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Abstract

Light field saliency detection is becoming of increasing in-
terest in recent years due to the significant improvements in
challenging scenes by using abundant light field cues. How-
ever, high dimension of light field data poses computation-
intensive and memory-intensive challenges, and light field
data access is far less ubiquitous as RGB data. These may
severely impede practical applications of light field saliency
detection. In this paper, we introduce an asymmetrical two-
stream architecture inspired by knowledge distillation to
confront these challenges. First, we design a teacher net-
work to learn to exploit focal slices for higher require-
ments on desktop computers and meanwhile transfer com-
prehensive focusness knowledge to the student network. Our
teacher network is achieved relying on two tailor-made mod-
ules, namely multi-focusness recruiting module (MFRM)
and multi-focusness screening module (MFSM), respectively.
Second, we propose two distillation schemes to train a stu-
dent network towards memory and computation efficiency
while ensuring the performance. The proposed distillation
schemes ensure better absorption of focusness knowledge
and enable the student to replace the focal slices with a sin-
gle RGB image in an user-friendly way. We conduct the ex-
periments on three benchmark datasets and demonstrate that
our teacher network achieves state-of-the-arts performance
and student network (ResNet18) achieves Top-1 accuracies
on HFUT-LFSD dataset and Top-4 on DUT-LFSD, which
tremendously minimizes the model size by 56% and boosts
the Frame Per Second (FPS) by 159%, compared with the
best performing method.

Introduction

Human attentional mechanism (HAM) allows us to focus on
interesting regions and filter out irrelevant ones. This cog-
nitive ability helps us quickly understand visual scenes out
of an overwhelming amount of information. Over the past
decades, many works devote to imitating HAM. This task,
namely saliency detection, is essential for progress in im-
age understanding and has shown great potential in various
computer vision and image processing tasks, such as image
segmentation (Li et al. 2014b), visual tracking (Hong et al.
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2015; Smeulders et al. 2013), object recognition (Ren et al.
2015; Dai et al. 2016) and robot navigation (Craye, Filliat,
and Goudou 2016).

The existing saliency detection methods can be roughly
divided into three categories based on the 2D (RGB), 3D
(RGB-D) and 4D (light field) input images. Different from
2D and 3D saliency detection methods, 4D methods ex-
ploit the light field data. The light field provides multi-
view images of the scene through an array of lenslets and
produces a stack of focal slices, containing abundant spa-
tial parallax information as well as accurate depth informa-
tion. Moreover, the stack of focal slices cater to human vi-
sual perception and are observed in sequence with a com-
bination of eye movements and shifts in visual attention.
Such abundant 4D data provides abundant saliency cues
for saliency detection in challenging scenes such as sim-
ilar foreground and background, small salient objects and
complex background (Li et al. 2014a; Li, Sun, and Yu 2015;
Piao et al. 2019).

However, light field saliency detection has significant
drawbacks. 1) Light field methods are both computation-
intensive and memory-intensive as high dimensional data
are employed, e.g., the model size of the first deep-learning
based light field saliency detection network is more than 119
MB and FPS is only 2 on a single 1080Ti GPU card (Piao
et al. 2019). 2) Taking light field data as input is seemingly
inconvenient because data taken by light field cameras is far
less ubiquitous as RGB data taken by traditional digital cam-
eras. In consequence, it is reasonably essential to design a
versatile, efficient and user-friendly mechanism to address
those issues while ensuring the performance.

In this paper, we propose a novel learning strategy
leveraging the concept of knowledge distillation (Hinton,
Vinyals, and Dean 2015) and learning under an asymmetri-
cal two-stream network architecture, to confront those chal-
lenges (see Figure 1). First, we consider the Focal stream,
operating on focal slices, as a teacher network. Our goal is
to design a deep network not only to achieve superior per-
formance for higher requirements on desktop computers but
also to transfer comprehensive knowledge for the student
network. Given two phrases—recruiting and screening that
the eyes process all information in our visual field (Recruit-
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Figure 1: The whole pipeline.

ing is the act of gathering visual resources. Screening is the
act of using these resources to select aspects of visual infor-
mation), we propose two modules to meet the needs for the
teacher network, namely multi-focusness recruiting module
(MFRM) and multi-focusness screening module (MFSM).
The MFRM is designed to recruit rich saliency features
from every single focal slice for ensuring both effectiveness
and diversity, while the MFSM is designed to screen use-
ful features by scanning various locations and emphasizing
the most relevant ones. In the meanwhile, the MFRM and
MFSM enable duo-transfer of knowledge tailored for the
students network. Second, we aim to learn a lightweight and
user-friendly student network, which highlights the chal-
lenges. Directly transferring the output of the teacher to
the student overlooks the inherent differences between a
RGB image and focal slices. We ably propose the multi-
focusness distillation by encouraging multi-focusness con-
sistencies between the Focal stream and RGB stream, and
screened focusness distillation schemes by learning com-
plementarity between the screened focusness knowledge
from the Focal stream and appearance information from the
RGB stream. The proposed distillation schemes ensure bet-
ter absorption of focusness knowledge and enable the stu-
dent to replace the focal slices with a single RGB image.
Last but not the least, we demonstrate the effectiveness
of the proposed framework on three light field datasets:
DUT-LFSD (Zhang et al. 2019), HFUT-LFSD (Zhang et
al. 2015), LFSD (Li et al. 2014a). Our teacher network
achieves state-of-the-art results on three datasets, and stu-
dent network (Resnet18) achieves Top-1 accuracies (MAE)
on HFUT-LFSD dataset and Top-4 on DUT-LFSD. The stu-
dent minimizes the model size by 56% and boosts the Frame
Per Second (FPS) by 159%, compared with the best per-
forming method. An important observation should be noted:

our model achieves superior generalization on the training
set (1100 samples) one order of magnitude smaller than the
RGB training set (10553 samples). The source code can
be found at https://github.com/OIPLab-DUT/AAAI2020-
Exploit-and-Replace-Light-Field-Saliency/.

Related Work

Saliency Detection. Early 2D saliency detection meth-
ods (Tu et al. 2016; Qin et al. 2015; Li et al. 2013) fo-
cus on exploiting low-level hand-crafted features, such as
color, region contrast, etc. With the development of convo-
lutional neural networks, many new 2D methods based on
CNNs are proposed. (Zhang et al. 2018) propose a multi-
path recurrent network embedded with spatial and channel-
wise attention mechanisms. (Liu et al. 2019) produce de-
tail enriched saliency maps by two pooling-based modules
which can progressively exploit the high-level features. (Wu,
Su, and Huang 2019) come up with a cascaded partial de-
coder which can improve both efficiency and accuracy of
the existing multi-level feature aggregation networks. (Zhao
et al. 2019b) propose an edge-guided FCN to preserve
good boundaries of salient objects by embedding edge prior
knowledge into multi-level features.

In 3D saliency detection, depth is utilized to exploit
geometric information for saliency detection. (Chen and
Li 2018) propose a complementarity-aware fusion module
which can learn complementary information from the paired
modality. (Chen, Li, and Su 2019) utilize cross-modal in-
teractions to encourage complements across both high-level
and low-level features. (Chen and Li 2019) propose a three-
stream network with an attention-aware mechanism which
can adaptively select complementary features. (Zhao et al.
2019a) propose to enhance the depth map by contrast prior
and use the enhanced depth information as an attention map
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Figure 2: Detailed structure of the feature coder in the focal
stream or RGB stream.

to work with RGB features for high-quality predictions.
Recently, a small number of works use light field infor-

mation for saliency detection. (Li et al. 2014a) introduce the
first light field saliency detection dataset. (Zhang et al. 2015)
develop the background priors encoded by light field fo-
cusness to enhance the saliency and reduce the background
distraction. (Li, Sun, and Yu 2015) propose a weighted
sparse coding framework which can process the heteroge-
nous type of input data effectively. (Zhang et al. 2017a) in-
tegrate multi light field cues extracted from all-in-focus im-
age, depth map, focal slices and multi-view images based on
a random-search-based strategy. (Piao et al. 2019) propose
the first CNN-based network for processing multi-view im-
ages. These works suggest that light field information plays
an important role in saliency detection.

However, higher dimension of data poses computational
challenges. This severely impedes practical applications of
light field saliency detection. In contrast, we propose an
asymmetrical two-stream network in which teacher network
exploits focal slices for higher requirement on desktop com-
puters, while student network takes a single RGB image as
input to achieve computational efficiency on mobile devices.

Knowledge Distillation. Knowledge distillation (Hinton,
Vinyals, and Dean 2015) is a deep network compression
method in which a small network (student) is trained to
mimic a pre-trained, larger model (teacher). The knowledge
distillation scheme has been verified valid in many computer
vision tasks, such as object detection (Li, Jin, and Yan 2017),
pedestrian re-identification (Chen, Wang, and Zhang 2018)
and semantic segmentation (He et al. 2019). (Li, Jin, and Yan
2017) propose to train very efficient CNNs-based detectors
by mimicking convolutional features without the need of Im-
ageNet pre-training. (Chen, Wang, and Zhang 2018) intro-
duce cross sample similarities for model compression and
acceleration. (He et al. 2019) propose a knowledge adapta-
tion scheme in which the reinterpreted knowledge is easy
to be learned for student network, and an affinity distilla-
tion module to help the student network capture long-term
dependencies.

Unlike directly applying knowledge distillation to light
field saliency detection, we propose two tailored distilla-
tion schemes to transfer focusness knowledge to the RGB
stream, which provide the Focal stream with an effective al-

ternative.

Method

In this paper, in order to develop a versatile, efficient and
user-friendly architecture for light field saliency detection,
we introduce an asymmetrical two-stream architecture based
on knowledge distillation (see Figure 1). The Focal stream,
served as the teacher network, aims to learn to exploit focal
slices for higher requirement on desktop computers. On the
other hand, the student network takes a single RGB image
as input and aims to learn to replace focal slices for com-
putational efficiency on mobile devices. The feature extrac-
tor in the teacher network is based on VGG19 (Simonyan
and Zisserman 2015), while the student feature extractor is
based on ResNet18 (He et al. 2016). We select the high-level
convolutional features (F 3

Conv , F 4
Conv and F 5

Conv) to detect
salient objects. The detailed structure of the feature extractor
is shown in Figure 2. In the following, we discuss the rea-
soning Focal stream (Learning to Exploit Focal Stack), and
RGB stream (Learning to Replace Focal Stack) in detail.

Learning to Exploit Focal Stack

We propose two tailored modules in the teacher network to
learn to exploit light field data, which are multi-focusness
recruiting module (MFRM) and multi-focusness screening
module (MFSM). The MFRM focuses on explicitly recruit-
ing saliency information from each focal slice, and the
MFSM aims to select useful features and suppress the un-
necessary ones. The MFRM and MFSM are used to en-
able our teacher network with more accurate prediction for
higher requirements on desktop computers, as well as duo-
transfer of rich focusness knowledge to the student. We visu-
alize the effect of MFRM and MFSM, shown in Figure 3 and
Figure 4, respectively. Detailed discussions about MFRM
and MFSM are provided in ablation studies. Next, we elab-
orate each component in the teacher network.

Multi-Focusness Recruiting Module (MFRM). Inspired
by the recruiting phrase in the process of visual attention,
we aim to gather rich saliency features by processing ev-
ery single focal slice. A simple method is to supervise the
raw features with ground truth for avoiding the distraction
of non-salient objects and ensuring the effectiveness of each
focusness features. However, this strategy could reduce di-
versity and complementarity between multi-focusness fea-
tures. To this end, we propose a multi-focusness recruiting
module (MFRM) which encourages the raw multi-focusness
features containing both adequate effectiveness and diversity
to achieve optimal results. The MFRM is shown in Figure 1.
We first connect a convolutional layer to convert each fo-
cusness feature from 64 channels to 2 channels. Then each
focusness feature is supervised by following loss function:

LR(fk) = LCE(fk, Y )− λ
N∑

i=1,i �=k

LMSE(fk, fi), (1)

where fk is the kth focusness feature, Y is the ground truth
and N is the total number of focal slices. LCE and LMSE

represent cross-entropy and mean squared error loss func-
tions, respectively. The first item encourages effectiveness,
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Figure 3: Visual comparisons in MFRM. The 1st to 3rd

columns show the focal slices and corresponding multi-
focusness features. The 4th column shows the ground truth
and saliency maps.

the second item enhances diversity, and the non-negative
weight λ which is set to 10 expresses the trade-off between
these two items.

Multi-Focusness Screening Module (MFSM). Inspired
by the the screening phrase in the process of visual attention,
which concerns with selectivity, we aim to efficiently select
useful saliency information from multi-focusness features.
To do this, we propose a multi-focusness screening mod-
ule (MFSM) to resemble the screening phrase of how hu-
man select information of interest from visual resources by
assigning different weights to different focal slices regard-
ing the salient objects. The MFSM consists of a ConvLSTM
model with an attention mechanism as shown in Figure 1.
The attention module aims to emphasize the useful features
and suppress the unnecessary ones to produce a screened
features. The ConvLSTM module aims to summarize the
spatial information from the screened features of historical
steps and current step for accurately identifying the salient
objects. As the time step increases, the MFSM can highlight
the salient regions and block the non-salient ones gradually
(see Figure 4). Detailed operations are expressed as follows.

In each time step t, the multi-focusness features f =
{f1, f2, · · · , fN} first go through a feature-wise attention

Focal Slices

GT

M
F

S
M

Step 1 Step 2 Step 3 Step 4

Figure 4: Visual comparisons of different steps in MFSM.

module and this procedure can be defined as:

F̃t=
N∑
i=1

f�(Φ(AvgPool(Cat [f1; f2; · · · ; fN ] ∗Wf +Ht−1 ∗Wh))),

(2)
where Φ represents softmax function. � and ∗ mean feature-
wise multiplication and convolution operation, respectively.
Ht−1 represents the hidden state of the ConvLSTM cell in
the (t−1)th step. The Wf and Wh are the parameters of the
convolutional kernels. Then the combined features F̃t are
fed into a ConvLSTM cell. The internal operations in Con-
vLSTM can be shown in Figure 1. After several time steps,
we concatenate the O gates to summarize the saliency infor-
mation from screened features, and make a final prediction.
This procedure can be defined as:

Stea=Φ(Ws ∗ Cat[O1; · · · , Ot; · · · ;OT ]) , (3)

where Stea is the saliency map predicted from the teacher
network and T represents the total time steps and is set to 4.
Ws denotes the convolution parameter.

Learning to Replace Focal Stack

The most existing methods based on knowledge distillation
take as same input for the teacher and student networks.
Considering heavy focal computation and convenient access
to focal slices, we aim to design a lightweight network in an
user-friendly way by taking a single ubiquitous RGB image
as input to replace focal slices. However, directly transfer-
ring the output from the teacher to the student overlooks the
inherent differences between two types of data. Therefore,
we propose two tailored distillation schemes to replace fo-
cal slices with a single RGB image by transferring the focus-
ness knowledge. The focusness knowledge is defined as two
parts: (1) The first part is designed to mimic multi-focusness
features only using a single RGB image. (2) The second part
is designed to learn complementary information from ap-
pearance and screened focusness knowledge. We show the
visual effect of the proposed two distillation schemes in Fig-
ure 5, and give an in-depth discussion in ablation studies.
Detailed description for each distillation scheme is given be-
low.

Multi-Focusness Distillation Scheme (MFD). Unlike di-
rectly enforcing the student to mimic the output from
teacher, the student is first trained to hallucinate multi-
focusness features from the Focal stream by our proposed
multi-focusness distillation scheme. This is mainly driven
by the consideration of the inherent differences of input data
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Figure 5: Visual results of enabling and disabling different
components of our distillation system.

for the teacher and student. Moreover, multi-focusness fea-
tures can be produced from a single RGB input without ex-
plicit focal computation. This leads to significantly faster
inference. In detail, we reduce the Kullback-Leibler diver-
gence loss between features of the penultimate layer in RGB
stream, with features generated from the MFRM in the Focal
stream:

LMFD=
1

N

N∑
i=1

KL
(
fs
i

∥∥f t
i

)
, (4)

where f t
i represents the feature map of the ith focal slice

produced from the teacher network and fs
i represents the ith

feature map produced from the student network.

Screened Focusness Distillation Scheme (SFD). Our
second distillation scheme goes a step further: we align the
class probability of each pixel produced from the student
network and teacher network, as well as the probability of
each pixel between the output of the student network and the
ground truth. We refer this distillation scheme as screened
focusness distillation. This scheme allows the student net-
work to learn complementary information from appearance
and screened focusness information for accurate prediction.
To enhance this process with screened focusness and appear-
ance information, we train the student network by backprop-
agating a linear combination of KL and cross entropy losses
through the entire network. The loss function is given as fol-
lows:

LSFD=KL (Sstu ‖Stea ) + αLCE(Sstu, Y ), (5)

where Stea and Sstu represent the saliency map predicted
from the teacher and student networks, respectively. The hy-
perparameter α is set to 1.

Training Process

As presented in Algorithm 1, the teacher network is super-
vised by two losses: the cross entropy loss LCE with the
ground truth and the recruiting loss LR(fk) in Eq.(1). Dur-
ing the knowledge distillation process, the teacher is pre-
trained and the parameters are kept frozen. The student is

supervised by a combination of the multi-focusness distilla-
tion loss LMFD in Eq.(4) and the screened focusness distil-
lation loss LSFD in Eq.(5). WT and WS are parameters for
the teacher and student, respectively.

Algorithm 1: Traning Process of Our Method
1 Stage 1 : Training the teacher network.
2 Inputs : Focal slices.

3 WT= argminWT

(
LCE (Stea, Y ) +

N∑
k=1

LR (fk)

)

4 Stage 2 : Training the student network.
5 Inputs : Single RGB.
6 WS= argminWS

(LMFD + LSFD)

Experiment

Experimental Setup

Benchmark Datasets. To evaluate the performance of our
framework, we conduct experiments on three widely-used
light field benchmark datasets. DUT-LFSD (Zhang et al.
2019) is the largest dataset which contains 1462 light field
images. HFUT-LFSD (Zhang et al. 2015) and LFSD (Li et
al. 2014a) datasets include 255 and 100 samples, respec-
tively. Each light field consists of an all-in-focus image, 12
focal slices focused at different depths and a corresponding
manually labeled ground truth.

For comparison, we randomly select 1000 samples from
DUT-LFSD dataset and 100 samples from HFUT-LFSD
dataset as the training set. The remaining samples and the
LFSD dataset are used for testing. To avoid overfitting, we
augment the training set by flipping, cropping and rotating.

Evaluation Metrics. We use newly-proposed S-measure
(Fan et al. 2017) and E-measure (Fan et al. 2018), as
well as generally-recognized weighted F-measure (Mar-
golin, Zelnik-Manor, and Tal 2014), F-measure (Achanta et
al. 2009) and Mean Absolute Error (MAE) as evaluation
metrics for comparing the performance of models. The four
evaluation metrics can provide comprehensive and reliable
evaluation results and have been well explained in many lit-
eratures. Also we adopt model size and Frames Per Second
(FPS) to evaluate the complexity of each method.

Implementation Details. We implement our method
based on the Pytorch toolbox with one GTX 1080Ti GPU.
We train both the teacher network and student network using
the SGD optimization algorithm in which the momentum,
weight decay and learning rate are set to 0.9, 0.0005, 1e-10,
respectively. The hyperparameter temperature T is set to 20
in all distillation loss functions. The minibatch size is 1 and
maximum iterations of teacher and student network are set
to 500000 and 300000, respectively.

Ablation Studies

Effect of MFRM. To prove the effect of the MFRM in
terms of the recruiting ability, we conduct visual compar-
isons (see Figure 3) for the multi-focusness features gener-
ated with simple supervision (noted as Only LCE) and our
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Figure 6: Visual comparisons of our method with top-ranking CNNs-based methods in some challenging scenes.

Table 1: Quantitative comparisons of E-measure, S-measure, weighted F-measure, F-measure and MAE scores on three light
field datasets. ∗ represents conventional methods. - means no available results. (boldface: best, italic: second best, underline:
third best, underline: fourth best).

Type Methods Years DUT-LFSD HFUT-LFSD LFSD

Es ↑ Sα ↑ Fw
β ↑ Fβ ↑ MAE↓ Es ↑ Sα ↑ Fw

β ↑ Fβ ↑ MAE↓ Es ↑ Sα ↑ Fw
β ↑ Fβ ↑ MAE↓

4D Teacher - .943 .899 .880 .889 .040 .831 .777 .682 .705 .082 .889 .838 .809 .842 .080
2D Student - .916 .848 .816 .838 .061 .824 .736 .621 .651 .085 .820 .726 .672 .721 .137

4D

DLFS IJCAI’19 .891 .841 .763 .801 .076 .783 .741 .590 .615 .098 .806 .737 .657 .715 .147
LFS∗ TPAMI’17 .728 .563 .288 .484 .240 .686 .579 .264 .430 .205 .771 .680 .479 .740 .208

MCA∗ TOOM’17 - - - - - - - - - - .841 .749 - .815 .150
WSC∗ CVPR’15 - - - - - - - - - - .794 .706 .642 .706 .156
DILF∗ IJCAI’15 .805 .705 .494 .641 .168 .736 .695 .458 .555 .131 .810 .755 .604 .728 .168

3D

CPFP CVPR’19 .808 .741 .634 .730 .101 .768 .701 .536 .594 .096 .669 .599 .465 .524 .186
TANet TIP’19 .861 .803 .702 .771 .096 .789 .744 .587 .638 .096 .849 .803 .727 .804 .112
MMCI PR’19 .853 .785 .629 .750 .116 .787 .741 .540 .645 .104 .848 .799 .685 .796 .128
PCA CVPR’18 .857 .800 .694 .762 .100 .782 .748 .598 .644 .095 .846 .807 .733 .801 .112

PDNet ICME’18 .864 .803 .655 .763 .111 .786 .770 .592 .629 .105 .849 .786 .728 .780 .116
CTMF Tcyb’17 .881 .823 .682 .790 .100 .784 .752 .544 .620 .103 .856 .801 .710 .791 .119

DF TIP’17 .838 .716 .523 .733 .151 .742 .670 .408 .562 .138 .816 .751 .607 .756 .162

2D

EGNet ICCV’19 .914 .886 .829 .870 .053 .794 .772 .634 .672 .094 .776 .784 .717 .762 .118
CPD CVPR’19 .923 .890 .850 .887 .050 .810 .764 .652 .689 .097 .865 .846 .796 .841 .083

PoolNet CVPR’19 .919 .889 .832 .868 .051 .802 .776 .652 .683 .092 .786 .800 .717 .769 .118
PiCANet CVPR’18 .892 .829 .736 .821 .083 .726 .781 .556 .618 .115 .780 .729 .621 .671 .158
PAGRN CVPR’18 .878 .822 .733 .828 .084 .773 .717 .551 .635 .114 .805 .727 .642 .725 .147

C2S ECCV’18 .874 .844 .764 .791 .084 .786 .763 .630 .650 .111 .820 .806 .737 .749 .113
R3Net IJCAI’18 .833 .819 .708 .783 .113 .728 .727 .566 .625 .151 .838 .789 .717 .781 .128
Amulet ICCV’17 .882 .847 .764 .805 .083 .760 .767 .616 .636 .110 .821 .773 .707 .757 .135

UCF ICCV’17 .850 .837 .708 .769 .107 .764 .754 .572 .623 .130 .776 .762 .655 .710 .169
SRM ICCV’17 .899 .848 .773 .832 .072 .801 .762 .623 .672 .096 .863 .826 .760 .827 .099
NLDF CVPR’17 .862 .786 .695 .778 .103 .807 .729 .590 .636 .091 .810 .745 .675 .748 .138
DSS CVPR’17 .827 .764 .624 .728 .128 .778 .715 .511 .626 .133 .749 .677 .570 .644 .190
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Table 2: Quantitative results of the ablation analysis for
our teacher network.

Module Model DUT-LFSD HFUT-LFSD

Es ↑ MAE↓ Es ↑ MAE↓
MFRM Only LCE .920 .066 .818 .090

w/MFRM .943 .040 .831 .082

MFSM
Step 1 .827 .218 .755 .271
Step 2 .897 .091 .808 .100
Step 3 .941 .041 .824 .084

Ours (step 4) .943 .040 .831 .082

proposed MFRM (noted as w/MFRM). We can observe that
the multi-focusness features generated by simple supervi-
sion are almost the same and could lead to sub-optimal re-
sults, such as false positives (row 3) or incomplete detection
of salient objects (row 4). In contrast, the MFRM encour-
ages adequate diversity between features of different focal
slices to achieve optimal results (row 5 and row 6). Numeri-
cally, our MFRM reduces the MAE performances by nearly
39% and 9% on two datasets as shown in Table 2.

Effect of MFSM. To give the evidence for the screening
ability of the MFSM, we visualize the saliency maps in dif-
ferent time steps as shown in Figure 4. We can observe that
the attention module contributes more on locating salient ob-
ject accurately in step 1 and 2, while the ConvLSTM con-
tributes more on refining the details of salient object in step
3 and 4. Also in Table 2, accumulative improvements are
achieved as the time step increases. These improvements are
resonable since the useful features are emphasized by atten-
tion module and spatial details are refined gradually by Con-
vLSTM.

Effect of MFD and SFD. To demonstrate the effective-
ness of our distillation schemes, we analyze the perfor-
mance in the absence of MFD and SFD. The experiments
are conduct on three student networks, which are ResNet18,
VGG16 and MobileNetV2 as shown in Table 3. It can be
seen that as we add the MFD and SFD, the performance of
student network achieves accumulative improvements by a
large margin. Specifically, the MAE of ResNet18 gains 48%
improvements on DUT-LFSD, and also 40% improvements
on HFUT-LFSD.

The visual effects are shown in Figure 5. Compared to the
baseline ResNet18 (row 1), the baseline with MFD can pro-
duce more effective multi-focusness features, such as fea-
tures with accurate location of salient object (row 2, col-
umn 1), thus results in more accurate prediction (row 2, col-
umn 4). This validates the importance of transferring multi-
focusness information from the Focal steam to the RGB
stream. As we add the SFD, we observe a more boundary de-
tailed prediction (row 3, column 4) and features with sharp
boundary of salient object (row 3, column 3). This visual
improvement is mainly due to the SFD which allows the stu-
dent network to learn complementarity from appearance and
screened focusness information.

Table 3: Ablation analysis of the proposed distillation
schemes on different student networks.

Model Size(M) FPS DUT-LFSD HFUT-LFSD

Es ↑ MAE↓ Es ↑ MAE↓
ResNet18 49.1 171 .839 .119 .713 .142

+MFD 49.1 171 .869 .093 .737 .120
+MFD+SFD 49.1 171 .916 .061 .824 .085

VGG16 61.9 148 .879 .086 .765 .106
+MFD 61.9 148 .882 .074 .775 .093

+MFD+SFD 61.9 148 .907 .067 .836 .079

MobileNetV2Plus 27.5 65 .748 .250 .682 .239
+MFD 27.5 65 .764 .235 .692 .213

+MFD+SFD 27.5 65 .811 .128 .726 .142

Comparison with State-of-the-arts

We compare our method with 24 other state-of-the-arts ones
including both deep-learning-based methods and conven-
tional methods (remarked with ∗). There are five 4D light
field methods: DLFS (Piao et al. 2019), LFS∗ (Li et al.
2014a), MCA∗ (Zhang et al. 2017a), WSC∗ (Li, Sun, and Yu
2015), DILF∗ (Zhang et al. 2015); seven 3D RGBD meth-
ods: CPFP (Zhao et al. 2019a), TANet (Chen and Li 2019),
MMCI (Chen, Li, and Su 2019), PCA (Chen and Li 2018),
PDNet (Zhu et al. 2018), CTMF (Han et al. 2017), DF (Qu
et al. 2017); and twelve top-ranking RGB methods: EG-
Net (Zhao et al. 2019b), CPD (Wu, Su, and Huang 2019),
PoolNet (Liu et al. 2019), PiCANet (Liu, Han, and Yang
2018), PAGRN (Zhang et al. 2018), C2S (Li et al. 2018),
R3Net (Deng et al. 2018), Amulet (Zhang et al. 2017b), UCF
(Zhang et al. 2017c), SRM (Wang et al. 2017), NLDF (Luo
et al. 2017), DSS (Hou et al. 2017). For fair comparison, the
results from competing methods are generated by authorized
codes or directly provided by authors.

Quantitative Evaluation. As shown in Table 1, the pro-
posed teacher network can largely outperform other mod-
els across all the datasets in terms of five evaluation met-
rics, except second-best S-measure scores on HFUT-LFSD
and LFSD datasets. It should be noted that our significant
advantages are achieved on the training set (1100 samples)
an order of magnitude smaller than the large RGB training
set (10553 samples). Not only that, the proposed focusness
knowledge distillation schemes can be seen as a good re-
placement for the Focal stream. This observation is further
supported by the considerably good results of the student
network (ResNet18), such as Top-1 accuracies (MAE) on
HFUT-LFSD dataset and Top-4 on DUT-LFSD.

Qualitative Evaluation. Figure 6 provides some chal-
lenging samples of results comparing our method with other
state-of-the-art methods. It can be seen that both the teacher
and student network can achieve more complete and accu-
rate prediction, when foreground and background are similar
as shown in the 1st, 2nd and 3rd rows, when salient object is
small or transparent as shown in the 4th and 5throws, when
background is complex as shown in the 6th row. It is worth
noted that our student network can be positively influenced
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Table 4: Complexity comparisons. The meaning of notation
has been explained in Table 3.

Type Methods Years Size(M)↓FPS↑ DUT HFUT LFSD

MAE↓ MAE↓ MAE↓
Teacher - 92.5 14 .040 .082 .080
Student - 49.1 171 .061 .085 .137

4D DLFS IJCAI’19 119 2 .076 .098 .147

3D

CPFP CVPR’19 278 7 .101 .096 .186
MMCI PR’19 929.7 19 .116 .104 .128
PCA CVPR’18 533.6 15 .100 .095 .112

PDNet ICME’18 192 19 .111 .105 .116
CTMF Tcyb’17 825.8 50 .100 .103 .119

2D

EGNet ICCV’19 412 21 .053 .094 .118
CPD CVPR’19 112 66 .050 .097 .083

PoolNet CVPR’19 278.5 32 .051 .092 .118
PiCANetCVPR’18 197.2 5 .083 .115 .158
Amulet ICCV’17 132.6 21 .083 .110 .135

UCF ICCV’17 117.9 23 .107 .130 .169
SRM ICCV’17 213.1 37 .072 .096 .099
NLDF CVPR’17 425.9 20 .103 .091 .138
DSS CVPR’17 447.3 23 .128 .133 .190

by the focusness knowledge transferred from teacher which
leads to robust results in challenging scenes even with a sin-
gle RGB input.

Complexity Evaluation. In Table 4, we compare the av-
erage execution time and model size with 15 representative
models. We can see that the teacher network outperforms
all other methods, and the student network achieves Top-4
accuracies (MAE) on DUT-LFSD and Top-1 accuracies on
HFUT-LFSD. It is noted that the model size of our student
network (ResNet18) is only 49.1 MB and FPS reaches up
to 171. Compared to the best performing method CPD, our
student network tremedously minimizes the model size by
56% and boosts the FPS by 159%.

Conclusion

In this paper, we develop a novel asymmetrical two-stream
network architecture, which consists of Focal stream and
RGB stream, to achieve versatility for both desktop comput-
ers and mobile devices. We consider the Focal stream as a
teacher network, to learn to exploit focal slices and produce
focusness knowledge tailored for student network. Our pro-
posed MFRM and MFSM recruit and screen useful saliency
information effectively and enable the teacher network to
achieve superior performance. On the other hand, we train
the student network, using single RGB input, to learn to
replace focal slices relying on two tailor-made distillation
schemes. The proposed distillation schemes allow the stu-
dent to produce more effective multi-focusness features and
learn complementarity between appearance and screened fo-
cusness information for accurate saliency prediction. Our
extensive evaluation shows that the proposed asymmetrical
network architecture can be applied on both PC and mobile
terminals successfully.
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