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Abstract

In this paper, we address the problem of dynamic scene de-
blurring in the presence of motion blur. Restoration of im-
ages affected by severe blur necessitates a network design
with a large receptive field, which existing networks attempt
to achieve through simple increment in the number of generic
convolution layers, kernel-size, or the scales at which the im-
age is processed. However, these techniques ignore the non-
uniform nature of blur, and they come at the expense of an
increase in model size and inference time. We present a new
architecture composed of region adaptive dense deformable
modules that implicitly discover the spatially varying shifts
responsible for non-uniform blur in the input image and learn
to modulate the filters. This capability is complemented by
a self-attentive module which captures non-local spatial rela-
tionships among the intermediate features and enhances the
spatially varying processing capability. We incorporate these
modules into a densely connected encoder-decoder design
which utilizes pre-trained Densenet filters to further improve
the performance. Our network facilitates interpretable mod-
eling of the spatially-varying deblurring process while dis-
pensing with multi-scale processing and large filters entirely.
Extensive comparisons with prior art on benchmark dynamic
scene deblurring datasets clearly demonstrate the superiority
of the proposed networks via significant improvements in ac-
curacy and speed, enabling almost real-time deblurring.

Introduction
Though computational imaging has made tremendous
progress over the years, handling motion blur in captured
content remains a challenge. Motion blur is caused by mo-
tion of objects in the scene or the camera during sensor expo-
sure. Apart from significantly degrading the visual quality,
the distortions arising from blur lead to considerable perfor-
mance drop for many vision tasks (Vasiljevic, Chakrabarti,
and Shakhnarovich 2016). There exist a few commercially
available cameras which can capture frames at a high frame-
rate and thus experience less blur but they suffer from noise
at high resolution and are quite expensive.

Motion deblurring is a challenging problem in computer
vision due to its ill-posed nature. The past decade has wit-
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Figure 1: Our network outperforms all existing approaches
on the dynamic scene deblurring benchmark in terms of ac-
curacy as well as inference time.

nessed significant advances in deblurring, wherein major ef-
forts have gone into designing priors that are apt for recover-
ing the underlying undistorted image and the camera trajec-
tory (Vasu and Rajagopalan 2017; Yan et al. 2017). An ex-
haustive survey of uniform blind deblurring algorithms can
be found in (Lai et al. 2016). Few approaches (Chakrabarti
2016; Schuler et al. 2016) have proposed hybrid algorithms
where a Convolutional Neural Network (CNN) estimates the
blur kernel, which is then used in an alternative optimization
framework for recovering the latent image.

However, these methods have been developed based on
a rather strong constraint that the scene is planar and that
the blur is governed by only camera motion. This precludes
commonly occurring blur in most practical settings. Real-
world blur arises from various sources including moving
objects, camera shake and depth variations, causing differ-
ent pixels to acquire different motion trajectories. A class
of algorithms involve segmentation methods to relax the
static and fronto-parallel scene assumption by independently
restoring different blurred regions in the scene (Hyun Kim,
Ahn, and Mu Lee 2013). However, these methods depend
heavily on an accurate segmentation-map. Few methods
(Sun et al. 2015; Gong et al. 2017) circumvent the segmen-
tation stage by training CNNs to estimate locally linear blur
kernels and feeding them to a non-uniform deblurring algo-
rithm based on patch-level prior. However, they are limited
in their capability when it comes to general dynamic scenes.
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The afore-mentioned methods are not end-to-end sys-
tems and share a severe disadvantage of involving itera-
tive, time-intensive, and cumbersome optimization schemes
at the network output for getting the final deblurred result.
Use of fully convolutional CNNs to directly estimate the
latent sharp image was proposed in (Nah, Kim, and Lee
2017) and adopted by recent works to further advance the
state-of-the-art. They offer the advantage of enabling gener-
alized dynamic scene deblurring at low latency, by circum-
venting the iterative optimization stage involving fitting of
hand-designed motion models. (Nah, Kim, and Lee 2017;
Purohit, Shah, and Rajagopalan 2019; Tao et al. 2018;
Gao et al. 2019) proposed encoder-decoder residual net-
works to aggregate features in a coarse-to-fine manner,
while showing benefits of selective parameter/feature shar-
ing and/or recurrent layers. Recently, (Zhang et al. 2019)
proposed a multi-patch hierarchical network and stacked its
copies along depth to achieve state-of-the-art performance.

However, there are two major limitations shared by prior
deblurring works. Firstly, the filters of a generic CNN are
spatially invariant (with spatially-uniform receptive field),
which is a suboptimal modeling of the dynamic scene de-
blurring process and offers limited accuracy. Secondly, ex-
isting methods attempt to increase receptive field by increas-
ing the model’s computational footprint, making them un-
suitable for real-time applications. As the only other work
of this kind, (Zhang et al. 2018b) recently proposed a de-
sign composed of multiple CNNs and Recurrent Neural Net-
works (RNN) to learn spatially varying weights for deblur-
ring. However, their performance is inferior to the state-of-
the-art (Zhang et al. 2019) in several aspects. Reaching a
trade-off among inference time, accuracy of restoration, and
receptive field is a non-trivial task which we address in this
paper (see Fig. 1). We investigate position and motion-aware
CNN architecture, which can efficiently handle multiple im-
age regions experiencing motion with different magnitude
and direction.

Following recent developments, we adopt an end-to-
end learning based approach to directly estimate the re-
stored sharp image. For single image deblurring, we build
a fully convolutional architecture equipped with filter-
transformation and feature modulation capability suited for
the task of motion deblurring. Our design leverages the fact
that motion blur is essentially an aggregation of various spa-
tially varying transformations of the image, and a network
that implicitly adapts to the location and direction of such
motion, is a better candidate for the restoration task. Its ad-
vantages over prior art are three-fold: 1. It is a dynamic and
computationally efficient as it requires only a single forward
pass through each layer, obviates the need for repeated pro-
cessing of the image (at different scales/patch-levels). 2. Its
components can be easily introduced into other architectures
to improve their performance. 3. The transformations esti-
mated by the network are dynamic and hence can be mean-
ingfully interpreted for any test image.

The efficacy of our architecture is demonstrated through
comprehensive comparisons with the state-of-the-art on im-
age deblurring benchmark. The major contributions of our
work are:

• We propose an efficient motion deblurring architecture
built using dense deformable modules that facilitate
position-specific dynamic filter transformation.

• Our network benefits from estimating image dependent
spatial attention-maps to process local features jointly
with their globally distributed interdependencies.

• We embed the above adaptive modules into an densely
connected fully convolutional design which benefits from
pre-trained filters of DenseNet.

• Extensive experiments are presented on dynamic scene
deblurring benchmark to show state-of-the-art accuracy
and near real-time deblurring achieved by our architecture
and the interpretability of its dynamic modules.

Proposed Architecture
An existing technique for accelerating various image pro-
cessing operations is to down-sample the input image, exe-
cute the operation at low resolution, and up-sample the out-
put (Chen et al. 2016). However, this approach discounts the
importance of resolution, rendering it unsuitable for image
restoration tasks where high-frequency content of the image
is of prime importance (deblurring, super-resolution).

Another efficient alternative is a CNN with a fixed
but very large receptive field, e.g. Cascaded dilated net-
work (Chen, Xu, and Koltun 2017), which was proposed to
accelerate various image-to-image tasks. However, simple
dilated convolutions are not appropriate for restoration tasks
(as shown in (Liu et al. 2018) for image super-resolution).
After several layers of dilated filtering, the output only con-
siders a fixed sparse sampling of input locations, resulting in
significant loss of information.

Till date, the driving force behind performance improve-
ment in deblurring has been use of large number of layers,
larger filters, and multi-scale processing which assist in in-
creasing the “static” receptive field of a CNN. Not only do
these techniques offer a suboptimal design, they are also
difficult to scale since the effective receptive field of deep
CNNs is much smaller than the theoretical one (investigated
in (Luo et al. 2016)).

We claim that a superior alternative to such image-
agnostic models is a convolutional framework wherein the
filters and the receptive field dynamically adapts to input im-
age instances. Our experiments show that the latter approach
is a considerably better choice due to its task-specific effi-
cacy and utility for computationally limited environments,
and it delivers consistent performance across diverse magni-
tudes of blur. Now, we explain the motivation for designing
a deblurring network with asymmetric filters. Given a 2D
image I and a blur kernel K, the motion blur process can be
formulated as:

B[x, y] =

M/2,M/2∑

m,n=−M/2

K[m,n]I[x− n, y − n], (1)

where B is the blurred image, [x, y] represents pixel coordi-
nates, and M×M is the size of the blur kernel. At any given
location [x, y], the sharp intensity can be represented as
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I[x, y] =
B[x, y]

K[0, 0]
−

M/2,M/2∑

m,n=−M/2

K[m,n]B[x−m, y − n]

K[0, 0]2
+

∑M/2,M/2
m,n=−M/2

∑M/2,M/2
i,j=−M/2

K[m,n]K[i, j]I[x− n− i, y − n− j]

K[0, 0]2

(2)
which is a 2D infinite impulse response (IIR) model,

whose recursive expansion would eventually lead to an ex-
pression which contains values from only the blurred image
and the kernel.

The dependence of I[x, y] on a large number of locations
in B shows that the deconvolution process requires infinite
signal information. If we assume that the boundary of the
image contains zeros, eq. 2 is equivalent to applying an in-
verse filter to B. As visualized in (Zhang et al. 2018b), the
non-zero region of such an inverse deblurring filter is typ-
ically much larger than the blur kernel. Thus, if we use a
CNN to model the process, a large receptive field should be
considered to cover all the pixel positions that are necessary
for deblurring. Eq. 2 also shows that only a few coefficients
(which are K[m,n] for m,n ∈ [−M/2,M/2]) need to be
estimated by the deblurring model, provided we can find an
appropriate model with large enough receptive field.

For this theoretical analysis, we will temporarily assume
that the motion blur kernel K is linear (as assumed in prior
deblurring works (Sun et al. 2015; Gong et al. 2017)). Now,
consider an image B which is affected by motion blur in the
horizontal direction (without loss of generality), implying
K[m,n] = 0 for m �= 0 (non-zero values present only in the
middle row of the kernel). For this case, eq. 2 translates to

I[x, y] =
B[x, y]

K[0, 0]
−

M∑

n=1

K[0, n]B[x, y − n]

K[0, 0]2
+

∑M
n=1

∑M
j=1 K[0, n]K[0, j]I[x, y − n− j]

K[0, 0]2
= ...

(3)

We observe that for this case, I[x, y] can be expressed
as a function of only one row of pixels in the blurred im-
age B, which implies that for a horizontal blur kernel, the
deblurring filter is also purely horizontal. We use this ob-
servation to state a hypothesis that holds for any motion
blur kernel: “Deblurring filters are directional/asymmetric in
shape”. The reason behind this is the well known inherently
directional nature of motion blur kernels. Such an operation
can be efficiently learnt by a CNN with adaptive and asym-
metric filters and this forms the basis for our work. Next, we
describe our proposed network in detail.

Dense encoder decoder backbone
Inspired by the success of fully convolutional networks that
directly estimate the intensities of the deblurred image, we
build an encoder-decoder architecture composed of densely
connected modules. These modules immensely improve fea-
ture extraction capability by reusing features across multi-
ple layers and their connections maximize information flow

Figure 2: Proposed deblurring network and its components.

along the intermediate layers and result in better conver-
gence. Hence, they are more efficient and learn more com-
plex features than a network with residual connections (used
extensively in recent deblurring methods).

A key component of our Region-Adaptive Dense Network
is the encoder which progressively extracts a feature pyra-
mid from the input image. The first convolution begins after
a space-to-depth module that transforms the image pixels to
channel-space using pixel-shuffling by a factor of 2. This al-
lows subsequent computationally intensive operations to be
performed at lower spatial resolution, hence reducing com-
putational and memory footprint while increasing the recep-
tive field. This layer is followed by three dense-blocks con-
taining 12, 16, and 24 dense units, respectively, with growth
rate (GR) set to 32 and each dense unit consisting of batch
norm, ReLU, 1×1 conv (4×GR channels) followed by batch
norm, ReLU, 3× 3 conv (GR channels). The first two dense
blocks are followed by 1 × 1 conv and pooling to down-
sample the features-maps. Our design allows all these filters
to be initialized using initial layers of pre-trained DenseNet-
121 (Huang et al. 2017), and our experiments demonstrate
its advantage.

The decoder is built using our dynamically adaptive com-
ponents namely, Self-Attention (SA) module and Dense
Deformable Module (DDM). SA module accepts the low-
resolution output of the encoder and generates a non-locally
enhanced feature-map. These features are sequentially pro-
cessed by 3 DDMs and deconvolution layers to reach
the output image resolution. Similar to U-net, intermedi-
ate features with in the decoder are concatenated with the
corresponding-sized encoder features. Further, result of the
final deconvolution layer is enhanced through multi-scale
context aggregation through pooling and upsampling at 4
scales, before being fed to the final reconstruction layer. The
output is the residual between the ground-truth sharp im-
age and the input blurred image. Note that unlike several
prior works, our network does not use large (5×5) filters. A
schematic of the proposed architecture is shown in Fig. 2.

Dense deformable module (DDM)
CNNs operate on fixed locations in a regular grid which
limits their ability to model unknown geometric transforma-
tions. Spatial Transform Networks (STN) (Jaderberg et al.
2015) introduced spatial transformation learning into CNNs,
wherein an image-dependent global parametric transforma-
tion is estimated and applied on the feature map. However,
such warping is computationally expensive and the trans-
formation is considered to be global across the whole im-
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Figure 3: Schematic of our dense deformable module.

age, which is not the case for motion in dynamic and 3D
scenes where different regions are affected by different mag-
nitude and direction of motion. To introduce such motion-
awareness in our network, we adopt deformable convolu-
tions (Dai et al. 2017), which enable local transformation
learning in an efficient manner. Unlike regular convolutional
layers, the deformable convolution also learns to estimate
the shapes of convolution filters conditioned on an input
feature map (Xu, Li, and Sun 2019). While maintaining fil-
ter weights invariant to the input, a deformable convolution
layer first learns a pixel-level offset map from the input, and
applies it to the regular feature map for re-sampling.

Our DDM (shown in Fig. 3) contains a densely connected
set of deform units capable of learning positioning of filters
on the feature sampling grid. Each deform unit in DDM con-
tains a pair of layers: one to estimate the 2D filter offsets for
each spatial location and another to apply the learnt filters on
values sampled from these locations. The 2D offsets (shown
as red-arrows) are encoded in the channel dimension of an
estimated tensor (shown in green).

At each spatial coordinate l0, the deform unit estimates
2 offsets for P sampling locations. Our DDM is composed
of 3 × 3 kernels, which correspond to P = 9 and the fixed
offsets lp ∈ (−1,−1), (−1, 0), ..., (1, 1). If wp denotes the
learnt filter weight for the pth location, the processed fea-
ture values F̂ at coordinate l0 are then obtained from input
feature F as:

F̂ (l0) =

P∑

p=1

wp · F (l0 + lp +Δlp) (4)

where Δlp are the dynamically estimated sampling offsets
for all the channels in the input feature map, which deter-
mine the shifting of the P filter locations along horizontal
and vertical axes. As a result, the regular convolution filter
operates on an irregular grid of pixels. Since the offsets can
be fractional, bilinear interpolation is used to sample from
the input feature map. All the parts of our network are train-
able end-to-end, since bilinear sampling and the grid genera-
tion of the warping module are both differentiable (Paszke et
al. 2017). The 6 deformable layers in our DDM are followed
by a 1× 1 conv layer to reduce the number of channels.

Although the focus of our work is an effective network

design, our analysis also presents an effective way to boost
any existing deblurring network’s performance. Replacing
ordinary convolution layers with deformable layers is much
more efficient than going deeper or wider since the receptive
field and the spatial sampling locations become dynamically
adaptable according to the scale, shape, and location of blur.

Self-attention module (SA)

Recent deblurring works have emphasized the advantages of
multi-scale/patch processing. It efficiently captures different
scales of motion blur, and increases the receptive field of
the network. Although it facilitates local growth in recep-
tive field, it does not leverage the relationship between two
distant locations in the scene. While this coarse-to-fine ap-
proach helps to handle different magnitudes of blur, it can-
not leverage the relationship among blurred regions from a
global perspective, which is also beneficial for the restora-
tion task at hand. In this work, we employ a better strategy:
attention based learnable non-local connections among fea-
tures at different spatial locations.

Figure 4: A schematic of our self-attention module.

Trainable attention over features for modeling long-range
dependencies has shown its benefits in several tasks span-
ning across language (Shen et al. 2018; Vaswani et al. 2017)
and vision (Wang et al. 2018), but has not been explored
for deblurring. Our work is inspired by the recent work of
(Zhang et al. 2018a) that utilizes non-local attention to con-
nect different scene regions and uses it to improve image
generation quality.

Our SA module selectively aggregates the features at each
position by a weighted sum of the features at all positions.
This efficient design ensures that similar features are con-
nected to each other regardless of their spatial distances,
which helps in directly connecting regions with similar blur.
It has two advantages: First, it overcomes the issue of limited
receptive field, as any pixel has access to features at every
other pixel in the image. Second, it implicitly acts as a gate
for propagating only relevant information across the layers.
These properties make it suitable for deblurring, since blur
affecting various scene-edges is often correlated.

As illustrated in Fig. 4, input feature-map A ∈ R
C×H×W

is transformed into two new feature maps B and C ∈
R

Ĉ×H×W (Ĉ = C
8 ). Next, we reshape C and B to R

Ĉ×N

(N = H×W ), perform matrix multiplication between their
transposed versions, and pass the product through a softmax
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layer to calculate the attention map S ∈ R
N×N :

sji =
exp(Bi ·Cj)∑N
i=1 exp(Bi ·Cj)

(5)

where sji measures the ith position’s impact on jth posi-
tion. Note that similarity between feature representations of
any two position contributes to greater correlation (higher
attention) between them.

Finally, A is processed to obtain D which is then re-
shaped to R

C×N . A matrix multiplication between D and
the transpose of S yields an enhanced feature-map residual,
which is added to A to obtain the final output E as:

Ej = Aj +

N∑

i=1

sjiDi (6)

The resulting feature E at each position is a weighted sum
of the features at all positions and original features. There-
fore, it has global context and selectively aggregated con-
texts according to the spatial attention map, causing similar
features to reinforce gains and irrelevant features to get sub-
dued. We place the SA module at the beginning of our region
adaptive decoder to minimize memory footprint.

Experimental Setup
Since the prime application of our work is efficient deblur-
ring of general 3D and dynamic scenes, we perform training
and evaluation of our network on the dynamic scene deblur-
ring benchmark (Nah, Kim, and Lee 2017), following re-
cent learning-based works. This dataset is constructed using
240fps videos captured using GoPro camera and contains
diverse 3D scenes captured in presence of significant object
and camera motion. Following the same train-test split as in
(Nah, Kim, and Lee 2017), we use 2103 pairs for training
and 1111 pairs for evaluation. Training is done for 1 × 106

iterations using Adam optimizer with learning rate 0.0001
on patches of 256 × 256 and batch-size of 16. We conduct
our experiments on a PC with Intel Xeon E5 CPU, 256 GB
RAM and an NVIDIA Titan X GPU.

Experimental Results
In this section, we carry out quantitative and qualitative com-
parisons of our architectures with state-of-the-art end-to-
end learning based methods for image deblurring, including
MSCNN (Nah, Kim, and Lee 2017), DeblurGAN (Kupyn
et al. 2017), SVRNN (Zhang et al. 2018b), SRN (Tao
et al. 2018), PSS-SRN (Gao et al. 2019), and Stack(4)-
DMPHN (Zhang et al. 2019). Due to the complexity of the
blur present in general dynamic scenes, conventional blur
model based approaches struggle to perform well. Neverthe-
less, we also compare with conventional non-uniform de-
blurring approaches of (Whyte et al. 2012), (Hyun Kim,
Ahn, and Mu Lee 2013) and MBMF (Gong et al. 2017).
Public implementations with default parameters were used
to obtain qualitative results on selected test images.
Quantitative Evaluation: Quantitative comparisons using
PSNR and SSIM scores obtained on the GoPro testing set

Models PSNR SSIM Runtime
(Hyun et al. 2013) 23.8 0.8358 2000000
(Whyte et al. 2012) 24.6 0.8458 700000
MBMF 24.64 0.8429 120000
MSCNN 29.23 0.9162 6000
DeblurGAN 28.70 0.8580 1000
SVRNN 29.19 0.9306 1400
SRN 30.10 0.9323 1600
PSS-SRN 30.92 0.9421 1600
Stack(4)-DMPHN 31.20 0.9451 700
RADN1 30.77 0.9417 32
RADN2 31.17 0.9454 32
RADN3 31.42 0.9494 34
RADN4 31.58 0.9503 36
RADN(Final) 31.76 0.9530 38
RADN(Final)+ 32.15 0.9560 -

Table 1: Quantitative analysis of our proposed model on the
GoPro dataset (Nah, Kim, and Lee 2017), Runtime is in mil-
liseconds.

(720 × 1280 images) are presented in Table 1. Since tra-
ditional methods cannot model combined effects of general
camera shake and object motion (Whyte et al. 2012) or for-
ward motion and depth variations (Hyun Kim, Ahn, and
Mu Lee 2013), they fail to faithfully restore most of the im-
ages in the test-set. The below par performance of MBMF
can be attributed to the fact that it uses synthetic and sim-
plistic blur kernels to train a CNN and employs a traditional
deconvolution method to estimate the sharp image, which
severely limits its applicability to general dynamic scenes.
End-to-end residual networks such MS-CNN, SRN and
PSS-SRN use multi-scale strategy or alternative losses to
improve large blur handling capability, but fail in challeng-
ing situations. The proposed RADN(final) significantly out-
performs these works, including the spatially varying model
SVRNN. Importantly, our method fares significantly better
than the nearest competitor Stack(4)-DMPHN, in terms of
inference-time (15× faster, supporting real-time deblurring
at 28fps), and accuracy (improvement of ∼ 0.56 dB), while
requiring 40% less parameters. RADN(final)+ represents
our results obtained using geometric self-ensemble (Lim et
al. 2017), which offers significant boost in test performance
without requiring further training or additional parameters.

Qualitative Evaluation: Visual comparisons on different
dynamic and 3D scenes are given in Fig. 5. It shows that
results of prior works suffer from incomplete deblurring or
artifacts. In contrast, our network is able to restore scene
details (text, edges etc.) more faithfully due to its effective-
ness in handling large dynamic blur. An additional advan-
tage over (Hyun Kim, Ahn, and Mu Lee 2013; Whyte et
al. 2012) is that our model waives-off the requirement of
parameter tuning during test phase. Additional experiments
and qualitative comparisons on other benchmarks are pro-
vided in the supplementary material.

11886



(a) Blurred Image (b) Blurred patch (c) Whyte et al. (d) MS-CNN (e) DelurGAN (f) SRN (g) Stack(4)-DMPHN (h) Ours

Figure 5: Visual comparisons of deblurring results on images from the GoPro test set (Nah, Kim, and Lee 2017). Key blurred
patches are shown in (b), while zoomed-in patches from the deblurred results are shown in (c)-(h).
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Figure 6: Network analysis through comparison of training
performance of various ablations of our models.

Table 2: Quantitative comparison of different ablations of
our baseline residual deblurring network on GoPro testset.

Conv layers 6 6 3 0 0
Deformable layers 0 0 3 6 6

SA module � � � � �
PSNR (dB) 29.8 30.54 30.69 31.05 31.13
Size (MB) 10.6 10.7 10.9 11.2 11.2

Ablation studies
Ablations of our proposed network
We analyze the effect of individual components of our net-
work on its training and testing performance. The test scores
of various ablations our network are reported in Table 1 and
a comparison of their training performance is shown in Fig.
6(a). Decoder is a key component of our deblurring net-
work and To evaluate its importance, we compare the pro-
posed model RADN(Final) with 3 different versions of the
decoder design while using the same dense encoder. In ver-
sion RADN4, we replace the deform units within DDMs
with ordinary convolutional layers, forcing the modules to
apply rigid filters at all the spatial locations in the features.
The drastic decrease in performance demonstrates the im-
portance of spatially adaptive filter-offset learning capabil-
ity. In version RADN3, we further remove the SA module
from RADN4 and observe notable drop in performance. We
chose to keep a single SA module in our network, since
performance improvement beyond it was marginal and it

serves as a good balance between restoration accuracy and
processing-time. In RADN2, we replace DDMs with bot-
tleneck blocks (Huang et al. 2017) which are a simpler al-
ternative to dense blocks. The significant fall in accuracy
can be attributed to the efficacy of densely-connected layers
and validates our design choice. Finally, to verify the effec-
tiveness of pretraining, we train a baseline RADN1 which
is identical to RADN2 except that its encoder layers are
not pre-trained (using DenseNet). The PSNR and loss dif-
ference clearly shows that such pre-training leads to better
initialization in parameter space and eventually, better con-
vergence. Complete ablation (removing all dense layers and
space2depth) leads to basic U-net, scoring only 28.9 dB.

Analysis on a baseline deblurring network
Here, we evaluate the advantages of our region-adaptive
modules by introducing them into a simpler residual encoder
decoder baseline adopted from SRN (one of the competing
methods). We differentiate this baseline’s design from SRN
in terms of compactness and computational footprint by em-
ploying only 3 × 3 filters for economy and removing the
recurrent units. Next, we describe experiments with inclu-
sion of our region-adaptive modules which significantly im-
prove the representational capacity and performance of this
network without sacrificing the computational efficiency.

One of the key hyper-parameters in this analysis is the
number of deformable units that replace normal convolu-
tions (in the trunk of the network). To study its effectiveness,
we designed and trained 3 versions of the network wherein
the number of such replacements are 0, 3 and 6, respec-
tively. Fig. 6(b) shows comparisons of the convergence plots
of these models. It can be observed that the training perfor-
mance as well as the quantitative results get better with in-
crease in the number of deformable blocks, as it introduces
additional filter adaptability into the network. Also note that
the performance of the model which contains SA but no de-
formable layers, is expectedly lower than other models but
better than the plain CNN. Finally, the best training perfor-
mance is delivered by our final model which contains 6 de-
formable replacements and SAs, which shows that the ad-
vantages of the two modules are complementary and their
union leads to a superior model. These improvements are
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Figure 7: Visualizations of the spatial variations in the estimated filter offsets and attention-based feature modulations on blurred
images from the GoPro test set. The second row shows the spatial distribution of the horizontal-offset values for the filter in a
DDM of our network. Third row shows the corresponding enhanced feature-map residuals estimated by our SA module.

(a) 2.34 (b) 3.53 (c) 4.80

Figure 8: Offset magnitudes: Values mentioned under each
image (from GoPro test set) depict the average magnitude of
the offsets estimated by all the DDMs in our network.

also reflected in the quantitative values reported in Table 2.
The table also shows that our modules are lightweight

since their inclusion has only a marginal effect on the model
size. Although the proposed network is already quite effi-
cient, replacing the standard convolutions in our network
with grouped convolution and/or separable convolutions can
lead to further improvements. More details and analyses of
our networks are provided in the supplementary document.

Network Visualization
This section provides further insights into the effectiveness
of our approach by visualizing the filter offsets and feature-
attention maps dynamically estimated by our network.
Dense deformable module: To establish our DDM’s
interpret-ability and their sensitivity to local motion in the
scene, we investigate visible association between the esti-
mated filter transformation-maps and the dominant motion
blur in the input image. In first and second row of Fig. 7, we
show various test images and a representation of the corre-
sponding offset-maps, respectively. The offset value at each
spatial location is calculated using the difference between
the horizontal (x) offsets of the 1st and 3rd columns of the
3×3 filters from the 2nd DDM of our network. It can be seen
that the offset values are higher for the foreground regions
and regions undergoing large motion. This is important for
the deblurring process since the pixels corresponding to the
foreground objects (e.g., people, vehicles) experience dif-
ferent motion compared to other parts of the scene, due to
independent motion or depth differences. This demonstrates
that the proposed network can distinguish between differ-

ently blurred regions and that the estimated offsets are cor-
related with the direction and magnitude of the motion blur.

Next, we measure the correlation between the amount of
scene motion and the average magnitude of the filter offsets
estimated by our network. In Fig. 8, we show various test
images and the corresponding average value of offsets cal-
culated by all the DDMs. It can be seen that the offset val-
ues are small for the first scene (Fig. 8(a)) where only few
regions are blurred. As the blur increases and affects larger
number of pixels in the scene (Fig. 8(b) and (c)), the average
offset magnitude rises to accommodate the large blur. This
shows that our network features a dynamic receptive field
and adapts to scenes with varying degrees of blur without
altering the filter weights, yielding efficiency to the process.
Self-attention module: Here, we visualize the inputs and
outputs of the SA module of our network for additional in-
sights. In third row of Fig. 7, we show the residuals esti-
mated within our SA module (

∑N
i=1 sjiDi in Eq.6) for cor-

responding images in the first row. It can be observed that the
SA module learns to amplify the correlation among feature-
map magnitudes for all pixels undergoing similar (large)
blur, and the spatial distributions agree with corresponding
dynamic regions and depth variations. Such enhancement of
the intermediate feature-maps is the key reason behind the
observed improvement in training and test performance.

Conclusions
We proposed an efficient motion deblurring architecture
composed of convolutional modules that enable spatially
adaptive feature learning through filter transformations and
feature attention, namely dense deformable module (DDM)
and self-attention (SA) module. The DDMs implicitly ad-
dress the shifts responsible for the local blur in the input
image, while the SA module meaningfully connects non-
locally distributed blurred regions. Introducing these mod-
ules awards higher capacity to any deblurring network with-
out any notable increase in computational footprint. This
effectiveness is shown by incorporating them into a new
densely connected encoder decoder backbone, wherein we
also show the benefits of pre-training of encoder filters.
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Compared against existing deep deblurring frameworks, our
model achieves the state-of-the-art performance and is able
to run at 28fps for 720p images. We believe our spatially-
aware design can be utilized for other image processing and
vision tasks as well, and we shall explore them in the future.
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