13)

where (px, py) is the position of the pixel in the feature map,
c is the index of the channel, k is an integer constant, CE is
the total number of the encoding channels and HF ,WH are
the height and width of the input feature maps. The wave-
lengths of the encoding channels range from 2π to 224 · 2π.
This 2D encoding method utilizes the same number of chan-
nels as the original 1D method but can explicitly encode the
2D position without confusion. Specifically, it would allow
the model to easily learn to attend by relative 2D positions,
since for any (m,n), E((px+m, py+n)) can be represented
as a linear function of E((px, py)) or E((px, py+1)).

Conditional Distribution of Action and BA

In theory, we can set up a task to recognize the action-adverb
pairs, where the conditional distributions between action and
BA can serve as prior knowledge. However, in practice, there
are 2K categories of action-adverb pairs, thus it is difficult
to do this multi-class classification task. Therefore, we adopt
an indirect way to utilize the prior knowledge. We assume
that the conditional distributions between action and BA,
P(act|adv) and P(adv|act), are consistent between train-
ing and validation set and we employ the statistic value
of training set P̂train(·|·) as P(·|·). In multi-task training
scheme (see the Multi-Task section), the classifier at the end
of the model outputs the predicted softmax values for action
and BA: pact and padv , and by incorporating the conditional
distributions as constraints into them, the final results pact
and padv can be expressed as:

p
(i)
act = p

(i)
act

∑
j

(P(adv(j)|act(i))p(j)
adv (14)

p
(i)
adv = p

(i)
adv

∑
j

(P(act(j)|adv(i))p(j)
act (15)

where i and j are the index of action and adverb categories.

Experiments

Experimental Setup

Dataset We conduct BA recognition on our VAAD which
is the only dataset with BA semantics, and on top of VAAD,
we also evaluate our BAUN on action datasets: UCF-
101 (Soomro, Zamir, and Shah 2012), HMDB-51 (Kuehne,
Jhuang, and others ) and Kinetics (Kay et al. 2017).
Target Attention Mechanism In VAAD dataset, we label
the boundingbox and it can be used for BA detection prob-
lem as well. As we mainly focus on recognition problem, the
boundingboxes therefore need to be loaded onto the model
so we adopt a target attention mechanism to achieve it. In
the scheme, we lower the brightness outside the bounding-
boxes. Let σ, a,B, c denote the brightness decay value, the
raw value of the point, the attention area, and the center of at-
tention area respectively, the brightness value of point p after
decaying can be written as: max(0, a−|p−c|�(p /∈ B)×σ),
where � is the indicator function.
Implementation Details For all approaches, we fol-
low each convolutional layer with a batch normalization
layer (Ioffe and others 2015) and a ReLU activation func-
tion. When training on VAAD, 64 clips are fed into the net-
work in each iteration. For ConvNet-LSTM and Two-Stream
models, we use ResNet-50 pre-trained on ImageNet as the
backbone and Adam (Kingma and Ba 2014) optimizer with
the learning rate initialized as 10−4 and decreased to 10−5

after 8 epochs, while for I3D and BAUN, we use the back-
bone pre-trained on ImageNet and SGD with the learning
rate initialized as 10−2 and decreased to 10−3 after 6 epochs.

For our BAUN, we pre-train the 3D convolution network
on the ImageNet, and fine-tune it on VAAD with the STSM.
Note that we do not add the IRN into the pipeline at the
very beginning in that IRN requires a relative stable spatial
features. Therefore, after fine-tuning the 3D convolution net-
work and STSM, we add the IRN into the whole pipeline.

Training Schemes

Pure BA and Action Recognition In this training scheme,
all the models carry out the pure BA and action recognition
task, in other words, one model takes charge of only one task
and we do not merge information between action and adverb.
This setting is treated as the basis to show how well can the
models deal with the new semantics without any other extra
information and evaluate our BAUN.
Transfer Learning between BA and Action In order to
further demonstrate the value of BA, we conduct experi-
ments to prove that BA and action can boost the performance
of each other by sharing information between different se-
mantics. Under this setting, we pre-train models on BA or
action and then fine-tune them on the other task.
Multi-Task Besides pre-training scheme, we also use multi-
task scheme to share information between the two seman-
tics. We add a classifier for each task on top of models,
calculate a total loss by weighting losses of the two tasks.
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Table 2: Results on VAAD. Left three columns: results in order of BA recognition without action information, pre-trained on
action (PTA), and through multi-task; Right three columns: results in order of action recognition without adverb information,
pre-trained on BA (PTB), and through multi-task. Here we use mAP, accuracy (hit@1), and Hit@5 as metrics. Note that only
for Multi-Task scheme, we add conditional distributions between action and BA as constraints for the final results.

BA Recg BA Recg (PTA) Multi-Task BA Act Recg Act Recg (PTB) Multi-Task Act
mAP Hit@5 mAP Hit@5 mAP Hit@5 mAP Acc mAP Acc mAP Acc

ConvN-LSTM 19.4 68.7 21.7 71.1 22.3 71.7 27.4 32.1 30.2 36.3 34.1 39.2
Two-Stream-RGB 15.8 65.6 19.3 73.0 20.0 75.4 29.7 33.3 31.3 38.3 33.4 38.8
Two-Stream-Flow 16.4 71.9 22.1 77.3 23.1 78.6 31.4 34.5 35.3 38.0 36.3 39.3

Two-Stream-Fusion 18.3 75.2 25.4 80.0 26.3 81.8 35.4 37.3 37.2 40.6 37.9 41.2
RGB-I3D 24.7 73.7 26.9 77.4 27.5 78.3 51.1 51.8 53.7 54.5 53.5 55.8
Flow-I3D 26.4 77.3 29.3 82.1 30.4 82.3 55.6 56.0 58.3 58.9 59.2 59.8

Two-Stream I3D 28.6 78.2 31.8 83.0 32.8 83.8 58.3 59.2 61.4 60.9 62.2 61.6
RGB SlowFast R50 27.7 77.5 30.2 82.4 - - 56.8 57.9 - - - -

RGB-BAUN 28.1 77.9 30.8 82.6 31.9 83.1 52.8 53.2 54.3 55.2 55.3 57.2
Flow-BAUN 30.9 82.7 34.0 85.5 35.5 86.7 56.9 57.9 59.1 59.8 60.8 62.2

Two-Stream-BAUN 33.8 84.3 35.5 87.8 37.9 89.6 59.8 61.4 62.2 61.9 63.7 63.4

Table 3: List of 5 easiest and 5 hardest BA classes sorted
by AP of the three models (RGB input). Note that physical
related adverbs outperform psychological ones.

ConvNet-LSTM Two-Stream Two-Stream I3D
adverb AP adverb AP adverb AP

1 professionally 63.2 professionally 56.0 easily 73.6
2 sweetly 60.2 solemnly 50.0 professionally 70.6
3 easily 53.3 promptly 38.1 sweetly 63.4
4 slowly 45.8 sweetly 37.8 promptly 50.4
5 promptly 41.5 slowly 35.2 slowly 49.0
-5 hesitantly 4.5 gracefully 2.9 ironically 6.4
-4 painfully 4.4 intently 2.8 hesitantly 6.0
-3 ironically 3.6 surprisedly 1.7 surprisedly 4.2
-2 surprisedly 1.5 ironically 1.7 solemnly 2.7
-1 weakly 0.7 weakly 0.7 weakly 1.3

This setting can better synthesize the two semantics than
pre-training scheme because transferring may lose some key
information from the first task.

Results

Pure BA and Action Recognition We first analyze the pure
BA and action recognition training scheme. Results in Tab. 2
show that the performance of BA recognition is significantly
lower than action, which verifies that compared with ac-
tion, BA recognition is really more challenging, mainly due
to the intrinsic deeper knowledge of adverb. From another
perspective, BA recognition offers promising potentials to
build powerful video understanding models by understand-
ing more exquisite and abundant semantic.

Additionally, our BAUN model exhibits superior perfor-
mance on BA recognition tasks due to its specific-designed
structures. On VAAD, it outperforms I3D model by 11%
and achieves competitive results compared with the latest
video baseline: SlowFast (Feichtenhofer et al. 2018) when
adopting RGB images as input. Besides, it also performs
well on action recognition tasks, achieving on average 2.5%
improvements on action datasets (see Tab. 2 and Tab. 4).
Improvements on action are relatively low as BAUN is an
adverb model, not tailored for action. Note that, using opti-
cal flow as input delivers better performance on VAAD since

Table 4: Benchmark results on action datasets. Here we use
accuracy (hit@1) as the metric. “orig” means training the
model without BA pre-training and “trans” means the mod-
els are pre-trained on BA and transferred to action.

UCF-101 HMDB-51 Kinetics
orig trans orig trans orig trans

ConvN-LSTM 54.2 56.3 18.3 22.5 53.9 57.3
Two-Stream-RGB 72.8 74.1 40.5 45.3 57.9 60.5
Two-Stream-Flow 81.0 83.7 46.6 48.3 49.6 52.1

Two-Stream-Fusion 83.6 85.5 47.1 50.2 62.8 64.3
RGB-I3D 95.1 96.7 74.3 76.4 68.4 69.2
Flow-I3D 96.5 97.0 77.3 78.4 61.5 62.5

Two-Stream I3D 97.8 98.0 80.9 81.3 71.6 72.2
RGB-BAUN 95.8 97.1 75.3 78.3 69.2 71.6
Flow-BAUN 97.0 97.6 78.0 79.1 62.9 64.0

Two-Stream-BAUN 98.1 98.4 81.7 83.7 72.4 73.2

the expression features are extracted from RGB input, which
leads to accessing to both the RGB and flow information in
optical flow model.

In order to demonstrate the relative difficulty of each ad-
verb, we list the easiest and hardest 5 recognized adverbs in
Tab. 3. It’s evident that physical related adverbs like slowly,
easily, promptly achieve much better performance than ad-
verbs describing inner activities like painfully, hesitantly.
This reveals that our BAUN model still does not solve the
recognition of all kinds of BA, especially those inner related
ones which serve as a challenging part in BA recognition
and we need more ingenious models to deal with it.
Two Information Sharing Schemes In this section, we
compare the above two information sharing schemes. As ex-
pected, for all models, these schemes can boost the model’s
performance for both action and BA recognition. The multi-
task scheme adopts the conditional distributions between ac-
tion and BA, hence its results are better than the transfer
learning scheme. These reveal that BA is a valuable seman-
tic and its features have universality. Moreover, we transfer
the models pre-trained on VAAD to other action datasets and
the results are listed in Tab. 4. All the models benefit from
the transferred semantics and gain 3.4% increase on average.
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Figure 4: Ten categories’ results of ConvNet-LSTM model
with three training schemes. We pick out the categories with
most performance improvements. Left: Top 10 action cate-
gories. Right: Top 10 BA categories. (Metric: AP)

Table 5: Ablation studies results on VAAD with RGB as in-
put. We adopt mAP, hit@5 and hit@1(accuracy) as metrics.
“w/o X” denotes without X module in the implementation.

Method Act Reg BA Reg
mAP Acc mAP hit@5

BAUN 52.8 53.2 28.1 77.9
BAUN w/o STSM 52.1 52.7 26.0 74.6
BAUN w/o IRN 51.6 52.4 25.7 74.2

BAUN w/o expression features 52.2 53.0 27.1 76.8

In Fig. 4, we pick out each 10 categories of action and
BA that obtain most improvements from the two informa-
tion sharing schemes on ConvNet-LSTM model and visual-
ize them. We can see that the top 10 action categories con-
tain many tiny actions such as pour, smoke, kiss, and shake
hands, proving that with the aid of adverbs, action models
can pay more attention to the details to a certain extent. For
adverbs, 7 of the top 10 categories with most improvements
are related to inner activities such as intently, proudly, and
nervously which are difficult to recognize just as the dis-
cussion mentioned before. These results reveal actions and
adverbs will help each other to overcome the difficulties
since the original results on these categories are not satis-
factory and the features obtained by the information sharing
schemes are more abundant and wide-ranging.

Ablation Studies

STSM module We first visualize the long-term temporal
features in Fig. 5. For each time stamp, the mean values of
the activation after sigmoid function are presented. We can
see that it successfully amplifies the prominent video frag-
ments after a global analysis. If we ablate STSM from the
whole pipeline (results shown in Tab. 5), the performance
decays by 1.0% for action recognition and 5.9% for BA
recognition, which further validates that our STSM mod-
ule aiming at separating the spatial and temporal features
does possess a stronger capability to process the temporal
and spatial information.
IRN module IRN module explores the context relations in
the videos and endows the model with a larger spatial re-
ceptive field in the low layers to make the model understand
the global spatial features in an early stage. After removing

1

0.5

0

Figure 5: Visualization on the activations of ConvLSTM in
STSM. First row is a hug video and the third row is a smok-
ing one. The second row shows the mean of the activation
values of every frame, where the blue line corresponds to
the hug video and the red is for the smoking video.

the IRN module, the performance drops by 1.9% on action
recognition and 6.7% on BA recognition.
Expression Features The expression features are incorpo-
rated to better represent the mood and attitude information
of humans in order to better model the mood related BAs.
When removing this feature inputs, the performance decays
by 0.6% on action recognition and 2.5% on BA recognition,
which further showcases that expression information is more
effective for BA than action.

Conclusions

This paper proposes a new video semantics: Behavior Ad-
verb (BA), a corresponding model: BA Understanding Net-
work (BAUN) and constructs a new benchmark: VAAD. We
evaluate our BAUN and other three representative video un-
derstanding models on four video understanding datasets:
VAAD, UCF-101, HMDB-51 and Kinetics. Results high-
light the challenge of the BA recognition problem, demon-
strate promising potentials of BA for video understanding
community and verify that our BAUN receives best perfor-
mance on BA recognition. Meanwhile, utilizing both BA
and action information together facilitates the models to
achieve better performance on the two recognition tasks.

For future work, although our IRN and expression model
achieve noticeable progress on the psychologically relevant
and relatively subjective BAs, the still unsatisfactory results
on them underscore the need for more powerful video un-
derstanding approaches.
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