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Abstract

The generalization ability of Convolutional neural networks
(CNNs) for biometrics drops greatly due to the adverse ef-
fects of various occlusions. To this end, we propose a novel
unified framework integrated the merits of both CNNs and
graphical models to learn dynamic graph representations for
occlusion problems in biometrics, called Dynamic Graph
Representation (DGR). Convolutional features onto certain
regions are re-crafted by a graph generator to establish the
connections among the spatial parts of biometrics and build
Feature Graphs based on these node representations. Each
node of Feature Graphs corresponds to a specific part of the
input image and the edges express the spatial relationships be-
tween parts. By analyzing the similarities between the nodes,
the framework is able to adaptively remove the nodes rep-
resenting the occluded parts. During dynamic graph match-
ing, we propose a novel strategy to measure the distances of
both nodes and adjacent matrixes. In this way, the proposed
method is more convincing than CNNs-based methods be-
cause the dynamic graph method implies a more illustrative
and reasonable inference of the biometrics decision. Experi-
ments conducted on iris and face demonstrate the superiority
of the proposed framework, which boosts the accuracy of oc-
cluded biometrics recognition by a large margin comparing
with baseline methods.

Introduction

Deep learning methods have gained great success in recent
years, especially in the area of computer vision. Convolu-
tional Neural Networks (CNNs) have been widely applied as
a powerful tool for image classification and feature extrac-
tion (LéCun et al. 1998) (Krizhevsky, Sutskever, and Hinton
2012) (Simonyan and Zisserman 2014) (Szegedy et al. 2015)
(He et al. 2016) (Gao et al. 2017) (Hu et al. 2018). CNNs are
also universally applied to biometrics, including iris recogni-
tion (Liu et al. 2016) (Zhao and Kumar 2017) (Zhang et al.
2018), face recognition (Taigman et al. 2014) (Sun, Wang,
and Tang 2014) (Schroff, Kalenichenko, and Philbin 2015)
(Liu et al. 2017) (Wu et al. 2018) (Deng et al. 2018) and so
on.

However, tasks of biometrics are different from natural
image classification. They are greatly influenced by illumi-
nation, expression, occlusion and so on. Among them, oc-
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Figure 1: Iris samples and face samples in unconstrained en-
vironments.

clusion is the most common challenges problem in uncon-
strained situations (Jozer et al. 2013) (Azeem et al. 2014)
(He et al. 2018) as shown in Figure 1. In these situations,
gaps between intra-class samples are significantly enlarged.
The generalization abilities of CNNs on occluded cases
drops greatly due to the adverse effects of various occlu-
sions.

Masking strategy is commonly seen in literatures for oc-
clusion problems in biometrics. The features of occluded
areas are suppressed during matching by masking out the
invalid regions. However, detection and labelling of occlu-
sion as masks are error-prone and the errors are accumu-
lated into inaccurate recognition results. More importantly,
the features of occluded areas can not be suppressed af-
ter feature extraction by masks in CNNs which are end-to-
end frameworks. And the results of experiments demonstrate
that masking the occluded areas before feature extraction is
harmful.

In this paper, we propose a novel unified framework
named Dynamic Graph Representation (DGR) for occluded
biometrics. Basically, CNNs are adopted to extract convolu-
tional representations, graph models are leveraged to over-
come the occlusion problem. Dynamic graphs are built to re-
move the nodes of occluded part adaptively. As a result, the
similarity between intra-class samples are significantly in-
creased. The discriminative regions and the relationships be-
tween the regions are explicitly modeled by graphical blocks
in the proposed framework.
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Figure 2: Framework of the proposed method. The similarity
of each part of two samples and the similarity of the struc-
tures are contained in the Feature Graph.

Besides, graphical representations provide the reasons be-
hind the decisions. The match or non-match nodes in the
proposed dynamic graph method provides a more illustra-
tive and reasonable inference of the biometrics decision. For
example, the probe face image differs from gallery mainly
in left eye and nose regions so it is an imposter.

The structure of the proposed framework is shown in Fig-
ure 2. Graphical model and CNNs are fused together in the
proposed framework: Conv Block 1 produces the feature
maps for Graph Generator to construct graphs which named
Feature Graphs. Graph Generator could picks up a subset
of spatial nodes inside the feature maps, convey edges to
express the spatial relationships between nodes and finally
combine them together as Feature Graphs as we defined.
A novel deep graph model named Squeeze-and-Excitation
Graph Attention Networks (SE-GAT) are proposed in this
paper to process information of Feature Graphs. During the
matching stage, dynamic graphs are built as shown in Fig-
ure 3. The nodes corresponding to the occluded parts are
removed automatically by a straightforward and effective
strategy.

In general, Feature Graphs can explicitly show us what
parts of two samples are considered and the similarities be-
tween them. Hence, the underlying reasons results can be
perceived.

The major contributions of this paper can be summarized
as follows:

1. To the best of our knowledge, this is the first work that
applies deep graphical models for biometrics. A novel deep
graph model called SE-GAT is proposed as an essential com-
ponent of the proposed framework.

2. The proposed framework provides a novel strategy to
deal with occlusions, and the proposed framework achieves
better performance by a large margin comparing with base-
line methods. The decisions made by our framework are
more convincing and reasonable than vanilla CNN-based
methods.

3. The proposed framework possesses superior abilities to
narrow the gaps between intra-class samples because of the
dynamic graph matching, which significantly improves the
generalization capability in partially occluded biometrics.

Figure 3: Dynamic matching based on Feature Graphs. The
nodes of the occluded parts are removed during matching.
Hence, the similarity between intra-class samples are signif-
icantly increased.

Related Work

Biometric approaches based on CNNs. Two common
traits of biometrics, iris and face recognition, are selected
to evaluate the proposed framework. We briefly review re-
searches on these two modalities in this section.

Iris recognition has attracted increasing attention as one
of the most accurate and reliable methods for identify au-
thentication. Recently, CNN-based methods for iris recogni-
tion are presented. DeepIris is proposed in (Liu et al. 2016)
for heterogeneous iris matching. Fully convolutional net-
work (FCN) based model named UniNet is applied for iris
recognition in (Zhao and Kumar 2017). UniNet (Zhang et al.
2018) adopts fully convolutional network (FCN) for feature
extraction. MaxoutCNNs is proposed for iris and periocu-
lar recognition in (Zhang et al. 2018). Occlusion problem is
common for iris recognition, almost all existing CNN-based
methods adopt the masking strategy.

The first method for face representation based on CNN
is proposed by Taigman Yaniv et al. (Taigman et al. 2014).
A framework employing multiple convolutional networks
is proposed by Yi Sun et al. (Sun, Wang, and Tang 2014).
Triplet loss function is applied to get 128-D face embed-
ding representation in (Schroff, Kalenichenko, and Philbin
2015). A light convolutional architecture is proposed for
face recognition in (Wu et al. 2018). Topics about feature
space of face draw more attention recently. Numerous of
methods for better feature embedding are proposed, includ-
ing SphereFace (Liu et al. 2017), ArcFace (Deng et al.
2018), CosFace (Wang et al. 2018) and so on.

There are also region-based or partial-based models for
face recognition (Ou et al. 2018) (Cheheb et al. 2017) (He
et al. 2018). However, these approaches need to set apart the
occluded regions of face images before feature extraction.

Graphical methods for biometrics. There are some
graphical methods for biometrics, including iris (Kerekes et
al. 2007) , face (Kisku et al. 2009), periocular (Proença and
Briceno 2013), ear (Kisku et al. 2009) and hand vein (Ho-
radam et al. 2014). These handcraft methods may provide us
useful inspirations, despite these methods can not be blended
in deep learning frameworks.

Deep learning approaches on graphs. Graphs are ubiq-
uitous in the real world. Deep learning methods have been
extended to graph data recently (Zhang, Cui, and Zhu 2018)
(Zhou et al. 2018). Graph Neural Networks (GNNs) are in-
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troduced as a recursive neural networks in (Marco, Gabriele,
and Franco 2005) (Scarselli et al. 2009) to deal with graph
data. Recently, the generalization of convolutional opera-
tion draws increasing attention. Researches in this direc-
tion can be roughly categorized as spectral approaches
and non-spectral approaches (Zhou et al. 2018). The spec-
tral approaches (JoanBruna et al. 2014) (Kipf and Welling
2016) work with spectral representation of graphs. The non-
spectral approaches (Duvenaud et al. 2015) (Atwood and
Towsley 2016) (Hamilton, Ying, and Leskovec 2017) define
convolutional operation directly on graphs. Graph Attention
Networks (GAT) (Veličković et al. 2017) introduces atten-
tion mechanism to graph data.

Dynamic Graph Representation
In this section we introduce the framework of Dynamic
Graph Representation (DGR). Two crucial components of
DGR: Graph Generator and SE-GAT are described sepa-
rately. After that, a novel loss function designed for the train-
ing of Dynamic Graph Feature Learning is shown. Finally,
dynamic graph matching strategy is described.

In the proposed framework, images are firstly sent to a
convolutional block (Conv Block 1) as shown in Figure 2.
The block consists of several convolutional layers and pool-
ing layers. There are two branches after Conv Block 1. The
upper branch in Figure 2 contains another convolutional
block (Conv Block 2) and fully connected layers. The two
convolutional blocks and the fully connected layers consti-
tute a common CNNs pipeline and any kinds of convolu-
tional neural network can be incorporated into this branch.
Typically, global features are extracted at the top of the up-
per branch.

Another branch starts at the feature maps extracted from
the first convolutional block (Conv Block 1). A graph is
generated from the feature maps by the Graph Generator.
Each node of the graph contains a feature vector and the
weights of edges express the relationships between nodes.
We call it Feature Graph. Then, Feature Graph is sent to SE-
GAT which is a hierarchical feature extractor for graph. SE-
GAT is a novel structure based on Graph Attention Networks
(GAT) and the details will be shown latter.

Two kinds of loss functions are applied during training.
The global feature generated by the fully connected layers
is sent to cross-entropy loss function which measures the
classification loss. The Feature Graph generated by SE-GAT
is sent to a novel graph triplet loss function. The novel loss
function provides a new way to measure the similarity of
two graphs. Semantic similarity and relationship similarity
are both taken into consideration.

Graph Generator

There are two steps to generate Feature Graph from feature
map as shown in Figure 4. The first step is generating the
nodes, i.e. regression the spatial location of nodes and sam-
pling from the feature map. The second step is generating
the edges, i.e. generating the adjacent matrix according to
relationships of nodes.

Spatial location regression of nodes are realized by a light
network which called Spatial Location Regression Net as

Figure 4: Structure of Graph Generator.

shown in Figure 4. This network consists of two convolu-
tional layers and two fully connected layers, which trans-
forms a W ×H ×C feature map into N spatial coordinates
in N × 2 format by regression. Spatial coordinates are re-
gressed explicitly. Feature vector of each node is sampled
from the feature map by bilinear interpolation according to
the spatial coordinates:

fi,j(c) = F(i, j, c) (1)

where f is the feature vector, F is the feature map, i, j are the
spatial coordinates of the node and they are real numbers, c
is the index of feature vector and c ∈ {1, 2, ..., C}, C is the
number of channels of the feature map. Bilinear interpola-
tion is not shown in Equation 1 for briefness.

The adjacent matrix is generated by Gaussian kernel func-
tion according to the spatial position of nodes:

Madj(a, b) =

{
0 ||na − nb||2 > R,

exp(− ||na−nb||22
2R2 ) ||na − nb||2 < R.

(2)
where Madj is the N ×N adjacent matrix, N is the number
of nodes, na, nb are the spatial coordinates of two nodes,
R is the scale of receptive field of each node. According
to Equation 2, if the receptive fields on input image of two
nodes are overlapped, edge will be generated between them.
And the larger the overlapped area is, the larger the weight
of the edge is.

After the two steps, N × C Feature Graph is generated
from W × H × C feature map, where N is the number of
nodes. The Spatial Location Regression Net selects the most
important locations of feature map as nodes of the Feature
Graph. Spatial Gaussian kernel function establishes relation-
ships between nodes with overlapped receptive fields.

SE-GAT

SE-GAT is a new network based on Graph Attention Net-
works (GAT) (Veličković et al. 2017). It consists of two
kinds of layers: squeeze-and-excitation (SE) layer and graph
attention (GAT) layer.

Squeeze-and-excitation layer is a generalization of
squeeze-and-excitation block (Hu et al. 2018). As shown in
Figure 5, the average energy of each channel of nodes is cal-
culated by the global pooling operation:

z(c) = Fsq(G) =
1

N

N∑
i=1

fi(c) (3)

where z is the squeezed vector, G is the Feature Graph, N is
the number of nodes, c is the index of the feature vector of
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Figure 5: Structure of SE layer.

each node and c ∈ {1, 2, ..., C}. Two fully connected layers
are used to make use of the global information:

s = Fex(z, W) = δ2(W2δ1(W1z)) (4)

where s is the scale vector, W1, W2 are parameters of the
two fully connected layers, δ1, δ2 are ReLU function. The
scale vector s is used to re-scale each channel of the Feature
Graph:

f′i(c) = s(c)fi(c) (5)

where f′ is the re-scaled feature vector, c is the index of fea-
ture vector and c ∈ {1, 2, ..., C}, i is the index of nodes and
i ∈ {1, 2, ..., N}.

The graph attention (GAT) layer is a modified variant of
the layer in (Veličković et al. 2017). The weights of different
edges of the Feature Graph is different rather than the same.
The formulation of the layer is given as follows:

f′a = δ(αab(a, b)Wfb) (6)

αab =
exp(δ(Madj(a, b)eab)∑
k exp(δ(Madj(a, k)eab))

(7)

eab = wT
att[Wfa||Wfb] (8)

where f′ ∈ R
C is the output vector, f ∈ R

C is the input
vector, δ is nonlinear activation function, αab is the attention
value between node a and node b, W ∈ R

C×C and watt ∈
R

2C are the parameters of the layer, Madj is the adjacent
matrix of input graph, || is the concatenation operation.

The framework of SE-GAT is shown in Figure 6. Residual
structure has been proved to be effective for CNNs (He et
al. 2016). We extend it to graph model in SE-GAT. There
are four layers, two of them are SE layer and the rest are
GAT layer as shown in Figure 6. Then the output is added to
the input before a dimension reduction layer. The dimension
reduction layer reduces the dimension of feature vectors of
nodes:

f′i = δ(WC′×Cfi) (9)

where WC′×C is the parameter matrix, δ is nonlinear activa-
tion function, C ′ is the dimension of output feature vectors.
Two kinds of features are separated from the output Fea-
ture Graphs of SE-GAT: feature vectors which express the
semantic feature, adjacent matrix which expresses the rela-
tionship feature.

Figure 6: Framework of SE-GAT.

Graph Triplet Loss Function

We describe a new approach to measure the similarity be-
tween two Feature Graphs firstly. Then, the formula of the
novel loss function is given.

The output of DGR contains two kinds of information:
semantic information in the feature vectors and spatial re-
lationship information in the adjacent matrixes of Fea-
ture Graphs. Hence, the similarity measure of two Feature
Graphs consists of two terms:

S = Sfea + Sadj (10)

where Sfea is the semantic similarity, Sadj is the relationship
similarity.

Sfea = cosine(f̃1, f̃2) (11)

where cosine represents the cosine similarity, f̃1, f̃2 are the
concatenation of all feature vectors of Feature Graphs and
feature vectors generated by fully connected layers.

Sadj = ||M1
adj − M2

adj ||2 (12)

where M1
adj ,M2

adj are the adjacent matrix of Feature
Graphs.

The graph triplet loss is:

L = max{0,m+ Sanc−neg − Sanc−pos} (13)

where Sanc−neg is the similarity between anchor sample and
negative sample, Sanc−pos is the similarity between anchor
sample and positive sample, m is a positive margin. We set
m = 1 during training.

Dynamic Graph Match

For two Feature Graphs, GA and GB , the mean of cosine
similarities of corresponding nodes are calculated:

sgate =
1

N

N∑
i=1

cosine(fAi , fBi ) (14)

where fAi and fBi are the feature vectors of corresponding
nodes, N is the number of nodes in each Feature Graph. If
the similarity of a node pair is less than sgate, these two
nodes are removed from the two Feature Graphs:

GDyn
A , GDyn

B = Re(GA, GB , sgate) (15)

where Re represents the remove operation according to the
sgate. The dynamic graphs GDyn

A , GDyn
B are built and the

11943



similarity of GDyn
A , GDyn

B is calculated according to the ap-
proach described above.

The node pairs with lower similarities are removed be-
cause the variances of occluded parts are much larger than
the visible parts. And the gate given by the mean of simi-
larities provides a straightforward and effective way to built
dynamic graphs.

Experiments

Two common modalities of biometrics, iris and face, are se-
lected to evaluate the proposed method.

Experiments of Iris Recognition

Protocols and Databases A simple novel convolutional
architecture is used for iris experiments. The Conv Block
1 contains four convolutional layers and the Conv Block 2
contains one convolutional layer. The number of nodes of
Feature Graph is 32.

For all iris images, the preprocessing procedure contains
three steps: 1) eye detection by Haar-like Adaboost detec-
tors (Viola and Jones 2004), 2) iris boundaries localization
using method in (He et al. 2009), 3) iris normalization by
rubber sheet model (Daugman 1993). Iris images are nor-
malized to a rectangle with 128× 256 resolution.

Four databases are used for experiments: (1) ND
CrossSensor Iris 2013 Dataset-LG4000. It contains 29,986
iris samples from 1,352 classes. (2) CASIA Iris Image
Database V4-Distance. Images of this database are acquired
from 3 meters away. It contains 2,446 iris samples from 284
classes. (3) CASIA-Iris-M1-S2. Images of this database are
acquired by mobile devices. It contains 6,000 iris samples
from 400 classes. (4) CASIA Iris Image Database V4-Lamp.
This database contains 16,212 iris samples from 819 classes.
A lamp was turned on/off close to the subject to introduce
elastic deformation under different illumination conditions.

The images of left eyes are selected for training and the
images of right eyes for testing.

Comparisons to State-of-the-Art The proposed method
is compared with the state-of-the-art approaches, including
log-Gabor (Masek 2003), Ordinal Measures (OMs) (Sun and
Tan 2009), UniNet (Zhao and Kumar 2017) and MaxoutC-
NNs (Zhang et al. 2018).

The results are shown in Figure 7 and Table 1. Significant
improvements from proposed method can be found on all
four databases.

Feature Graph of a iris sample from the CASIA Iris Im-
age Database V4-Lamp is visualized in Figure 8. The nodes
avoid the eyelid which is useless for iris recognition as we
can see. Almost all nodes locate around the boundary of
pupillary zone and ciliary zone. The locations of nodes indi-
cate that the network “thinks” this area is the most important
part of iris for recognition.

Occluded Iris Recognition Occluded iris recognition ex-
periment is launched on the test database of the ND
CrossSensor Iris 2013 Dataset-LG4000. Special area of iris
samples are covered by random noise to simulate the oc-
cluded situations in Figure 9. Two kinds of occlusion situ-

Figure 7: DET curves of iris recognition experiments.

Figure 8: Visualization of the Feature Graph of a iris sample
from the CASIA Iris Image Database V4-Lamp.

ations shown in Figure 9 are selected randomly for a spe-
cial iris sample pair while the percentage of covered area
remains. Note that all models used in this experiment are
not trained on the occluded database.

Figure 9: Two situations of occluded iris samples.

The results of 30% occluded are shown in Figure 10 and
Table 2. The performance of the proposed method under oc-
cluded situations reduces slightly while the other method be-
come worse seriously. The results indicate that the propose
method has desired generalization ability for occluded situ-
ations.

Additional experiment are conducted to evaluate the influ-
ence of the covered area size. Performance of the proposed
method under different percentages of covering are provided
in Figure 11.

Experiments of Occluded Face Recognition

Protocols and Database Light CNN (Wu et al. 2018) is
adopted to build the architecture for face recognition. The
Light CNN-9 version which contains 9 convolutional layers
is selected. The Conv Block 1 consists of the first 5 convolu-
tional layers, and the Conv Block 2 consists of rest 4 convo-
lutional layers. The number of nodes of Feature Graph is 64.
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Table 1: False reject rates (FRR) and equal error rates (EER) of iris recognition experiments.
ND-LG4000 CASIA-Distance CASIA-M1-S2 CASIA-Lamp

FRR@FAR=0.01% EER FRR@FAR=0.01% EER FRR@FAR=0.01% EER FRR@FAR=0.01% EER
log-Gabor 35.89% 3.25% 38.30% 9.96% 45.02% 6.35% 42.94% 7.64%

OMs 17.94% 2.07% 28.87% 4.31% 16.67% 3.35% 19.32% 3.30%
UniNet 13.75% 2.80% 21.93% 3.63% 13.18% 2.64% 14.93% 3.88%

MaxouCNNs 9.90% 1.77% 19.61% 2.21% 13.83% 1.81% 14.46% 2.77%
Ours 3.02% 0.62% 6.94% 1.71% 6.57% 0.76% 5.92% 0.61%

Figure 10: DET curves under occluded situations. The per-
centage of occluded area is 30%.

Table 2: FRR and EER of occluded situations. The percent-
age of occluded area is 30%.

FRR@FAR=0.01% EER
log-Gabor 45.29% 27.26%

OMs 41.94% 26.29%
UniNet 60.66% 8.31%

MaxoutCNNs 81.75% 21.79%
Ours 3.22% 0.85%

Light CNN-9 is selected as the baseline method for compar-
ison naturally.

The CASIA-WebFace (Yi et al. 2014) is adopted as the
training database. The CASIA-WebFace is a public database
which contains 494,414 face images from 10,575 subjects.
All face images in training database are converted to gray-
scale images before normalized to 128× 128 resolution ac-
cording to landmarks. Horizontal mirror operation is con-
ducted for data augmentation because faces have nearly
symmetric structure.

Occluded Face Verification A simulated occluded face
database named Occluded-LFW which is based on the La-
beled Faces in the Wild (LFW) database is used for evalua-
tion. LFW contains 13,233 images from 7,749 individuals.
After the same pre-processing of the training images, special
area of face images are covered by random noise to simulate
the occluded situations during this experiment as shown in
Figure 12. Four kinds of occlusion situations shown in Fig-
ure 12 are selected randomly for a special face image pair
while the percentage of covered area remains. In order to
evaluate the generalization ability of the proposed method,
the models in this experiment are not tuned on the occluded
database.

We follow the Labeled Faces in the Wild (LFW) bench-

Figure 11: Performance of the proposed method under dif-
ferent percentages of occlusion.

mark protocol1, where 3,000 positive pairs and 3,000 neg-
ative pairs of images are selected for face verification. One
of the face image of each pair is from the Occluded-LFW
database and the other is from the LFW database.

Figure 12: Four situations of occluded face samples.

Experiments with two different percentages of occluded
area are launched: 30% and 50%. The results are shown in
Figure 13 and Table 3. The performance of the proposed
method is better than the baseline method obviously on both
two percentages of occluded area.

Figure 13: ROC curves of occluded face verification. The
percentage of occluded area of the left figure is 30%. The
percentage of occluded area of the right figure is 50%.

Feature Graphs of a pair of face images are visualized in
Figure 14. The first row shows the 10 pairs of nodes with
highest similarity scores. The second row shows the 10 node
pairs with lowest similarity scores. All the 10 pairs nodes
with highest similarity scores lie in the left area of the right

1http://vis-www.cs.umass.edu/lfw/pairs.txt
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Table 3: Results of occluded face verification on the
Occluded-LFW.

TPR@FTR=0.1% 100%-EER
Percentage of occlusion: 30%

LCNN-9 22.47% 85.97%
Ours 71.8% 93.63%

Percentage of occlusion: 50%
LCNN-9 8.47% 76.47%

Ours 25.19% 84.23%

eye which indicates that the network “thinks” this is the most
similar part of the two images. This example proves that we
can read out the reasons for the results shown by the network
from the Feature Graph.

Figure 14: Matched nodes of a pair of images. The first row
shows the 10 node pairs with highest similarity scores. The
second row shows the 10 node pairs with lowest similarity
scores.

Experiments on Masking Strategy

In this section, experiments on masking strategy are
launched for comparison. Experiments of this section are
launched on the test database of the ND CrossSensor Iris
2013 Dataset-LG4000. The percentage of occluded are of
each sample is 50%. Two frameworks are used to evaluation
the masking strategy: the proposed method and the back-
bone, which is a normal CNNs, of it. In the situation without
masking strategy, the occluded samples are sent to networks
directly. In the situation with masking strategy, occluded ar-
eas of samples are masked by precise masks, which elim-
inate the influence of inaccuracy of masks, before sent to
networks.

The results are shown in Figure 15. The performances of
situations with masking strategy are worse than the perfor-
mances without masking strategy in both two frameworks
as we can observe in Figure 15. The reasons may be that
the masks disturb the feature extraction. The results indicate
that covering occluded areas of input images by masks is
harmful to deep learning framework.

Parameter Analysis

The number of nodes of Feature Graph is a important hyper-
parameter of the proposed framework. To evaluate the in-
fluence of the number of nodes, we conduct experiments

Figure 15: Comparisons to masking strategy. The percentage
of occluded area is 50%.

on different number of nodes. The test database of the
ND CrossSensor Iris 2013 Dataset-LG4000 are selected to
launch the experiments.

The results are shown in Table 4. The dimension of feature
vectors are also listed. Too many nodes will increase com-
putational cost and some distractive information is included.
On the other hand, too few nodes fail to achieve good ac-
curacy. An analysis on the graph nodes/connections will be
added.

Table 4: Results on the ND-LG4000
Num NodesFRR@FAR=0.01% EER Feature Dimension

8 4.51% 0.93% 512
32 3.01% 0.62% 1280
128 4.56% 0.73% 4352

Conclusion

We propose a novel deep learning framework called Dy-
namic Graph Representation (DGR) for occlusion handling
in biometrics in this paper. Dynamic graphs are adopted
to overcome the occlusion situations. A novel deep graph
model is proposed for processing of the Feature Graph.
The excellent performance and superior generalization abil-
ity are demonstrated by extensive experiments on multiple
modality databases. The main idea of this paper is straight-
forward, and we believe that there is much room for im-
provements. Further exploration of this work should focus
on the better graph generation strategy and the better method
for dynamic graph building.
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