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Abstract

Advances in machine learning have generated increasing en-
thusiasm for tasks that require high-level reasoning on top
of perceptual capabilities, particularly over visual data. Such
tasks include, for example, image captioning, visual question
answering, and visual navigation. Their evaluation is however
hindered by task-specific confounding factors and dataset bi-
ases. In parallel, the existing benchmarks for abstract rea-
soning are limited to synthetic stimuli (e.g. images of sim-
ple shapes) and do not capture the challenges of real-world
data. We propose a new large-scale benchmark to evaluates
abstract reasoning over real visual data. The test involves vi-
sual questions that require operations fundamental to many
high-level vision tasks, such as comparisons of counts and
logical operations on complex visual properties. The bench-
mark measures a method’s ability to infer high-level rela-
tionships and to generalise them over image-based concepts.
We provide multiple training/test splits that require controlled
levels of generalization. We evaluate a range of deep learn-
ing architectures, and find that existing models, including
those popular for vision-and-language tasks, are unable to
solve seemingly-simple instances. Models using relational
networks fare better but leave substantial room for improve-
ment.

Introduction

Some of the most active research areas in computer vision
are tackling increasingly complex tasks that require high-
level reasoning. Some examples of this trend include visual
question answering (VQA) (Antol et al. 2015), image cap-
tioning (Anderson et al. 2016), referring expressions (Yu et
al. 2017), visual dialog (Das et al. 2017), and vision-and-
language navigation (Anderson et al. 2018b). While deep
learning helped make significant progress, these tasks ex-
pose the limitations of the pattern recognition methods that
have proved successful on classical vision tasks such as ob-
ject recognition. A key indicator of the shortcomings of deep
learning methods is their tendency to respond to specific
features or biases in the dataset, rather than generalising to
an approach that is applicable more broadly (Agrawal et al.
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Figure 1: We propose a new task to evaluate a model’s ability
to perform abstract reasoning over complex visual stimuli.
Each test instance is a matrix of 3× 3 images, within which
each row contains 3 images that exemplify the same rela-
tionship (in this case they have the same shape). The task is
to identify the correct candidate for the missing 9scriptsizeth
image from a set of candidates. The correct answer above is
the third candidate that represents a heart-shaped object.

2018; Devlin et al. 2015). In response, we propose a bench-
mark to directly measure a method’s ability for high-level
reasoning over real visual information, and in which we can
control the level of generalisation required.

Progress on the complex tasks mentioned above is typ-
ically evaluated on standardized benchmarks (Anderson et
al. 2018b; Antol et al. 2015; Teney, Liu, and van den Hengel
2016). Methods are evaluated with metrics on task-specific
objectives, e.g. predicting the correct answer in VQA, or
producing a sentence matching the ground truth in image
captioning. These tasks include a strong visual component,
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and they are naturally assumed to lie on the path to semantic
scene understanding, the overarching goal of computer vi-
sion. Unfortunately, non-visual aspects of these tasks – lan-
guage in particular – act as major confounding factors. For
example, in image captioning, the automated evaluation of
generated language is itself an unsolved problem. In VQA,
many questions are phrased such that their answers can be
guessed without looking at the image.

We propose to take a step back with a task that di-
rectly evaluates abstract reasoning over realistic visual stim-
uli. Our setting is inspired by Raven’s Progressive Matri-
ces (RPMs) (Raven and for Educational Research. 1938),
which are used in educational settings to measure human
non-verbal visual reasoning abilities. Each instance of the
task is a 3 × 3 matrix of images, where the last image is
missing and is to be chosen from eight candidates. All rows
of the completed matrix must represent a same relationship
(logical relationships, counts and comparisons, etc.) over a
visual property of their three images (Fig. 1). We use real
photographs, such that the task requires strong visual capa-
bilities, and we focus on visual, mostly non-semantic prop-
erties. This evaluation is thus designed to reflect the capabil-
ities required by the complex tasks mentioned above, but in
an abstract non-task-specific manner that might help guide
general progress in the field.

Other recent efforts have proposed benchmarks for visual
reasoning (Barrett et al. 2018; Suhr et al. 2017) and our key
difference is to focus on real images, which are of greater in-
terest to the computer vision community than 2D shapes and
line drawings. This is a critical difference, because abstract
reasoning is otherwise much easier to achieve when applied
to a closed set of easily identified symbols such as simple
geometrical shapes. A major contribution of this paper is the
construction of a suitable dataset with real images on large
scale (over 300,000 instances).

We have adapted and evaluated a range of deep learning
models on our benchmark. Simple feed-forward networks
achieve better than random results given enough depth, but
recurrent neural networks and relational networks perform
noticeably better. In the evaluation settings requiring strong
generalization, i.e. applying relationships to visual proper-
ties in combinations not seen during training, all tested mod-
els clearly struggle. In most cases, small improvements are
observed by using additional supervision, both on the vi-
sual features (using a bottom-up attention network (Ander-
son et al. 2018a) rather than a ResNet CNN), and on the
type of relationship represented in the training examples.
These results indicate the difficulty of the task while hint-
ing at promising research directions.

Finally, the proposed benchmark is not to be addressed
as an end-goal, but should serve as a diagnostic test of
methods aiming at more complex tasks. In the spirit of the
CLEVR dataset for VQA (Johnson et al. 2016) and the bAbI
dataset for reading comprehension (Weston et al. 2015), our
benchmark focuses on the fundamental operations common
to multiple high-levels tasks. Crafting a solution specific to
this benchmark is however not necessarily a path to actual
solutions to these tasks. This guided the selection of general-
purpose architectures evaluated in this paper.

The contributions of this paper are summarized as follows.
1. We define a new task to evaluate a model’s ability for ab-

stract reasoning over complex visual stimuli. The task is
designed to require reasoning similar to complex tasks in
computer vision, while allowing evaluation free of task-
specific confounding factors such as natural language and
dataset biases.

2. We describe a procedure to collect instances for this task
at little cost, by mining images and annotations from the
Visual Genome. We build a large-scale dataset of over
300,000 instances, over which we define multiple train-
ing and evaluation splits that require controlled amounts
of generalization.

3. We evaluate a range of popular deep learning architec-
tures on the benchmark. We identify elements that prove
beneficial (e.g. relational reasoning and mid-level super-
vision), and we also show that all tested models struggle
significantly when strong generalization is required.

The dataset will be publicly released to encourage the de-
velopment of models with improved capabilities for abstract
reasoning over visual data.

Related work
Evaluation of abstract visual reasoning Evaluating rea-
soning has a long history in the field of AI, but is typically
based on pre-defined or easily identifiable symbols. Recent
works include the task set of Fleuret et al. (Fleureta et al.
2011), in which they focus on the spatial arrangement of ab-
stract elements in synthetic images. Their setting is reminis-
cent of the Bongard problems presented in (Bongard 1970)
and further popularized by Hofstadter (Hofstadter 1979).
Stabinger et al. (Stabinger, Rodrı́guez-Sánchez, and Piater
2016) tested whether state-of-the-art CNN architectures can
compare visual properties of multiple abstract objects, e.g. to
determine whether two shapes are of the same size. Al-
though this involves high-level reasoning, it is over coarse
characteristics of line-drawings.

V-PROM is inspired by Raven’s Progressive Matrices
(RPMs) (Raven and for Educational Research. 1938), a clas-
sic psychological test of a human’s ability to interpret syn-
thetic images. RPMs have been used previously to evalu-
ate the reasoning abilities of neural networks (Barrett et
al. 2018; Hoshen and Werman 2017; Wang and Su 2015).
In (Hoshen and Werman 2017), the authors propose a CNN
model to solve problems involving geometric operations
such as rotations and reflections. Barrett et al. (Barrett et al.
2018) evaluated existing deep learning models on a large-
scale dataset of RPMs, with a procedure similar to one pre-
viously proposed by Wang et al. (Wang and Su 2015). The
benchmark of Barrett et al. (Barrett et al. 2018) is the most
similar to our work. It uses synthetic images of simple 2D
shapes, whereas ours uses much more complex images, at
the cost of a less precise control of the visual stimuli. Recog-
nizing the complementarity of the two settings, we purpose-
fully model our evaluation setup after (Barrett et al. 2018)
such that future methods can be evaluated and compared
across the two settings. Since the synthetic images in (Bar-
rett et al. 2018) do not reflect the complexity of real-world
data, progress on this benchmark may not readily translate
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Figure 2: Some challenging instances from our dataset. See the footnote1for the answer key.

to high-level vision tasks. Our work bridges the gap between
these two extremes.

Evaluation of high-level tasks in computer vision The
interest in high-level tasks is growing, as exemplified by the
advent of VQA (Antol et al. 2015), referring expressions (Yu
et al. 2017), and visual navigation (Anderson et al. 2018b),
to name a few. Unbiased evaluations are notoriously diffi-
cult, and there is a growing trend toward evaluation on out-
of-distribution data, i.e. where the test set is drawn from a
different distribution than the training set (Agrawal et al.
2018; Anderson et al. 2018b; Teney and van den Hengel
2016; Tran et al. 2016). In this spirit, our benchmark in-
cludes multiple training/test splits drawn from different dis-
tributions to evaluate generalization under controlled condi-
tions. Moreover, our task focuses on abstract relationships
applied to visual (i.e. mostly non-semantic) properties, with
the aim of minimizing the possibility of solving the task by
exploiting non-visual factors.

Models for abstract reasoning with neural networks
Various architectures have been proposed with the goal of
moving beyond memorizing training examples, for example
relation networks (Santoro et al. 2017), memory-augmented
networks (Weston, Chopra, and Bordes 2014), and neural
Turing machines (Graves, Wayne, and Danihelka 2014). Re-
cent works on meta learning (e.g. (Finn, Abbeel, and Levine
2017)) address the same fundamental problem by focusing
on generalization from few examples (i.e. few shot learn-
ing), and they have shown better generalization (Finn et al.
2017), including in VQA (Teney and van den Hengel 2018).
Barrett et al. (Barrett et al. 2018) applied relation networks
(RNs) with success to their dataset of RPMs. We evaluate
RNs on our benchmark with equally encouraging results, al-
though there remains large room for improvement, in partic-
ular when strong generalization is required.

1Denoting the candidate answers as 1–8, left-to-right, first then
second row, the correct ones are 7, 2, 6.

A new task to evaluate visual reasoning

Our task is inspired by the classical Raven’s Progressive Ma-
trices (Raven and for Educational Research. 1938) used in
human IQ tests (see Fig. 1) . Each instance is a matrix of
3× 3 images, where the missing final image must be identi-
fied from among 8 candidates. The goal is to select an image
such that all 3 rows represent a same relationship over some
visual property (attribute, object category, or object count)
of their 3 respective images. The definition of our task was
guided by the following principles. First, it must require, but
be not limited to, strong visual recognition ability. Second,
it should measure a common set of capabilities required in
high-level computer vision tasks. Third, it must be practical
to construct a large-scale benchmark for this task, enabling
an automatic and unambiguous evaluation. Finally, the task
cannot be solvable through task-specific heuristics or relying
on superficial statistics of the training examples. This points
at a task that is compositional in nature and inherently re-
quires strong generalization.

Our task can be seen as an extension to real images of
recent benchmarks for reasoning on synthetic data (Barrett
et al. 2018; Hoshen and Werman 2017). These works sac-
rifice visual realism for precise control over the contents of
images which are limited to simple geometrical shapes. It is
unclear whether reasoning under these conditions can trans-
fer to realistic vision tasks. Our design is also intended to
limit the extent to which semantic cues might be used to
as “shortcuts” to avoid solving the task using the appropri-
ate relationships. For example, a test to recognize the rela-
tion above could rely on the higher likelihood of car above
ground than ground above car, rather than its actual spatial
meaning. Therefore, our task focuses on fundamental visual
properties and relationships such as logical and counting op-
erations over multiple images (co-occurrence in a same pho-
tograph being likely biased).

The task requires identifying a plausible explanation for
the provided triplets of images, i.e. a relation that could
have generated them. The incomplete triplet serves as a “vi-
sual question”, and the explanation must be applied gener-
atively to identify the missing image. It is unavoidable that
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Object Human Object Object
attributes attributes categories counts

Nb. visual elements 84 38 346 10
Nb. images 36,750 12,249 82,905 11,730
Nb. task instances 45,000 45,000 45,000 100,0002

Table 1: Statistics of the V-PROM dataset.

more than one of the answer candidates constitute plausi-
ble completions. Indeed, a sufficiently-contrived explanation
can justify any possible choice. The model has to identify the
explanation with the strongest justification, which in prac-
tice tends to be the simplest one in the sense of Occam’s
razor. This is expected to be learned by the model from train-
ing examples.

Construction of the V-PROM dataset

We describe how to construct a large-scale dataset for our
task semi-automatically. We call it V-PROM for Visual PRO-
gressive Matrices.

Generating descriptions of task instances Each instance
is a matrix of 3 × 3 images that we call a visual reasoning
matrix (VRM). Each image Ii in the VRM depicts a visual
element ai = φ(Ii), where ai denotes an element depicted
in the image with ai ∈ A ∪ O ∪ C, where A, O, C, respec-
tively denote sets of possible attributes, objects, and object
counts. We denote with v(Ii) ∈ {A,O,C} the type of visual
element ai corresponds to. We also denote with Ii,j the j-th
image of the i-th row in a VRM. Each VRM represents one
specific type v of visual elements, and one specific type of
relationship r ∈ {And,Or,Union, Progression}. We define
them as follows.
• And: φ(Ii,3) = φ(Ii,j), ∀j ∈ 1, 2. The last image of each

row has the same visual element as the other two.
• Or: φ(Ii,3) = φ(Ii,1) or φ(Ii,3) = φ(Ii,2). The last image

in each row has the same visual element as the first or the
second.

• Union: {φ(I1,j) ∀ j} = {φ(I2,j) ∀ j} = {φ(I3,j) ∀ j}.
All rows contain the same three visual elements, possibly
in different orders.

• Progression: v(Ii,j) = C, ∀i, j; and φ(Ii,t+1)−φ(Ii,t) =
φ(Ij,t+1)− φ(Ii,t) ∀i, j, t ∈ 1, 2. The numbers of objects
in a row follow an arithmetic progression.

We randomly sample a visual element v and relationship r
to generate the definition of a VRM. Seven additional incor-
rect answer candidates are obtained by sampling seven dif-
ferent visual elements of the same type as v. The following
section describes how to obtain images that fulfills a defini-
tion (v, r) of a VRM by mining annotations from the Visual
Genome (VG) (Krishna et al. 2016).

Mining images from the Visual Genome To select suit-
able images, we impose five desired principles: richness,

2We generate more task instances with object counts than with
attributes and categories because counts are the only ones involved
in the relationship progression, in addition to the three others (and,
or, union).

purity, image quality, visual relatedness, and independence.
Richness requires the diversity of visual elements, and of the
images representing each visual element. Purity constrains
the complexity of the image, as we want images that de-
pict the visual element of interest fairly clearly. Visual re-
latedness guides us toward properties that have a clear vi-
sual depiction. As a counterexample, the attribute open ap-
pears very differently when a door is open and a bottle is
open. Such semantic attributes are not desirable for our task.
Finally, independence excludes the objects that frequently
co-occur with other objects (e.g. “sky”,“road”,“water”, etc. )
and could lead to ambiguous VRMs.

We obtain images that fulfill the above principles using
VG’s region-level annotations of categories, attributes, and
natural language description ( Table 1). We first preselect
categories and attributes with large numbers of instances to
guarantee sufficient representations of each in our dataset.
We manually exclude unsuitable labels such as semantic
attributes, and objects likely to cause ambiguity. We crop
the annotated regions to obtain pure images. We discard
those smaller than 100 px in either dimension. The anno-
tations of object counts are extracted from numbers 1–10
appearing in natural language descriptions (e.g. “five bowls
of oatmeal”), manually excluding those unrelated to counts
(e.g. “five o’clock” or “a 10 years old boy”).

Data splits to measure generalization

In order to evaluate a method’s capabilities for generaliza-
tion, we define several training/evaluation splits that require
different levels of generalization. Training and evaluating a
method in each of these settings will provide an overall pic-
ture of its capabilities beyond the basic fitting of training
examples. To define these different settings, we follow the
nomenclature proposed by Barrett et al. (Barrett et al. 2018).
1. Neutral – The training and test sets are both sampled

from the whole set of relationships and visual elements.
Training to testing ratio is 2 : 1.

2. Interpolation / extrapolation – These two splits evalu-
ate generalization for counting. In the interpolation split,
odd counts (1,3,5,7,9) are used for training and even
counts (2,4,6,8,10) are used for testing. In the extrapola-
tion split, the first five counts (1–5) are used for training
and the remaining (6–10) are used for testing.

3. Held-out attributes – The object attributes are divided
into 7 super-attributes3: color, material, scene, plant con-
dition, action, shape, texture. The human attributes are
divided into 6 super-attributes: age, hair style, clothing
style, gender, action, clothing color. The super-attributes
shape, texture, action are held-out for testing only.

4. Held-out objects – A subset of object categories (1/3)
are held-out for testing only.

5. Held-out pairs of relationships/attributes – A subset
of relationship/super-attribute combinations are held-out
for testing only. Three combinations are held-out for
both object attributes and human attributes. The held-out
super-attributes vary with each type of relationship.

3The attributes within each super-attribute are mutually exclu-
sive.
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6. Held-out pairs of relationships/objects – For each type
of relationship, 1/3 of objects are held-out. The held-out
objects are different for each relationship.

We report a model’s performance with the accuracy, i.e. the
fraction of test instances for which the predicted answer
(among the eight candidates) is correct. Random guessing
gives an accuracy of 12.5%.

Task complexity and human evaluation

Solving an instance of our task requires to recognize the vi-
sual elements depicted in all images, and to identify the rela-
tion that applies to triplets of images. This basically amounts
to inferring the abstract description (Section ) S = {[r, v] :
r ∈ R, v ∈ V} of the instance. Our dataset contains 4 types
of relations, applied over 478 types of visual elements (Ta-
ble 1), giving in the order of 2,000 different combinations.

We performed a human study to assess the difficulty of
our benchmark. We presented human subjects with a ran-
dom selection of task instances, sampled evenly across the
four types of relations. The testees can skip an instance if
they find it too difficult or ambiguous. The accuracy was of
77.8% with a skip rate of 4.5%. This accuracy is not an upper
bound for the task however. The two main reasons for non-
perfect human performance are (1) counting errors with >5
objects, cluttered background, or scale variations and (2) a
tendency to use prior knowledge and favor higher-level (se-
mantic) concepts/attributes than those used to generate the
dataset.

Models and experimental setup

We evaluated a range of models on our benchmark. These
models are based on popular deep learning architectures that
have proven successful on various task-specific benchmarks.
The models are summarized in Fig. 3.

Input data

For each instance of our task, the input data consists of 8
context panels and 8 candidate answers. These 16 RGB im-
ages are passed through a pretrained CNN to extract vi-
sual features. Our experiments compare features from a
ResNet101 and from a Bottom-Up Attention Network4 (An-
derson et al. 2018a), which is popular for image captioning
and VQA (Teney et al. 2018). The feature maps from either
of these CNNs are average-pooled, and the resulting vec-
tor is L2-normalized. The vector of each of the 16 images
is concatenated with a one-hot representation of an index:
the 8 context panels are assigned indices 1–8 and the candi-
date answers 9–16. The resulting vectors are referred to as
x1, x2, ...x16 ∈ R

2048+16.
The vectors xi serve as input to the models described be-

low, which are trained with supervision to predict a score
for each of the 8 candidate answers, i.e. ŝ ∈ R

8. Each model
4The network of et al. (Anderson et al. 2018a) was pretrained

with annotations from the Visual Genome. Our dataset only uses
cropped images from VG, and we use layer activations rather than
explicit class predictions, but the possible overlap in the label space
used to pretrain (Anderson et al. 2018a) and to generate our bench-
mark must be kept in mind.

w Learned linear transformation   

1 2 3
4 5 6
7 8 ?
9 10 11 ... 16 Answer candidates

Context panelsResNet / Bottom-up attention
concatenated with one-hot
vectors of panel IDs

 w  ww

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 10
1 2 3 4 5 6 7 8 11
...

GRU-shared

GRU  w1 2 3 4 5 6 7 8 9 10 11 ... 16 1x16xD 1xD'

Softmax Dot product Hadamard product 

w Learned non-linear transformation 

1 2 3 4 5 6
7 8
9 10 11 ... 16

w

w

w
  
  

 

"Image"

"Question"

Answers

 w  wwww(Same as MLP) Concat.
pairs

8x9xD 8x81x2D

MLP

GRU  w
8x9xD 8xD'

(Same as MLP)

GRU

VQA-like

RN

Embeddings of input images:

w

8x9xD
Concat: 8x(9D') or
Sum: 8xD'

w

Figure 3: Overview of the models evaluated in our experi-
ments. These are based on popular deep learning architec-
tures.

is trained with a softmax cross-entropy loss over ŝ, standard
backpropagation and SGD, using AdaDelta as the optimizer.
Suitable hyperparameters for each model were coarsely se-
lected by grid search (details in supplementary material). We
held out 8,000 instances from the training set to serve as a
validation set, to select the hyperparameters and to monitor
for convergence and early-stopping. Unless noted, the non-
linear transformations within the networks below refer to a
linear layer followed by a ReLU.

MLP

Our simplest model is a multilayer perceptron (see Fig. 3).
The features of every image are passed through a non-linear
transformation f1(·). The model is then applied so as to
share the parameters used to score each candidate answer.
The features of each candidate answer (xi for i=9, ..., 16)
are concatenated with the context panels (x1, ..., x8). The
features are then passed through another non-linear transfor-
mation f2(·), and a final linear transformation w to produce
a scalar score for each candidate answer. That is, ∀ i = 1...8:

ŝi = w f2
(
[f1(x1); f1(x2); ...; f1(x8); f1(x8+i)]

)
(1)

where the semicolumn represents the concatenation of vec-
tors. A variant of this model replaces the concatenation with
a sum-pooling over the nine panels. This reduces the num-
ber of parameters by sharing the weights within f2 across
the panels. This gives

ŝi = w f2
(
Σi=1,2,...,x8,8+i f1(xi)

)
. (2)

We will refer to these two models as MLP-cat-k and MLP-
sum-k, in which f1 and f2 are both implemented with k/2
linear layers, all followed by a ReLU.
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GRU

We consider two variants of a recurrent neural network,
implemented with a gated recurrent unit (GRU (Cho et al.
2014)). The first naive version takes each of the feature vec-
tors x1 to x16 over 16 time steps. The final hidden state of
the GRU is then passed through a linear transformation w to
map it to a vector of 8 scores ŝ ∈ R

8.

ŝ = w GRU
(
x1, x2, ..., x8, x9, x10, ..., x16

)
. (3)

The second version shares the parameters of the model over
the 8 candidate answers. The GRU takes, in parallel, 8 se-
quences, each consisting of the context panels with one of
the 8 candidate answers. The final state of each GRU is then
mapped to a single score for the corresponding candidate
answer. That is, ∀ i = 1...8:

ŝi = w GRU
(
x1, x2, ..., x8, x8+i

)
. (4)

VQA-like architecture

We consider an architecture that mimics a state-of-the-art
model in VQA (Teney et al. 2018) based on a “joint embed-
ding” approach (Wu et al. 2017; Teney, Wu, and van den
Hengel 2017). In our case, the context panels x1, ..., x6

serve as the input “image”, and the panels x7, x8 serve as
the “question”. They are passed through non-linear transfor-
mations, then combined with an elementwise product into a
joint embedding h. The score for each answer is obtained
as the dot product between h and the embedding of each
candidate answer (see Fig. 3). Formally, we have

h = Σi=1...6 f1(xi) ◦ Σi=7,8 f2(xi) (5)
ŝi = h.f3(x8+i) . (6)

where f1, f2 and f3 are non-linear transformations, and ◦
represents the Hadamard product.

Relation networks

We finally evaluate a relation network (RN). RNs were
specifically proposed to model relationships between visual
elements, such as in VQA when questions refer to multi-
ple parts of the image (Santoro et al. 2017). Our model is
applied, again, such that its parameters are shared across an-
swer candidates. The basic idea of an RN is to consider all
pairwise combinations of input elements (92 in our case),
pass them through a non-linear transformation, sum-pool
over these 92 representations, then pass the pooled represen-
tation through another non-linear transformation. Formally,
we have, ∀ i = 1...8:

hi = Σ(i,j)∈{1,2,...,8,8+i}f1([xi;xj ]) (7)

ŝi = w f2(hi) (8)

where f1 and f2 are non-linear transformations, and w a
linear transformation.

Auxiliary objective

We experimented with an auxiliary objective that encour-
ages the network to predict the type of the relationship in-
volved in the given matrix. This objective is trained with a

ResNet ResNet B.-up B.-up
+aux.loss +aux.loss

Human evaluation 77.8
RN with shuffled inputs 12.5 12.5 12.5 12.5
MLP-sum-6 layers 40.7 44.5 50.4 55.7
GRU-shared 43.4 48.2 46.7 52.7
VQA-like 36.7 39.7 37.9 41.0
Relational network (RN) 51.2 55.8 55.4 61.3

Table 2: Summary of the best models in the neutral setting,
on all question types (also see the supplementary material).

softmax cross-entropy and the ground truth type of relation-
ship in the training example. This value is a index among the
seven possible relations, i.e. and, or, progression, attribute,
object, union, and counting (see Section ). This prediction is
made from a linear projection of the final activations of the
network in Eq. 8, that is:

ŝi = w′ f2(h) (9)

where w′ is an additional learned linear transformation. At
test time, this prediction is not used, and the auxiliary ob-
jective serves only to provide an inductive bias during the
training of the network such that its internal representation
captures the type of relationship (which should then help the
model to generalize). Note that we also experimented with
an auxiliary objective for predicting labels such as object
class and visual attributes, but this did not prove beneficial.

Experiments

We conducted numerous experiments to establish reference
baselines and to shed light on the capabilities of popular ar-
chitectures. As a sanity check, we trained our best model
with randomly-shuffled context panels. This verified that the
task could not be solved by exploiting superficial regularities
of the data. All models trained in this way perform around
the “chance” level of 12.5%.

Neutral training/test splits

We first examine all models on the neutral training/test splits
(see supplementary material for full results). In this setting,
training and test data are drawn from the same distribution,
and supervised models are expected to perform well, given
sufficient capacity and training examples. We observe that
a simple MLP can indeed fit the data relatively well if it
has enough layers, but a network with only 2 non-linear lay-
ers performs quite badly. The two models based on a GRU
have very different performance. The GRU-shared model
performs best. It shares its parameters over the candidate an-
swers (processed in parallel rather than across the recurrent
steps). This result was not obviously predictable, since this
model does not get to consider all candidate answers in re-
lation with each other. The alternate model (GRU) receives
every candidate answer in succession. It could therefore per-
form additional reasoning steps over the candidates, but this
does not seem to be the case in practice. The VQA-like
model obtains a performance comparable to a deep MLP,
but it proved more difficult to train than an MLP. In some
of our experiments, the optimization this model was slow or
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simply failed to converge. We found it best to use, as non-
linear transformations, “gated tanh” layers as in (Teney et al.
2018). Overall, we obtained the best performance with a re-
lation network (RN) model. While this is basically an MLP
on top of pairwise combinations of features, these combina-
tions prove much more informative than the individual fea-
tures. We experimented with an RN without the one-hot rep-
resentations of panel IDs concatenated with the input (“RN
without panel IDs”), and this version performed very poorly.
It is worth noting that RNs come at the cost of processing
N2 feature vectors rather than N (with N=9 in our case).
The number of parameters is the same, since they are shared
across the N2 combinations, but the computation time in-
creases.

We break down performance along two axes (see
figure in the supplementary material). The following
two groups of question types are mutually exclusive:
and/or/progression/union, and attribute/object/counting. The
former reflects the type of relationship across the nine im-
ages of a test instance, while the latter corresponds to the
type of visual properties to which the relationship applies.
We observe that some types are much more easily solved
than others. Instances involving object identity are easier
than those involving attributes and counts, presumable be-
cause the image features are obtained with a CNN pretrained
for object classification. The bottom-up image features per-
forms remarkably well, most likely because the set of la-
bels used for pretraining was richer than the ImageNet labels
used to train the ResNet. The instances that require counting
are particularly difficult; this corroborates the struggle of vi-
sion systems with counting, already reported e.g. in (Kafle
and Kanan 2017).

Splits requiring generalization

We now look at the performance with respect to splits that
specifically require generalization (see supplementary ma-
terial for full results). As expected, accuracy drops signifi-
cantly as the need for generalization increases. This confirms
our hypothesis that naive end-to-end training cannot guaran-
tee generalization beyond training examples, and that this is
easily masked when the test and training data come from the
same distribution (as in the neutral split). This drop is par-
ticularly visible with the simple MLP and GRU models. The
RN model suffers a smaller drop in performance in some of
the generalization settings. This indicates that learning over
combinations of features provides a useful inductive bias for
our task.

Image features from bottom-up attention We tested all
models with features from a ResNet, as well as features from
the “bottom-up attention” model of Anderson et al. (An-
derson et al. 2018a). These improve the performance of all
tested models over ResNet features, in the neutral and all
generalization splits. The bottom-up attention model is pre-
trained with a richer set of annotations than the ImageNet
labels used to pretrain the ResNet. This likely provides fea-
tures that better capture fine visual properties of the input
images. Note that the visual features used by our models

do not contain explicit predictions of such labels and vi-
sual properties, as they are vectors of continuous values. We
experimented with alternative schemes (not reported in the
plots), including an auxiliary loss within our models for pre-
dicting visual attributes, but these did not prove helpful.

Auxiliary prediction of relationship type We experi-
mented with success with an auxiliary loss on the predic-
tion of the type of relationship in the given instance. This is
provided during training as a label among seven. All mod-
els trained with this additional loss gained in accuracy in the
neutral and most generalization settings. The relative impor-
tance of the main and auxiliary losses did not seem critical,
and all reported experiments use an equal weight on both.

Overall, the performance of our best models remains well
below that of human performance leaving substantial room
for improvement. This dataset should be a valuable tool to
evaluate future approaches to visual reasoning.

Conclusions

We have introduced a new benchmark to measure a method’s
ability to carry out abstract reasoning over complex visual
data. The task addresses a central issue in deep learning, be-
ing the degree to which methods learn to reason over their
inputs. This issue is critical because reasoning can gener-
alise to new classes of data, whereas memorising incidental
relationships between signal and label does not. This issue
lies at the core of many of the current challenges in deep
learning, including zero-shot learning, domain adaptation,
and generalisation, more broadly.

Our benchmark serves to evaluate capabilities similar to
some of those required in high-level tasks in computer vi-
sion, without task-specific confounding factors such as nat-
ural language or dataset biases. Moreover, the benchmark in-
cludes multiple evaluation settings that demand controllable
levels of generalization. Our experiments with popular deep
learning models demonstrate that they struggle when strong
generalization is required, in particular for applying known
relationships to combinations of visual properties not seen
during training. We identified a number of promising direc-
tions for future research, and we hope that this setting will
encourage the development of models with improved capa-
bilities for abstract reasoning over visual data.
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