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Abstract

In this paper, we propose an improved end-to-end multi-
branch person search network to jointly optimize person de-
tection, re-identification, instance segmentation, and keypoint
detection. First, we build a better and faster base model to
extract non-highly correlated feature expression; Second, a
foreground feature enhance module is used to alleviate un-
desirable background noise in person feature maps; Third,
we design an algorithm to learn the part-aligned representa-
tion for person search. Extensive experiments with ablation
analysis show the effectiveness of our proposed end-to-end
multi-task model, and we demonstrate its superiority over the
state-of-the-art methods on two benchmark datasets including
CUHK-SYSU and PRW.

Introduction

Person search (Xiao et al. 2017; Zheng et al. 2017) aims
to find a probe person in provided gallery images of the
real world scenarios such as video surveillance for crimi-
nal search, and multi-camera multi-target tracking (Wen et
al. 2017). Unlike person re-identification (ReID) where per-
son is cropped from the original image and resized to a
fixed scale, person search addresses the problem of identi-
fying person without any prior knowledge of location and
scale. Naturally, ReID accuracy will be affected by the de-
tection result. However, what equally important but easily
overlooked is that background clutter and misalignment can
also lead to mismatching between query and gallery.

Background clutter refers to the perturbance of complex
scene in the process of person feature expression, which is
shown in Figure 1 (a). Another key challenge in person ReID
is the misalignment caused by cropping errors and pose vari-
ations. For example, in Figure 1 (b), the box in column 1
represent legs, while the boxes in columns 2 and 3 repre-
sent the feet and background information, respectively. Fur-
thermore, large pose variation result from camera views and
person motion increase the difficult of matching, which is
illustrated in Figure 1 (c).

Motivated by these observation, we explore how to more
effectively integrate person detection and ReID into an end-
to-end framework and make this multi-task model achieve
better performance than the single-task ones. A significant
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Figure 1: Three factors that may affect person search per-
formance. (a) A person has similar posture but in differ-
ent scenes. (b) There are some errors in the cropped out-
put of detector, and the resulting negative impact can also
be caused by occlusion. (c) A person is captured in similar
scenes with three postures: back, front and side.

gain from our baseline is observed over (Xiao et al. 2017).
To the best of our knowledge, this is the first time that two
sibling branches, namely person instance segmentation and
keypoint detection branches, are introduced to person search
model. We argue that by utilizing Foreground Feature En-
hance Module (FFEM), the negative effect caused by back-
ground clutter can be mitigated. Furthermore, a keypoints-
guided learning algorithm is introduced to deal with mis-
alignment between images. All the above improvements en-
able our model a thorough body perception. Three major
contributions are as follows:

• We build a better and faster base model, which is approx-
imately two times faster than the original method while
achieving a superior accuracy.

• We propose FFEM to effectively enrich the semantic fea-
ture of foreground person, which can smooth the response
of CNN and reduce excessive attention to local areas.

• We put forward a feature learning algorithm to obtain
part-aligned representation of person. Experimental re-
sults demonstrate that our Body Perception Network (BP-
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Net) surpasses all the current state of the arts on two
benchmark datasets.

Related Work

Person Search

Xu et al. first proposed the concept of person search. Sliding
window search method was used for detection and Fisher
vectors were applied for matching. While the performance
was limited due to manual extracted features and inefficient
sliding algorithm. To improve search accuracy, Xiao et al.
treated person detection and ReID as a joint optimization
problem with a model based on Convolution Neural Net-
works. Zheng et al. proved that R-CNN based detection
model with metric learning can yield significant ReID accu-
racy improvements. The deep learning method has become
the mainstream of the research on person search. Apart from
jointly optimization, Chen et al. and Xu et al. provided sepa-
rately trained models which also achieved remarkable search
accuracy. Recently, Yan et al. used a graph to learn similar-
ities between target persons based on contextual informa-
tion and Munjal et al. introduced a query-guided network to
model global similarities between images.

Person Detection and Person Re-identification

Over the past few years, CNN-based person detectors such
as (Zhang, Benenson, and Schiele 2017; Zhang, Yang, and
Schiele 2018) have developed rapidly. In addition, Mask R-
CNN proposed by He et al. unified detection and instance
segmentation into a common model, which inspires us to
explore the potential of jointly training person search model
together with other body perception tasks.

Various CNN-based person ReID methods (Liu et al.
2017b; Xu et al. 2018; Xiao et al. 2016; Zheng et al. 2017)
can be divided into two sets. The first set is based on fea-
ture representation. The goal of these models is to reduce
the intra-class distance while increase the inter-class dis-
tance. The second set regard ReID as a classification prob-
lem. These methods have achieved good performance on
the benchmarks, based on assumption that person images
are accurately cropped. However, real-world applications
produce imperfect detection, which will inevitably harm
ReID performance due to background noise and misalign-
ment. This problem causes regular spatial partition such as
grid cell (Ahmed, Jones, and Marks 2015) and horizontal
stripe (Sun et al. 2018) to be unreliable. As in the cases in
Row 3 of Figure 1, one’s legs will be matched to the back-
ground or feet region, which even deteriorate the accuracy.

Method

In this section, we firstly present an overview of our uni-
fied framework, and then explain how our proposed module
and algorithm alleviate the influence from background clut-
ter and feature misalignment.

Overview

In this paper, we propose a unified framework to obtain thor-
ough body perception of person (BPNet). As illustrated in

Figure 2, we use ResNet-50 (He et al. 2016) with FPN (Lin
et al. 2017) as backbone, shared by all other sub-task net-
works, including person detection, instance segmentation,
keypoint detection and re-identification.

In order to jointly train all four tasks in our framework, we
use COCO pre-trained model to generate pseudo mask and
keypoints annotations for CUHK-SYSU and PRW. Consid-
ering the domain shift between COCO and person search
dataset, we believe that if there are manual annotations in
the future, our proposed module and algorithm can further
improve the accuracy of person search. We conduct exten-
sive experiments to show that original person search model
can be trained harmoniously with segmentation task as well
as keypoint detection task. As far as we know, this is the
first time that background clutter and feature misalignment
is considered in person search task. We speculate the reason
that there are few studies on the refined local representa-
tion is the size of person bounding box varies considerably,
so the features within the same physical meaning area (i.e.
arms, legs) differ greatly. In this regard, we adjust the struc-
ture of the original model and enable it to perceive person
edge mask and body joints. Thanks to FFEM, which en-
hance global representation of target person but with neg-
ligible overheads, our model can extract features sensitive
to the entire foreground area. Besides, part-based learning
algorithm effectively deal with the problem that body parts
are spatially misaligned. Briefly, our multi-task network can
obtain fine-grained semantic information while reducing the
misalignment problem through abstract part regions.

Loss Function

As elaborated above, the final model named BPNet uses a
joint loss L to optimize its parameters during training stage,
where Lcls, Lbox, Lmask, Lkp and Lreid denote the loss
function of all sub-tasks. In our experiments, loss weights
λ1 to λ5 are designed to balance the training process. In this
paper, the values of λ1 to λ4 are set to 1 and λ5 to 0.2.

L = λ1Lcls +λ2Lbox +λ3Lmask +λ4Lkp +λ5Lreid (1)

For the loss function described above, Lcls and Lmask are
calculated by Softmax loss and sigmoid-activated cross en-
tropy, respectively. In addition, we treat bounding box re-
finement and keypoint detection as regression problems and
losses are estimated by smooth L1 function. As for ReID
branch, we replace the lookup table with the classification
loss, in company with a circular queue (CQ) to predict the
class-id for person identification. Corresponding formulas
are as follows:

pi =
exp(wT

i x/τ)∑L
j=1 exp(wT

j x/τ) +
∑Q

k=1 exp(uT
k x/τ)

(2)

qi =
exp(uT

i x/τ)∑L
j=1 exp(wT

j x/τ) +
∑Q

k=1 exp(uT
k x/τ)

(3)

The Equation 2, 3 represent the probability that extracted
person feature x belongs to the i-th labeled ID and i-th un-
labeled ID respectively, where temperature τ can influence
the distribution of different x in R

D. Among the symbolic
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Figure 2: BPNet framework. We adopt FPN as our backbone to generate features shared by four parallel branches, namely
RCNN branch, ReID branch, Mask branch, and Kp branch. This multi-task learning model can be mainly divided into three
parts: backbone network for features extraction, light-head person search module which are framed by the orange dotted line,
and auxiliary mask, keypoint branches that are framed by the purple dotted line. FFEM is the abbreviation of foreground feature
enhancement module. Best viewed in color.

Method CUHK-SYSU PRW Runtime(s)
Rank-1 mAP Rank-1 mAP C P

heavy+OIM 78.7 76.5 42.7 22.1 0.30 0.37
light+Softmax 83.4 80.9 55.9 31.3 0.15 0.24

Table 1: Effects of model structure and loss function. “C”
and “P” represent two datasets.

representation, R is the L2-normed feature space; D is the
dimension of each identity feature; L is the number of nodes
in the fully connected layer (FC); Q indicates the length of
circular queue and wi represents the parameter to be learned
for the i-th node in FC. In addition, we denote the features
stored in CQ by u ∈ R

D. Finally, we use Softmax loss func-
tion to update FC parameters. Calculating the gradient of
loss function with respect to x will use pi and qi.

Better and Faster Baseline

First, we re-implement (Xiao et al. 2017) using MXNet for
fair comparison. The person search score is illustrated in Ta-
ble 1. Our implementation (without newly added mask, key-
point branches) gets a slightly better results than original pa-
per, probably because RoI Align is used instead of RoI Pool-
ing to reduce quantization errors. The original model passes
the pooled feature map to the rest conv4 4 to conv5 3 of
the ResNet-50, followed by a global average pooling (GAP)
layer to produce a feature vector. However, one notable point
is that deeper network will increase the risk of overfitting
and decrease the inference rate. We replace the last ResNet-
block unit and subsequent GAP with four cascade convolu-
tion layers, so as to retain spatial information of person fea-
tures and achieve dimensional reduction (1024-dim→256-

(a) heavy-head+OIM

(b) light-head+Softmax

Figure 3: The original model and our baseline

dim). Compared with (Xiao et al. 2017), our light-head
model achieves better accuracy and greater inference effi-
ciency. Therefore, we regard it as our baseline and conduct
subsequent research.

Foreground Feature Enhance Module

In complex scenarios, redundant scene information may be
incorrectly weighted by person feature extractors and thus
affect the following matching process. To deal with this

12081



Figure 4: Two sets of comparisons. The 1st and 4th graphs
depict the detected person. The 2nd, 5th and 3rd, 6th images
show the heatmap of person features extracted from ReID
branch without/with FFEM, respectively. The warmer the
color, the stronger the response to the region. Therefore, it
can be concluded that FFEM produces a comprehensive at-
tention map, thus focusing on the holistic person rather than
overfitting local information such as clothing color/texture.

problem, human body mask are used to alleviate the influ-
ence from background clutter. Considering the complemen-
tary relationship between ReID branch and mask branch,
we design FFEM to preserve and enhance the spatial in-
formation in person feature map, so as to improve the ex-
pressive ability of feature representation in ReID branch. In
other words, global feature alignment and weighted fusion
are performed in FFEM, which is illustrated in Figure 4. Ad-
ditionally, Figure 5 shows the training and inference stages
of FFEM.

R ◦M = (Rjk ·Mjk) =

⎛
⎜⎝
r11 ·m11 · · · r1k ·m1k

...
. . .

...
rj1 ·mj1 · · · rjk ·mjk

⎞
⎟⎠

(4)
ERi = Ri ◦Mi ⊕Ri (5)

For training stage, we broadcast the corresponding pseudo
labels to have the same shape with the feature of each per-
son RoI proposal in ReID branch. The mask feature fu-
sion process formulated in Equation 4, 5. First, we extract
foreground sensitive feature by applying Hadamard Prod-
uct between global feature maps and human masks. Here
Ri ∈ R

C×H×W denotes an input feature map of i-th per-
son proposal, Mi represents the broadcasted mask label and
◦ denotes the Hadamard Product operator which performs
element-wise product on two matrices or tensors. Second,
considering that some foreground information may be lost
when using human mask to filter background noise, we per-
form element-wise addition as shown in the Equation 5. Fi-
nally, enhanced feature maps ER are followed by 4 cascade
convolution layers and a fully connected layer to produce
identity-related global feature vector fg . At the inference
stage, we directly use the predicted probability map and bi-
narize it with a threshold of 0.5. The subsequent process
is consistent with the training phase. Based on the above,
FFEM prevents model from mistaking foreground areas for
background noise and preserves high-quality global context
of extracted features, which also highlight the useful region
in person bounding box.

Keypoints-Guided Learning Algorithm

Although FFEM alleviates the perturbance of background
noise, global context features suffer from body part mis-
alignment between two persons. Motivated by this observa-
tion, keypoints estimation is introduced as an auxiliary task
to align part representation in a multi-task learning manner.

Algorithm 1: Part-aligned feature learning algorithm
Input: y-coordinates of person

{ymid, yqua, ymin, ymax}, keypoints
information {y∗(e.g. yhips, yshoulders), kvis}
and shared backbone features{F}

Output: part-aligned feature{Fp},part-visibility{Vp}
for p = 0; p ≤ P ; do

if p = 0 then
pmin = ymin pmax = max(ymid, yhips);

else if p = 1 then
pmin = yshoulders pmax = yhips;

else if p = 2 then
pmin = ymin;
pmax = max(yqua,

1
2 (yhips + yshoulders));

fp = roi align((pmin, pmax), {F});
if num(pmin < y∗[kvis] < pmax) > TH then

vp = 1;
else

vp = 0;
fp ∈ {Fp}, vp ∈ {Vp};

return {Fp},{Vp};

Following the definition in COCO dataset (Lin et al.
2014), 17 keypoints of human body are utilized to super-
vise the training of keypoint branch. Then, we propose a
keypoints-guided learning algorithm to generate abstract re-
gion with the same physical meaning in different viewpoints,
namely upper body, torso and head-shoulder. As shown in
Figure 6, each region is defined by a neat rectangle, which
does not refer to the precisely segmented body part, but to an
abstract region with representational capability. More con-
cretely, the process of the algorithm can be divided into three
folds. First, get keypoints information. For each point to be
detected, it is considered invisible if its position is outside
the detected region or if it is obscured. In inference, we use
confidence score to represent the visibility instead. Second,
bounding box is divided into P parts, and the value of P is
not greater than 3. The specific process of outputting the fea-
ture expression and visibility of each region is shown in Al-
gorithm 1, where y∗ and kvis denotes the ordinates and vis-
ibility of 17 points. For balance training, TH as a threshold
is usually set to 4. Last, each part learns discriminative em-
beddings respectively, under the supervision of ID labels.
During training, model automatically determines whether
the corresponding part is occluded or not according to the
number of keypoints visible in this part. If a part defined
above is occluded, then its loss will not be backpropagated.
When testing, P part embeddings {Fp} are further concate-
nated with the above fg to produce aligned feature vector f
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Figure 5: Module architecture. We illustrate how the proposed foreground feature enhance module (FFEM) works during
training and inference stages. Specifically, the left sub-graph represents the training phase: pseudo mask label is used to enhance
the feature map of ReID branch; the right sub-graph represents the inference stage: predicted probability map is fused with the
feature map of ReID branch.

Figure 6: Blue joints corresponding to head-shoulder part,
yellow joints corresponding to torso, the union of two colors
joints corresponding to the green boundary of upper body,
and the red border includes the whole body.

for re-identification. In summary, our learning algorithm has
two main advantages. First, this algorithm aims to produce
well-aligned parts descriptor so that the learned feature can
be matched correctly for the same person under intensive
pose changes. Second, since the visibility of abstract part is
considered in training, our model is also robust to occlusion.

Experiment

Datasets and Evaluation Protocol

CUHK-SYSU contains 11,206 images with 5,532 labeled
person IDs for training, 2,900 queries and a total of 6,978
gallery images for testing. Persons in this dataset vary
largely in viewpoints, background and lighting conditions.
PRW consists of 11,816 annotated video frames, 933 labeled
identities, and 43,110 person bounding boxes. The training
set contains 5,704 images with 483 labeled person IDs. For
the test set, there are 2,057 probe person along with a gallery
set of 6,112 whole scene images. We adopt the mean Aver-
age Precision (mAP) and the Cumulative Matching Char-
acteristic (CMC Rank-k) as evaluation metrics. The gallery
size of two datasets is set to 100 and 6,112 respectively.

Implementation Details

As well elaborated in Method Section, our approach is a
unified model and can be trained in an end-to-end man-
ner. We employ the ImageNet-pretrained (Russakovsky et

al. 2015) ResNet-50 as backbone. The model is trained un-
der the MXNet framework and each mini-batch has 4 or
3 images on one GTX 1080Ti due to the memory limita-
tion. In details, the network is optimized for 23 epochs using
mini-batch stochastic gradient descent with a weight decay
of 0.00004 and a momentum of 0.9. We adopt the warm-
up strategy (Goyal et al. 2017) to change the learning rate
for the first 5 epochs and divide it by 10 at 19-th and 22-
th epoch. In addition, we fix the batch normalization (Ioffe
and Szegedy 2015) layers in the backbone while keep oth-
ers trainable in sub-branches. The temperature scalar τ in
Equation 2, 3 is set to 0.05. For CUHK-SYSU and PRW, the
size of the Circular Queue is set to 5,000 and 500 respec-
tively. The scale of the training and testing images is fixed
to 600×1000 pixels unless otherwise noted and the training
sample are also horizontally flipped in random.

Ablation Study

According to the analysis in Method Section, we add mask,
keypoint branches to the base model. Our experiments
demonstrate the combination of FFEM, learning algorithm
and multi-task branches can increase the overall perfor-
mance in both datasets, which is displayed in Table 2.

Specifically, the proposed FFEM effectively strength the
foreground information in ReID feature map, which is con-
ducive to extracting identity-sensitive features and further
improving the accuracy of the person search model. Con-
sidering the newly established mask branch and feature fu-
sion module, Rank-1/mAP are increased by 1.8%/2.2% and
4.4%/2.9%, respectively in CUHK-SYSU and PRW. Be-
sides, we find that FFEM naturally achieves global feature
alignment is another bonus, which also explains why FFEM
can achieve a steady improvement on two datasets.

In addition, our proposed learning algorithm can effec-
tively deal with the problem of feature misalignment. Since
upper body region includes more identity information than
lower body, such as clothing color, backpack and other per-
sonal items, we speculate that it is focusing on appropri-
ate local features that enhance the descriptor. But for head-
shoulder, the integration of this region introduces more noise
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Method FPN Mask FFEM Kp Algorithm Scale aug CUHK-SYSU PRW
Rank-1 mAP Rank-1 mAP

light+Softmax 84.1 81.0 56.3 31.2
light+Softmax � 85.0 82.1 59.6 34.2
light+Softmax � � 85.3 83.1 60.7 35.3
light+Softmax � � � 86.8 84.3 64.0 37.1
light+Softmax � � � � 86.5 84.0 62.0 36.9
light+Softmax � � � � � 88.7 86.4 66.7 40.4
light+Softmax � � � � � � 90.5 88.4 68.9 42.9

Table 2: Ablation study on our base model. “FPN” implies adding Feature Pyramid Network to the backbone. “Mask” and
“Kp” represent that newly added branches. “FFEM” is our proposed module. “Algorithm” indicates that part-aligned features
are taken into account. “Scale aug” means smaller multi-scale training. The short edge of the training image is increased from
416 pixels to 608 pixels in 32 pixels steps. Models are evaluated on CUHK-SYSU and PRW.

due to inaccurate partition, which deteriorates the overall
system performance. Nevertheless, the ReID performance
is still improved when compared with base model, which
is because the combination of global representation and
other two aligned local features reduces the impact of in-
accurate estimate and information loss caused by head-
shoulder region. As shown in Table 2, (1.9%/2.1%) and
(2.7%/3.3%) gain for rank-1/mAP on two datasets compared
to the method without using part-aligned feature. In conclu-
sion, our algorithm is also able to differentiate body regions
and the differentiation is adaptive to each input image for
translation/pose invariance.

Figures 7 displays the effect of hyper-parameter P on
model performance. For fair comparison, the dimensions of
the final feature vector f without using our algorithm is set
as 256 ∗ (P +1). We have more observations about the gen-
erated abstract parts. 1) Only increasing the dimension of
the final feature vector makes model easy to overfit and the
search accuracy decreases. But the model using our learn-
ing algorithm can alleviate this problem, i.e. adding torso re-
gion(dimension changes from 512 to 768) improves the ac-
curacy of model. 2) The head-shoulder region is not suitable
for analysis as an independent part, because the face is not
frontal and with low resolution, thus accordingly not reliable
for distinguishing different persons. In other words, after
introducing head-shoulder part, the increased background
noise is actually more than effective foreground information.
3) Our algorithm has the same variation trend on the two
datasets, which proves its robustness. According to experi-
mental results, we set P equal to 2 for the best performance.
It is possible that in other datasets the optimal P obtained
through validation is different.

Two groups of qualitative results are shown in Figure 8.
The first group of pictures on the left side of dashed line in-
dicates that for a same query, our base model and the model
using FFEM, learning algorithm have dissimilar search re-
sults for the same gallery image. The base model produced
false match predictions due to clothing similarity and view-
point variability between persons. From the second group of
pictures on the right side of the dashed line, we can see that
the base model fails to find the true positive because target
person is occluded by bicycles in the scene. In conclusion,

Figure 7: Performance of final representation on CUHK-
SYSU and PRW with different dimension and correspond-
ing P. “512” indicates addition of upper body, “768” and
“1024” represent additional torso and head-shoulder re-
gions, respectively. The values of all blue bars are lower than
those corresponding to the 5th row of Table 2, the feature di-
mension of which is only 256-dim.

using FFEM and the learning algorithm can not only im-
prove the response of our model to the foreground, but also
have better robustness to occlusion and pose variations.

Comparison with State of the Arts

In this section, we compare our BPNet with previous state-
of-the-art methods on CUHK-SYSU, PRW.

When the scale of test image is 600 × 1000 pixels, our
BPNet achieves 90.5% Rank-1 and 88.4% mAP, surpass-
ing the best end-to-end method QEEPS by 6.1% Rank-1 and
4.0% mAP respectively, which even outperforms two-stage
model CLSA by 2.6% in Rank-1 and 1.9% in mAP. More-
over, we evaluate our model under different gallery size. Fig-
ure 9 depicts how mAP changes with different gallery size
of [50,100,500,1000,2000,4000]. It can be seen that with the
increase of gallery size, the performance of all models will
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Figure 8: Matching results of two query persons. Model 1 is our base model and Model 2 use FFEM and the learning algorithm,
which enables it to have a more comprehensive perception of the human body. Additionally, Model 2 calculates the local
similarity of upper body and torso region, and then adds the global similarity of the whole body as the final judgment basis.

Method Rank-1(%) mAP(%)
OIM(Xiao et al. 2017) 78.7 75.5
IAN(Xiao et al. 2019) 80.1 76.3
NPSM(Liu et al. 2017a) 81.2 77.9
CNNv+MGTS*(Chen et al. 2018) 83.7 83.0
CGRL(Yan et al. 2019) 86.5 84.1
CLSA(Lan, Zhu, and Gong 2018) 88.5 87.2
QEEPS*(Munjal et al. 2019) 89.1 88.9
Our BPNet 90.5 88.4

Table 3: Evaluation on CUHK-SYSU based on CNN mod-
els. (*) indicates models use larger images with a sizes of
900× 1500 pixels. Following tables share this annotation.

Method Rank-1(%) mAP(%)
OIM(Xiao et al. 2017) 49.9 21.3
IAN(Xiao et al. 2019) 61.9 23.0
NPSM(Liu et al. 2017a) 53.1 24.2
CLSA(Lan, Zhu, and Gong 2018) 65.0 38.7
Our BPNet 68.9 42.9
CNNv+MGTS*(Chen et al. 2018) 72.1 32.6
CGRL(Yan et al. 2019) 73.6 33.4
QEEPS*(Munjal et al. 2019) 76.7 37.1
Our BPNet 87.9 48.5

Table 4: Evaluation on PRW based on CNN models. The 1st
and 2nd highest scores are shown on the last and penultimate
lines, respectively.

be degraded. However, BPNet keeps the highest score over
other models under different gallery sizes and its degrada-
tion is smaller. This shows that our method is more robust
against the gallery size.

For PRW, all known latest methods are not comparable
due to the lack of unified evaluation criteria. One is pro-
vided by (Chen et al. 2018). For a query image in test set,
all labeled person in the rest 6,111 images form its gallery
set. The other criterion, considering the evaluation of multi-
camera ReID task, filters out person who has same ID and
is in the same camera as the query, and person whose ID is
labeled as -2 from the gallery set, which improves the diffi-

Figure 9: mAP comparison on CUHK-SYSU with varying
gallery sizes. There is a considerable gap between the other
approaches and our BPNet.

culty of search task. As indicated in Table 4, we test BPNet
with both criteria. The evaluation process of methods above
the horizontal line is unknown and we use the latter crite-
rion for fairness, while methods below the horizontal line
using the same test code (the former criterion). Anyway, our
model outperforms all previous state of the arts, including
end-to-end and two-stage approaches.

Comparison of Running Time

Limited by GPU memory, we do not use larger input im-
ages for training. But in order to fairly compare runtime
with other state of the arts, we expand the size of test im-
age to 900 × 1500 pixels. Considering these methods use
different GPUs during testing, we also report TFLOPs. The
comparison results are shown in Table 5. Besides, it is worth
noting that reducing the number of proposals to 100 does not
compromise mAP(88.3%) or Rank-1(90.3%) in search task,
while the test speed is doubled. If not specified, the number
of person proposals in other tables is set to 300.
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Method / proposals Runtime(s) GPU(TFLOPs)
CNNv+MGTS / 300 1.3 K80(8.7)
QEEPS / 300 0.3 P6000(12.0)
BPNet / 300 0.5 GTX 1080Ti(3.8)
BPNet / 100 0.3 GTX 1080Ti(1.8)

Table 5: Comparison of model running time when the size
of test image is 900× 1500 pixels.

Conclusion

In this paper, we present a novel thorough body perception
framework and explicitly address background noise and the
misalignment problem in person search task. The key factors
that contribute to the superior performance of our approach
are as follows. (1) Better and faster baseline. (2) FFEM en-
able global appearance feature map to provide a robust fore-
ground representation under clutter environment. (3) The
learning algorithm aims to partition the human body into
abstract region instead of grids or strips, and thus is more
robust to pose changes and different spatial distributions in
human bounding box. We validate the effectiveness of our
approach by demonstrating its superiority over the state-of-
the-art methods on the standard benchmark datasets, and our
contributions are complementary to each other.
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