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Abstract

Understanding and interpreting the decisions made by deep
learning models is valuable in many domains. In computer vi-
sion, computing heatmaps from a deep network is a popular
approach for visualizing and understanding deep networks.
However, heatmaps that do not correlate with the network
may mislead human, hence the performance of heatmaps in
providing a faithful explanation to the underlying deep net-
work is crucial. In this paper, we propose I-GOS, which op-
timizes for a heatmap so that the classification scores on the
masked image would maximally decrease. The main novelty
of the approach is to compute descent directions based on
the integrated gradients instead of the normal gradient, which
avoids local optima and speeds up convergence. Compared
with previous approaches, our method can flexibly compute
heatmaps at any resolution for different user needs. Exten-
sive experiments on several benchmark datasets show that the
heatmaps produced by our approach are more correlated with
the decision of the underlying deep network, in comparison
with other state-of-the-art approaches.

Introduction

In recent years, there has been significant focus on explain-
ing deep networks (Ribeiro, Singh, and Guestrin 2016;
Lundberg and Lee 2017; Elenberg et al. 2017; Bau et
al. 2017; Zhou et al. 2018; Zhang, Wu, and Zhu 2018;
Alvarez-Melis and Jaakkola 2018). Explainability is impor-
tant for humans to trust the deep learning model, especially
in crucial decision-making scenarios. In the computer vi-
sion domain, one of the most important explanation tech-
niques is the heatmap approach (Zeiler and Fergus 2014; Si-
monyan, Vedaldi, and Zisserman 2014; Selvaraju et al. 2017;
Zhang et al. 2016), which focuses on generating heatmaps
that highlight parts of the input image that are most im-
portant to the decision of the deep networks on a particu-
lar classification target. The heatmaps can be used to diag-
nose deep models to understand whether the models utilize
the right contents to make the classification. This diagno-
sis is important when deep networks malfunction in high-
stake cases, e.g. autonomous driving. In medical imaging
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and other image domains that humans currently lack under-
standing, heatmaps can also be used to help humans gain
further insights on which part of the images are important.

Some heatmap approaches achieve good visual qual-
ities for human understanding, such as several one-
step backpropagation-based visualizations including Guided
Backpropagation (GBP) (Springenberg et al. 2015) and the
deconvolutional network (DeconvNet) (Zeiler and Fergus
2014). These approaches utilize the gradient or variants of
the gradient and backpropagate them back to the input im-
age, in order to decide which pixels are more relevant to the
change of the deep network prediction. However, whether
they are actually correlated to the decision-making of the
network is not that clear (Nie, Zhang, and Patel 2018). (Nie,
Zhang, and Patel 2018) proves that GBP and DeconvNet are
essentially doing (partial) image recovery, and thus generate
more human-interpretable visualizations that highlight ob-
ject boundaries, which do not necessarily represent what the
model has truly learned.

An issue with these one-step approaches is that they only
reflect infinitesimal changes of the prediction of a deep net-
work. In the highly nonlinear function estimated by the deep
network, such infinitesimal changes are not necessarily re-
flective of changes large enough to alter the decision of the
model. (Petsiuk, Das, and Saenko 2018) proposed evaluation
metrics based on masking the image with heatmaps and veri-
fying whether the masking will indeed change deep network
predictions. Ideally, if the highlighted regions for a category
are removed from the image, the deep network should no
longer predict that category. This is measured by the dele-
tion metric. On the other hand, the network should predict a
category only using the regions highlighted by the heatmap,
which is measured by the insertion metric (Fig. 1).

If these are the goals of a heatmap, a natural idea would be
to directly optimize them. The mask approach proposed in
(Fong and Vedaldi 2017) generates heatmaps by solving an
optimization problem, which aims to find the smallest and
smoothest area that maximally decrease the output of a neu-
ral network, directly optimizing the deletion metric. It can
generate very good heatmaps, but usually takes a long time
to converge, and sometimes the optimization can be stuck in
a bad local optimum due to the strong nonconvexity of the
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Label

259: ‘Pomeranian’

Original Image Deletion Insertion

Predicted class probability 100% 4.8% 82.9%
Deletion or Insertion ratio – – 3.4% 2.3%

Label

867: ‘Trailer truck,
tractor trailer,

trucking rig, rig,
articulated lorry, semi’

Original Image Deletion Insertion

Predicted class probability 99.7% 14.3% 86.2%
Deletion or Insertion ratio – – 8.0% 3.1%

(a) (b)

Figure 1: (a) Examples generated by I-GOS in the deletion and insertion tasks using VGG19 as the baseline model. Heatmaps
can be verified by testing the CNN on (multiple) deletion images (column 3), which blur the most highlighted areas on the
heatmap, and (multiple) insertion images (column 4), which blur areas not highlighted on the heatmap. (b) The first two rows
show that Integrated Gradients, Mask may fail on these evaluations. In the third row, I-GOS performs significiantly better since
the CNN no longer classifies the image to the same category with a small deleted area (column 3), and classifies the image
correctly with only few pixels revealed (column 4), showing the correlation between the I-GOS heatmap and CNN decision
making. For all approaches the same amount of pixels (6.4% in this figure) were blurred/revealed. (Best viewed in color)

solution space (Fig. 1).
In this paper, we propose a novel visualization approach I-

GOS (Integrated-Gradients Optimized Saliency) which uti-
lizes an idea called integrated gradients to improve the mask
optimization approach in (Fong and Vedaldi 2017). The in-
tegrated gradients approach explicitly find a baseline image
with very low prediction confidence – a completely grey or
highly blurred image – then compute a straight line between
the original image and this baseline. The gradients on im-
ages on this line are then integrated (Sundararajan, Taly, and
Yan 2017). The idea is that the direction provided by the
integrated gradients may lead better towards the global op-
timum than the normal gradient which may tend to lead to
local optima. However, the original integrated gradient (Sun-
dararajan, Taly, and Yan 2017) paper is a one-step visual-
ization approach and generate diffuse heatmaps difficult for
human to understand (Fig. 1). In this paper, we replace the
gradient in mask optimization with the integrated gradients.
Due to the high cost of computing the integrated gradients,
we employ a line-search based gradient-projection method
to maximally utilize each computation of the integrated gra-
dients. We also utilize some empirical perturbation strategies
to avoid the creation of adversarial masks. In the end, our
approach generates better heatmaps (Fig. 1) and utilizes less
computational time than the original mask optimization, as
line search is more efficient in finding appropriate step sizes,
allowing significantly less iterations to be used. We highlight
our contributions as follows:

(1) We developed a novel heatmap visualization approach I-
GOS, which optimizes a mask using the integrated gra-
dients as descent steps.

(2) Through regularization and perturbation we better
avoided generating adversarial masks at higher resolu-
tions, enabling more detailed heatmaps that are more
correlated with the decision-making of the model.

(3) Extensive evaluations show that the proposed approach
performs better than the state-of-the-art approaches, es-
pecially in the insertion and deletion metrics.

Related Work

There are several different types of the visualization tech-
niques for generating heatmaps for a deep network. We clas-
sify them into one-step backpropagation-based approaches
(Zeiler and Fergus 2014; Simonyan, Vedaldi, and Zisser-
man 2014; Springenberg et al. 2015; Shrikumar et al. 2016;
Sundararajan, Taly, and Yan 2017; Bach et al. 2015; Zhang
et al. 2016; Selvaraju et al. 2017), and perturbation-based ap-
proaches, e.g., (Zhou et al. 2014; Dabkowski and Gal 2017;
Fong and Vedaldi 2017; Petsiuk, Das, and Saenko 2018).

The basic idea of one-step backpropagation-based visual-
izations is to backpropagate the output of a deep neural net-
work back to the input space using the gradient or its vari-
ants. DeconvNet (Zeiler and Fergus 2014), Saliency Maps
(Simonyan, Vedaldi, and Zisserman 2014), and GBP (Sprin-
genberg et al. 2015) are similar approaches, with the dif-
ference among them in the way they deal with the ReLU
layer. LRP (Bach et al. 2015) and DeepLIFT (Shrikumar
et al. 2016) compute the contributions of each input feature
to the prediction. Excitation BP (Zhang et al. 2016) passes
along top-down signals downwards in the network hierar-
chy via a probabilistic Winner-Take-All process. GradCAM
(Selvaraju et al. 2017) uses the gradients of a target concept,

11891



flowing only into the final convolutional layer to produce a
coarse localization map. (Ancona et al. 2017) analyzes vari-
ous backpropagation-based methods, and provides a unified
view to explore the connections among them.

Perturbation-based methods first perturb parts of the in-
put, and then run a forward pass to see which ones are most
important to preserve the final decision. The earliest ap-
proach (Zhou et al. 2014) utilized a grey patch to occlude
part of the image. This approach is direct but very slow, usu-
ally taking hours for a single image (Ancona et al. 2017).
An improvement is to introduce a mask, and solve for the
optimal mask as an optimization problem (Dabkowski and
Gal 2017; Fong and Vedaldi 2017). (Dabkowski and Gal
2017) develop a trainable masking model that can produce
the masks in a single forward pass. However, it is diffi-
cult to train a mask model, and different models need to be
trained for different networks. (Fong and Vedaldi 2017) di-
rectly solves the optimization, and find the mask iteratively.
Instead of only occluding one patch of the image, RISE (Pet-
siuk, Das, and Saenko 2018) generates thousands of ran-
domized input masks simultaneously, and averages them by
their output scores. However, it consumes significant time
and GPU memory.

Another seemingly related but different domain is the
saliency map from human fixation (Johnson and Subha
2017). Fixation Prediction (Kruthiventi et al. 2016; Kum-
merer et al. 2017) aims to identify the fixation points that
human viewers would focus on at first glance of a given im-
age, usually by training a network to predict those fixation
points. This is different from deep explanation because deep
models may use completely different mechanisms to classify
from humans, hence human fixations should not be used to
train or evaluate heatmap models.

Model Formulation

Gradient and Mask Optimization

Gradient and its variants are often utilized in visualization
tools to demonstrate the importance of each dimension of
the input. Its motivation comes from the linearization of the
model. Suppose a black-box deep network f predicts a score
fc(I) on class c (usually the logits of a class before the soft-
max layer) from an image I . Assume f is smooth at the cur-
rent image I0, then a local approximation can be obtained
using the first-order Taylor expansion:

fc(I) ≈ fc(I0) + 〈∇fc(I0), I − I0〉, (1)

The gradient ∇fc(I0) is indicative of the local change that
can be made to fc(I0) if a small perturbation is added to
it, and hence can be visualized as an indication of salient
image regions to provide a local explanation for image I0
(Simonyan, Vedaldi, and Zisserman 2014). In (Shrikumar et
al. 2016), the heatmap is computed by multiplying the gra-
dient feature-wise with the input itself, i.e., ∇fc(I0)� I0, to
improve the sharpness of heatmaps.

However, gradient only illustrates the infinitesimal
change of the function fc(I) at I0, which is not necessar-
ily indicative of the salient regions that lead to a signifi-
cant change on fc(I), especially when the function is highly
nonlinear. What we would expect is that the heatmaps in-
dicate the areas that would really change the classification

result significantly. In (Fong and Vedaldi 2017), a perturba-
tion based approach is proposed which introduces a mask
M as the heatmap to perturb the input I0. M is optimized
by solving the following objective function:

argmin
M

Fc(I0,M) = fc
(
Φ(I0,M)

)
+ g(M),

where g(M) = λ1||1−M ||1 + λ2TV(M), (2)

Φ(I0,M) = I0 �M + Ĩ0 � (1−M), 0 ≤ M ≤ 1,

In (2), M is a matrix which has the same shape as the input
image I0 and whose elements are all in [0, 1]; Ĩ0 is a baseline
image with the same shape as I0, which should have a low
score on the class c, fc

(
Ĩ0
) ≈ minI fc(I), and in practice

either a constant image, random noise, or a highly blurred
version of I0. This optimization seeks to find a deletion mask
that significantly decreases the output score fc

(
Φ(I0,M)

)
,

i.e., fc
(
I0 �M + Ĩ0 � (1−M)

) � fc(I0) under the regu-
larization of g(M). g(M) contains two regularization terms,
with the first term on the magnitude of M , and the second
term a total-variation (TV) norm (Fong and Vedaldi 2017)
to make M more piecewise-smooth.

Although this approach of optimizing a mask performs
significantly better than the gradient method, there exist in-
evitable drawbacks when using a traditional first-order al-
gorithm to solve the optimization. First, it is slow, usually
taking hundreds of iterations to obtain the heatmap for each
image. Second, since the model fc is highly nonlinear in
most cases, optimizing (2) may only achieve a local opti-
mum, with no guarantee that it indicates the right direction
for a significant change related to the output class. Fig. 1 and
Fig. 3 show some heatmaps generated by the mask approach.

Integrated Gradients

Note that the problem of finding the mask is not a conven-
tional non-convex optimization problem. For Fc(I0,M) =
fc(I0,M) + g(M), we (approximately) know the global
minimum (or, at least a reasonably small value) of fc(I0,M)

in a baseline image Ĩ0, which corresponds to M = 0. The
integrated gradients (Sundararajan, Taly, and Yan 2017) con-
sider the straight-line path from the baseline Ĩ0 to the input
I0. Instead of evaluating the gradient at the provided input
I0 only, the integrated gradients would be obtained by accu-
mulating all the gradients along the path:

IGi(I0) = (Ii0 − Ĩi0) ·
∫ 1

α=0

∂fc
(
Ĩ0 + α(I0 − Ĩ0)

)
∂Ii0

dα, (3)

where IG(I0) = ∇IG
I0

fc(I0) is the integrated gradients of
fc at I0; i represents the i-th pixel.

In practice, the integral in (3) is approximated via a sum-
mation. We sum the gradients at points occurring at suffi-
ciently small intervals along the straight-line path from the
input M to a baseline M̃ = 0:

∇IGfc(M) =
1

S

S∑
s=1

∂fc
(
Φ
(
I0,

s
S
M

))
∂M

, (4)

where S is a constant, usually 20. However, (Sundararajan,
Taly, and Yan 2017) only proposed to use integrated gradi-
ents as a one-step visualization method, and the heatmaps
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Figure 2: (Best viewed in color) Suppose we are optimizing
in a region with a starting point A, a local optimum C, and
a baseline B which is the unconstrained global optimum;
the area within the black dashed line is the constraint region
which is decided by the constraint terms g(I,M) and the
bound constraints 0 ≤ M ≤ 1, we may find a better solu-
tion by always moving towards B rather than following the
gradient and end up at C.

generated by the integrated gradients are still diffuse. Fig. 1
and Fig. 3 show some heatmaps generated by the integrated
gradients approach where a grey zero image is utilized as
the baseline. We can see that the integrated gradient contains
many false positives in the area wherever the pixels have a
large value of Ii0 − Ĩi0 (either the white or the black pixels).

Integrated Gradients Optimized Heatmaps

We believe the above two approaches can be combined for
a better heatmap approach. The integrated gradient naturally
provides a better direction than the gradient in that it points
more directly to the global optimum of a part of the objec-
tive function. One can view the convex constraint function
g(M) as equivalent to the Lagrangian of a constrained op-
timization approach with constraints ‖1 − M‖1 ≤ B1 and
TV (M) ≤ B2, B1 and B2 being positive constants, hence
consider the optimization problem (2) to be a constrained
minimization problem on fc(Φ(I0,M)). In this case, we
know the unconstrained solution in M = 0 is outside the
constraint region. We speculate that an optimization algo-
rithm may be better than gradient descent if it directly at-
tempts to move to the unconstrained global optimum.

To illustrate this, Fig. 2 shows a 2D optimization with a
starting point A, a local optimum C, and a baseline B. The
area within the black dashed line is the constraint region
which is decided by the constraint function g(M) and the
boundary of M . A first-order algorithm will follow the gra-
dient descent direction (the purple line) to the local optimum
C; while the integrated gradients computed along the path
PB from A to the baseline B may enable the optimization
to reach an area better than C within the constraint region.
We can see that the integrated gradients with an appropriate
baseline have a global view of the space and may generate
a better descent direction. In practice, the baseline does not
need to be the global optimum. A good baseline near the

global optimum could still improve over the local optimum
achieved by gradient descent.

Hence, we utilize the integrated gradients to substitute the
gradient of the partial objective fc(M) in optimization (2),
and introduce a new visualization method called Integrated-
Gradient Optimized Saliency (I-GOS). For the regulariza-
tion terms g(M) in optimization (2), we still compute the
partial (sub)gradient with respect to M :

∇g(M) = λ1 · ∂||1−M ||1
∂M

+ λ2 · ∂TV(M)

∂M
, (5)

The total (sub)gradient of the optimization for M at each
step is the combination of the integrated gradients for the
fc(M) and the gradients of the regularization terms g(M):

TG(M) = ∇IGfc(M) +∇g(M), (6)

Note that this is no longer a conventional optimization prob-
lem, since it contains 2 different types of gradients. The in-
tegrated gradients are utilized to indicate a direction for the
partial objective fc(M); the gradients of the g(M) are used
to regularize this direction and prevent it to be diffuse.

Computing the step size

Since the time complexity of computing ∇IGfc(M) is high,
we utilize a backtracking line search method and revise
the Armijo condition (Nocedal and Wright 2000) to help
us compute the appropriate step size for the total gradient
TG(M) in formula (6). The Armijo condition tries to find a
step size such that:

f(Mk + αk · dk)− f(Mk) ≤ αk · β · ∇f(Mk)
T dk, (7)

where dk is the descent direction; αk is the step size; β is
a parameter in (0, 1); ∇f(Mk) is the gradient of f at point
Mk.

The descent direction dk for our algorithm is set to be the
inverse direction of the total gradient TG(Mk). However,
since TG(Mk) contains the integrated gradients, it is un-
certain whether ∇Fc(Mk)

T dk = −∇Fc(Mk)
TTG(Mk) is

negative or not. Hence, we replace ∇Fc(Mk) with TG(Mk)
and obtain a revised Armijo condition as follows:

Fc

(
Mk − αk · TG(Mk)

)
− Fc(Mk) ≤

−αk · β · TG(Mk)
TTG(Mk), (8)

The detailed backtracking line search works as follows:

(1) Initialization: set the values of the parameter β, a decay
η, a upper bound αu and a lower bound αl for the step
size; let j = 0, and α0 = αu;

(2) Iteration: if αj satisfies condition (8), or αj ≤ αl, end
iteration; else, let αj+1 = αjη, j = j + 1, test condi-
tion (8) again with P[0,1](Mk − αk · TG(Mk)), where
P[0,1](M) clips the mask values to the closed interval
[0, 1];

(3) Output: if αj ≤ αl, the step size αk for TG(Mk) equals
to the lower bound αl; else, αk = αj
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Figure 3: Different heatmap approaches at 224 × 224 resolution. The red plot illustrates how the CNN predicted probability
drops with more areas masked, and the blue plot illustrates how the prediction increases with more areas revealed. The x axis for
the red/blue plot represents the percentage of pixels masked/revealed; and the y axis represents the predicted class probability.
One can see with I-GOS the red curve drops earlier and the blue plot increase earlier, leading to more area under the insertion
curve (insertion metric) and less area under the deletion curve (deletion metric). (Best viewed in color)

A projection step is needed in the iteration because the
mask Mk is bounded by the closed interval [0, 1]. Since we
have an integrated gradient in TG(M), a large upper bound
αu and a small β are needed in order to obtain a large step
that satisfies condition (8), similar to satisfying the Gold-
stein conditions for convergence in conventional Armijo-
Goldstein line search.

Note that we cannot prove the convergence properties of
the algorithm in non-convex optimization. However, the in-
tegrated gradient reduces to a scaling on the conventional
gradient in a quadratic function (see supplementary mate-
rial). In practice, it converges much faster than the original
mask approach in (Fong and Vedaldi 2017) and we have
never observed it diverging, although in some cases we do
note that even with this approach the optimization stops at a
local optimum. With the line search, we usually only run the
iteration for 10− 20 steps. Intuitively, the irrelevant parts of
the integrated gradients are controlled gradually by the reg-
ularization function g(M) and only the parts that truly cor-
relate with output scores would remain in the final heatmap.

Avoiding adversarial examples

Since the mask optimization (2) is similar to the adversarial
optimization (Szegedy et al. 2014; Goodfellow et al. 2014)
except the TV term, it is concerning whether the solution
would merely be an adversarial attack to the original image
rather than explaining the relevant information. An adversar-
ial example is essentially a mask that drives the image off the
natural image manifold, hence the approach in (Fong and
Vedaldi 2017) utilize a blurred version of the original image
as the baseline to avoid creating strong adversarial gradients
off the image manifold. We follow (Fong and Vedaldi 2017)

and also use a blurred image as the baseline. The total vari-
ation constraints also defeats adversarial masks by making
the mask piecewise-smooth. We also added other methods
to avoid finding an adversarial perturbation:

Algorithm 1: I-GOS
Optimization objective: formula (9);
Initialization: set M0 = 1;
while not converged and within the maximum steps do

Add different random noise ns to I0 when
computing the integrated gradient: ∇IGfc(Mk) =
1
S

∑S
s=1 ∂fc

(
Φ
(
I0 + ns,

s
S up(Mk)

))
/∂Mk ;

Compute the total (sub)gradient TG(Mk) of the
optimization for Mk using formula (6);
Compute the step size αk using the backtracking
line search algorithm ;
Update: Mk+1 = Mk − αk · TG(Mk);

end

(1) When computing the integrated gradients using for-
mula (4), we add different random noise ns to I0 at each
point along the straight-line path.

(2) When computing a mask M whose resolution is
smaller than that of the input image I0, we upsample it be-
fore perturbing the input I0, and rewrite formula (2) as:

M∗ = argmin fc
(
Φ(I0, up(M))

)
+ λ1||1−M ||1

+ λ2TV(M), (9)

where up(M ) upsamples M to the original resolution with
bilinear upsampling. The lower the resolution of M , the
smoother generated heatmap is.
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Table 1: Evaluation in terms of deletion (lower is better) and insertion (higher is better) scores on the ImageNet dataset using
the VGG19 model. GradCam can only generate 14×14 heatmaps for VGG19; RISE and Integrated Gradients can only generate
224× 224 heatmaps

224×224 112×112 28×28 14× 14
Deletion Insertion Deletion Insertion Deletion Insertion Deletion Insertion

Excitation BP (Zhang et al. 2016) 0.2037 0.4728 0.2053 0.4966 0.2202 0.5256 0.2328 0.5452
Mask (Fong and Vedaldi 2017) 0.0482 0.4158 0.0728 0.4377 0.1056 0.5335 0.1753 0.5647
GradCam (Selvaraju et al. 2017) – – – – – – – – – – – – 0.1527 0.5938
RISE (Petsiuk, Das, and Saenko 2018) 0.1082 0.5139 – – – – – – – – – – – –
Integrated Gradients (Sundararajan, Taly, and Yan 2017) 0.0663 0.2551 – – – – – – – – – – – –
I-GOS (ours) 0.0336 0.5246 0.0609 0.5153 0.0899 0.5701 0.1213 0.6387

Figure 4: Comparisons between GradCam, RISE, and I-GOS, see Fig. 3 caption for explanations of the meaning of the curves.

Whether a mask is adversarial can be evaluated using the
insertion metric, detailed in the experiments section. We
summarize an overview of the proposed I-GOS approach in
Algorithm 1.

Experiments

Evaluation Metrics and Parameter Settings

Although many recent work focus on explainable machine
learning, there is still no consensus about how to measure
the explainability of a machine learning model. For the
heatmaps, one of the important issues is whether we are ex-
plaining the image with human’s understanding or the deep
model’s perspective. A common pitfall is to try to use hu-
man’s understanding to explain the deep model, e.g. the
pointing game (Zhang et al. 2016), which measures the abil-
ity of a heatmap to focus on the ground truth object bounding
box. However, there are plenty of evidences that deep learn-
ing sometimes uses background context for object classifi-
cation which would invalidate pointing game evaluations.
Many heatmap papers show appealing images which look
plausible to humans, but (Nie, Zhang, and Patel 2018) points
out they could well be just doing partial image recovery and
boundary detection, hence generate human-interpretable re-
sults that do not correlate with network prediction. Hence,
it is important to utilize objective metrics that have causal
effects on the network prediction for the evaluation.

We follow (Petsiuk, Das, and Saenko 2018) to adopt dele-
tion and insertion as better metrics to evaluate different
heatmap approaches. In the deletion metric, we remove N

pixels (dependent on the resolution of the mask)most high-
lighted by the heatmap each time from the original image
iteratively until no pixel is left, and replace the removed
ones with the corresponding pixels from the baseline im-
age. The deletion score is the area under the curve (AUC)
of the classification scores after softmax (Petsiuk, Das, and
Saenko 2018) (red curve in Fig. 3-5). For the insertion met-
ric, we replace N most highlighted pixels from the baseline
image with the ones from the original image iteratively until
no pixel left (blue curve in Fig.3-6). The insertion score is
also the AUC of the classification scores for all the replaced
images. In the experiments, we generate heatmaps with dif-
ferent resolutions, including 224× 224, 112× 112, 28× 28,
14× 14, and 7× 7. And we compute the deletion and inser-
tion scores by replacing pixels based on generated heatmaps
at the original resolutions before upsampling.

The intuition behind the deletion metric is that the re-
moval of the pixels most relevant to a class will cause the
prediction confidence to drop sharply. This is similar to the
optimization goal in eq. (2). Hence, only utilizing the dele-
tion metric is not satisfactory enough since adversarial at-
tacks can also achieve a quite good performance. The in-
tuition behind the insertion metric is that only keeping the
most relevant pixels will retain the original score as much as
possible. Since adversarial masks usually only optimize the
deletion metric, it often use irrelevant parts of the image to
drop the prediction score. Thus, if only those parts are re-
vealed to the model, usually the model would not make a
confident prediction on the original class, hence a low in-
sertion score. Therefore, a good insertion metric indicates
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Table 2: Comparative evaluation in terms of deletion (lower is better) and insertion (higher is better) scores on ImageNet using
ResNet50 as the base model. GradCam can only generate 7 × 7 heatmaps for ResNet50; RISE and Integrated Gradients only
generate 224× 224 heatmaps

224×224 112×112 28×28 14×14 7×7
Deletion Insertion Deletion Insertion Deletion Insertion Deletion Insertion Deletion Insertion

Mask (Fong and Vedaldi 2017) 0.0468 0.4962 0.0746 0.5090 0.1151 0.5559 0.1557 0.5959 0.2259 0.6003
GradCam (Selvaraju et al. 2017) – – – – – – – – – – – – – – – – 0.1675 0.6521
RISE (Petsiuk, Das, and Saenko 2018) 0.1196 0.5637 – – – – – – – – – – – – – – – –
Integrated Gradients (Sundararajan, Taly, and Yan 2017) 0.0907 0.2921 – – – – – – – – – – – – – – – –
I-GOS (ours) 0.0420 0.5846 0.0704 0.5943 0.1059 0.5986 0.1387 0.6387 0.1607 0.6632

Figure 5: Comparison between Excitation BP and I-GOS at resolution 28× 28. See Fig. 3 for explanations of the figures

a non-adversarial mask. However, only using the insertion
metric would not identify blurry masks (e.g. Fig. 4), hence
the deletion-insertion metrics should be considered jointly.

For the deletion and insertion task, we utilize the
pretrained VGG19 (Simonyan and Zisserman 2015) and
Resnet50 (He et al. 2016) networks from the PyTorch model
zoo to test 5, 000 randomly selected images from the val-
idation set of ImageNet (Russakovsky et al. 2015). In Eq.
(8), β = 0.0001. λ1 and λ2 in Eq. (9) were fixed across all
experiments under the same heatmap resolution.

We downloaded and ran the code for most baselines, ex-
cept for (Sundararajan, Taly, and Yan 2017) which we imple-
mented. All baselines were tuned to best performances. For
RISE, we followed (Petsiuk, Das, and Saenko 2018) to gen-
erate 4, 000 7×7 random samples for VGG, and 8, 000 7×7
random samples for ResNet. For all experiments we used the
same pre-/post-processing with the same baseline image Ĩ0.
(Petsiuk, Das, and Saenko 2018) used a less blurred image
for insertion and a grey image for deletion. Since we found
the blurriness in (Petsiuk, Das, and Saenko 2018) was not al-
ways enough to get the CNN to output 0 confidence, we used
a more blurred image for both insertion and deletion, hence
the insertion and deletion scores for RISE are bit different in
our paper compared with theirs.

Results and Discussions

Deletion and Insertion: Table 1 and 2 show the compar-
ative evaluations of I-GOS with other state-of-the-art ap-
proaches in terms of the deletion and insertion metrics on the
ImageNet dataset using VGG19 and ResNet50 as the base-
line model, respectively. From Table 1 and 2 we observe that
our proposed approach I-GOS performs better than all base-
lines in both deletion and insertion scores for heatmaps with

all different resolutions.
Integrated Gradients obtains the worst insertion score

among all the approaches, which indicates that it indeed
contains lots of pixels uncorrelated with the classification,
as in the Cucumber and Oboe examples in Fig. 3. Excita-
tion BP sometimes fires on irrelevant parts of the image as
argued in (Nie, Zhang, and Patel 2018). Thus, it performs
the worst in the deletion task. GradCAM and RISE also
suffer on the deletion score maybe because of the random-
ness on the masks they generate, which sometimes fixate on
random background regions irrelevant to classification. Fig.
3-5 shows some visual comparisons between our approach
and baselines at various resolutions. The reason of insertion
curve going down and up is that sometimes part of the im-
age that contains features that are indicative of other classes
could be inserted, which could increase the activation for
other classes, potentially driving down the softmax proba-
bility for the current class.

Note that one advantage of our approach compared to
the previous best RISE and GradCAM is the flexibility in
terms of resolutions. RISE and Integrated Gradients can only
generate 224 × 224 heatmaps. GradCam can only gener-
ate 14 × 14 heatmap on VGG19, and 7 × 7 heatmap on
Resnet50, respectively. Our approach is better than them at
their resolutions, but also offers the flexibility to use other
resolutions. High resolutions are necessary especially when
the image has thin parts (e.g. Fig. 6), however may be less
visually appealing since the masked pixels may be sparse.
Our approach is significantly better than all baselines that
can operate on all resolutions. Note that, the insertion met-
ric is higher at lower resolutions, because a larger chunk of
image with more complete context information is inserted
at every point. Hence, a few percentage points lower inser-
tion metric at higher resolutions do not necessarily mean the
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Table 3: Comparative evaluation in terms of runtime (av-
eraged on 5, 000 images) on the ImageNet dataset using
ResNet50 as the base model.

Running time (s) 224×224 112×112 28×28 14×14 7×7
Mask 17.03 14.61 14.66 14.35 14.24
GradCam – – – – – – – – <1

RISE 61.77 – – – – – – – –
Integrated Gradients <1 – – – – – – – –
I-GOS (ours) 6.07 5.73 5.70 5.63 5.62

Figure 6: Examples from ablation studies (at 224× 224 res-
olution). With added noise, the heatmap successfully reveals
the entire legs of daddy longlegs, leading to better insertion
metric, whereas without noise it is more adversarial (maybe
merely by breaking each leg, CNN confidence is already re-
duced), leading to worse insertion metric

heatmaps are any worse. In practice, 28 × 28 heatmaps are
usually more visually appealing, but in order to capture thin
parts, we sometimes need to resort to 224×224 (e.g. Fig. 6).

Speed: In Table 3, we summarize the average runtime for
Mask, RISE, GradCam, Integrated Gradients, and I-GOS on
the ImageNet dataset using ResNet50 as the base model. For
each approach, we only use one Nvidia 1080Ti GPU. For I-
GOS, the maximal iteration is 15; for Mask, the maximal
iteration is 500. Our approach is faster than Mask and RISE.
Especially, it converges quickly, with the average number
of iterations to converge being 13 and the time for each
iteration being 0.38s. The average running times for the
backpropagation-based methods are all less than 1 second.
However, our approach achieve much better performance
than these approaches, especially with higher resolutions. To
the best of our knowledge, our approach I-GOS is the fastest
among the perturbation-based methods, as well as the one
with the best performance in deletion and insertion metrics
among all heatmap approaches.

Table 4: The results of the ablation study on VGG19.
224×224 28×28

I-GOS Deletion Insertion Deletion Insertion
Ours 0.0336 0.5246 0.0899 0.5701

No TV term 0.0308 0.3712 0.0841 0.5181
No noise 0.0559 0.4194 0.0872 0.5634
Fixed step size 0.0393 0.5024 0.0906 0.5403

Figure 7: One failure case for I-GOS, insertion curve does
not move until almost all pixels have been inserted.

Table 5: The optimization loss on VGG19 for resolution
28× 28.

λ1 = 0.01, λ2 = 0.2 λ1 = 0.1, λ2 = 2 λ1 = 1, λ2 = 20
I-GOS Mask I-GOS Mask I-GOS Mask

Total
loss 0.2241 0.3349 0.3739 0.4857 0.6098 0.6794

Deletion 0.0825 0.1056 0.0861 0.1178 0.0899 0.1340
Insertion 0.5418 0.5335 0.5624 0.5307 0.5701 0.5207

Ablation Studies: We show the results of ablation stud-
ies in Table 4. From Table 4 we observe that without the
TV term, insertion scores would indeed suffer significantly
while deletion scores do not change much, indicating that
the TV term is important to avoid adversarial masks. The
random noise introduced in section Avoiding adversarial ex-
amples of the paper is very useful when the resolution of the
mask is high (e.g, 224×224). From Fig. 6 we observe that
I-GOS with noise can achieve much better insertion scores
than without noise for the same insertion ratio. When the res-
olution is low (e.g, 28×28), the noise is not that important
since low resolution can already avoid adversarial examples.
When we utilize a fixed step size (the step size is 1 in Table
4), both deletion and insertion scores become worse, show-
ing the utility of the line search.

Failure Case: Fig. 7 shows one failure case, where I-GOS
found an adversarial mask and the insertion score did not
increase till the end. Our observation is that optimization-
based methods such as I-GOS usually do not work well
when the deep model’s prediction confidence is very low
(less than 0.01), or when the deep model makes a wrong
prediction.

Convergence: For the values of the objective after con-
vergence with Mask (Fong and Vedaldi 2017) vs. the pro-
posed I-GOS, Table 5 shows the comparison at 28×28 with
different parameters. Best parameters were used for each ap-
proach in Table 1 (0.01/0.2 for Mask and 1/20 for I-GOS).
It can be seen at every parameter setting I-GOS has lower
total loss than Mask (total loss is higher with larger λ1 and
λ2 since the L1+TV terms have higher weights in total loss).

Conclusion

In this paper, we propose a novel visualization approach I-
GOS, which utilizes integrated gradients to optimize for a
heatmap. We show that the integrated gradients provides a
better direction than the gradient when a good baseline is
known for part of the objective of the optimization. The
heatmaps generated by the proposed approach are human-
understandable and more correlated to the decision-making
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of the model. Extensive experiments are conducted on three
benchmark datasets with four pretrained deep neural net-
works, which shows that I-GOS advances state-of-the-art
deletion and insertion scores on all heatmap resolutions.
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