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Abstract

To address the annotation scarcity issue in some cases of
semantic segmentation, there have been a few attempts to
develop the segmentation model in the few-shot learning
paradigm. However, most existing methods only focus on the
traditional 1-way segmentation setting (i.e., one image only
contains a single object). This is far away from practical se-
mantic segmentation tasks where the K-way setting (K>1)
is usually required by performing the accurate multi-object
segmentation. To deal with this issue, we formulate the few-
shot semantic segmentation task as a learning-based pixel
classification problem, and propose a novel framework called
MetaSegNet based on meta-learning. In MetaSegNet, an ar-
chitecture of embedding module consisting of the global and
local feature branches is developed to extract the appropriate
meta-knowledge for the few-shot segmentation. Moreover,
we incorporate a linear model into MetaSegNet as a base
learner to directly predict the label of each pixel for the multi-
object segmentation. Furthermore, our MetaSegNet can be
trained by the episodic training mechanism in an end-to-end
manner from scratch. Experiments on two popular semantic
segmentation datasets, i.e., PASCAL VOC and COCO, reveal
the effectiveness of the proposed MetaSegNet in the K-way
few-shot semantic segmentation task.

Introduction
Recently, deep learning has made significant breakthroughs
in many applications (e.g., image classification (He et al.
2016), object detection (Girshick 2015) and semantic seg-
mentation (Long, Shelhamer, and Darrell 2015)). However,
its main challenge is that a large amount of labeled data is
usually required to train deep models, which is impractical
in real-world applications. Meanwhile, the accurate labeling
is extremely laborious and expensive, particularly for pixel-
wise annotation (e.g., semantic segmentation) and 3-D de-
lineation (e.g., medical tissue labeling). Therefore, few-shot
learning has recently drawn an increasing interest in the ma-
chine learning community, which can aid deep models to
effectively learn knowledge from a few samples.

Formally, few-shot learning aims to achieve good perfor-
mance on the new classes with only a few labeled train-
ing data. Recently, most existing methods employ the meta-
learning algorithm to deal with the few-shot learning prob-
lem (Snell, Swersky, and Zemel 2017; Finn, Abbeel, and
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Figure 1: Comparison between our framework and tradi-
tional methods. The traditional methods use comparison or
matching model in the 1-way segmentation task to measure
the similarity between training and test image, which is hard
to extend to K-way semantic segmentation task. Differently,
our method leverages learning-based model to classify the
pixels in the test image for K-way semantic segmentation.

Levine 2017), and obtain incredible success in the classi-
fication task. However, there are only a few methods that
attempt to develop few-shot learning algorithms for a more
difficult task (e.g., semantic segmentation).

Most existing methods for few-shot semantic segmenta-
tion usually introduce the extra knowledge to acquire abun-
dant prior knowledge to help the few-shot learning. How-
ever, they still suffer from several limitations as:

1. Distribution divergence. Most existing methods require
their model to be pre-trained on ImageNet (Deng et al.
2009) as a prerequisite. However, the distribution of these
images in the few-shot segmentation task might be very
different from ImageNet.

2. Hard to extend. The existing methods usually solve the
few-shot segmentation by utilizing metric-learning meth-
ods to measure the one-to-one similarity between train-
ing and test images in the 1-way setting. However, these
methods cannot be directly adapted to measure multi-
object similarity in the K-way setting.

3. Difficult to train. These existing methods usually em-
ploy complex embedding models to learn feature repre-
sentation for image comparison, which are hard to opti-
mize. Thus, if we directly train them from scratch, they
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cannot work effectively in the target task.
To address the aforementioned limitations, we propose

a novel framework for few-shot semantic segmentation
termed as MetaSegNet. Different from existing works, we
formulate the few-shot segmentation as a dense prediction
task, which classifies each pixel and is readily extended to
the K-way setting (K > 1). Specifically, we integrate a lin-
ear classification model into our framework as classifier,
which could guarantee that our framework can be effectively
optimized by the episodic training mechanism with meta-
learning paradigm. Furthermore, a novel embedding module
is designed in our framework to combine the global context
and local information for better segmentation. Compared
with two separate embedding modules in existing works, our
embedding module is simple but effective. Meanwhile, the
linear classification model combined with the new embed-
ding module allows our framework to be effectively trained
by an end-to-end manner from scratch for the multi-object
semantic segmentation.

We evaluate our framework on two semantic segmenta-
tion datasets, i.e., PASCAL VOC 2012 (Hariharan et al.
2015) and COCO 2014 (Lin et al. 2014), in the K-way,
N -shot semantic segmentation task. Thanks to the effective-
ness and efficiency of linear classifier and embedding mod-
ule, our MetaSegNet can achieve the state-of-the-art perfor-
mance in K-way, N -shot semantic segmentation task by us-
ing extremely small deep network without any extra knowl-
edge. Our main contributions are summarized as follows.
• We formulate the few-shot semantic segmentation from

the classification perspective, and propose a novel frame-
work for dealing with the K-way, N -shot semantic seg-
mentation problem.

• As far as we know, we are the first one to leverage the
linear classifier instead of nonlinear layer to effectively
train deep models in few-shot semantic segmentation.

• A simple embedding module with novel architecture is
proposed, which can extract global and local information
for semantic segmentation.

• The proposed novel framework is trained in an end-to-
end manner from scratch. Also, it does not need any prior
knowledge, which is the merit for the few-shot learning.

Related Work

In this part, we review the related works inclduing meta-
learning and few-shot segmentation.

Meta-learning for few-shot Learning. Meta-learning
studies what aspects of the learner (commonly referred to
bias or prior) effect generalization across a distribution of
tasks (Vilalta and Drissi 2002). Nowadays, meta-learning
approaches for few-shot learning can be broadly divided
into three categories. Basically, (1) the metric-based meth-
ods learn a sophisticated comparison model conditioned on
distance or metric between training and test data. For exam-
ple, the matching networks (Vinyals et al. 2016) develop an
end-to-end differentiable nearest neighbor to perform com-
parison. Snell et al . (Snell, Swersky, and Zemel 2017) pro-
pose a prototypical network which represents each category

by the mean embedding of the examples, and utilize co-
sine distance to measure the similarity between test images
and the prototypes. Li et al . (Li et al. 2019) design a co-
variance metric network for distance metric. (2) The model-
based methods wish to learn a parameterized predictor to
estimate model parameters for new tasks. For example, Ravi
et al . (Ravi and Larochelle 2017) utilize LSTM (Hochreiter
and Schmidhuber 1997) to predict parameters analogous to
a few steps of gradient descent in parameter space. (3) The
optimization-based methods employ the optimization-based
methods (e.g., gradient descent) to directly adapt the param-
eters to study knowledge across task. For example, Finn et
al . (Finn, Abbeel, and Levine 2017) propose MAML algo-
rithm aiming to learn a good initialization in a new task.
Franceschi et al . (Franceschi et al. 2018) use bi-level opti-
mization method to optimize meta-learning algorithm.

Few-shot segmentation. Previous methods for few-shot
segmentation generally use the metric-based meta-learning
framework, meanwhile two-branch separate embedding
modules pre-trained on the ImageNet are used to compare
the similarity between training and test images. These meth-
ods can be divided into two categories, according to the task
setting. (1) 1-way segmentation. Shaban et al . (Shaban et al.
2017) first consider the few-shot learning problem in seg-
mentation, and propose the two-branch comparison struc-
ture. Hu et al . (Hu et al. 2019) use attention and multi-
context to enhance the two-branch comparison model. Also,
Zhang et al . (Zhang et al. 2019) introduce a two-branch
class-agnostic segmentation network which contains a dense
comparison module and an iterative optimization module.
(2) K-way semantic segmentation. Dong et al . (Dong and
Xing 2018) and Wang et al . (Wang et al. 2019) employ pro-
totypes to represent the different semantic categories in the
K-way semantic segmentation. However, they leverage dif-
ferent modules to align and measure the similarity between
different objects.

Differently, our approach employs the optimization based
meta-learning for few-shot segmentation. The linear classi-
fier is integrated into our framework to deal with pixel clas-
sification. Different from 1-way segmentation methods, our
framework is easily extended to K-way semantic segmen-
tation setting. Moreover, compared with (Dong and Xing
2018; Wang et al. 2019), our framework is much simpler so
that it could be optimized by an end-to-end manner without
auxiliary information or data.

Our Method

In this section, we first introduce the K-way, N -shot seg-
mentation task. Then we formulate the meta-learning frame-
work. Finally, we elaborate each component in our method.

K-way, N -shot Few-shot Semantic Segmentation

In this paper, we consider the K-way, N -shot segmentation
task which is seldom investigated (K>1). Here, K denotes
the number of classes, and N is the number of training ex-
amples per class. Especially, in the few-shot learning set-
ting, N is usually small, e.g., N ∈ {1, 5}. The training task
Ti = (Dtrain

i , Dtest
i ) in meta-training set is sampled from a
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Figure 2: Pipeline of MetaSegNet for 2-way semantic segmentation. In this framework, the support set is used to train a linear
classification model, and we make use of meta-loss to train an embedding model, which can generalize well across tasks.
Particularly, we put forward a novel embedding model, where two branches are utilized to extract local and global features for
the pixel-level classification.

large-scale annotated dataset that contains multiple differ-
ent training categories (e.g., we use C train to represent the
set of training classes). The training categories should be
non-overlapping with the new classes (e.g., Cnovel) in meta-
testing set, i.e., C train ∩ Cnovel = ∅. Firstly, the K cate-
gories Ci = {Ck

i }Kk=i in Dtrain
i are randomly selected from

C train. Then, N images per category are sampled to con-
stitute the whole support (training) set Dtrain

i (i.e., Dtrain
i =

{(xn, yn) | n = 1, . . . , N × K, yn ∈ Ci}. Finally, the
query (test) set Dtest

i = {(xn, yn) | n = 1, . . . , Q×K, yn ∈
Ci} consists of Q images per category.

However, most exiting few-shot segmentation methods
follow the paradigm and notations in (Shaban et al. 2017),
which is a special case of K-way, N -shot semantic segmen-
tation, i.e., K = 1. Although the model can forward K times
to finish K-way semantic segmentation task, these models
will suffer from the multi-object alignment problem. For ex-
ample, one object may be classified to different semantic cat-
egories during K-time running, which obstructs traditional
1-way segmentation model achieving good performance in
the K-way setting.

Problem Formulation for Meta-learning

Formally, given M tasks, we denote the training task set (i.e.,
meta-training set) as T = {(Dtrain

i ,Dtest
i )}Mi=1, where the tu-

ple (Dtrain
i ,Dtest

i ) represents the training data (i.e., support
set) and test data (i.e., query set) for the i-th task Ti. The
goal of meta-learning is to enable a learning algorithm to
effectively adapt to new task by generalizing from T .

In particular, meta-learning approaches for few-shot
learning usually introduce a generic embedding model fφ
parameterized by φ as a meta learner to map the task-specific
domain into a common feature space. Also, we denote a base

learner as Λ. It is a kind of learning model, which works in
the individual task to estimate parameter wi for the task Ti.
Specifically, this process can be formulated as:

Λ(fφ(Dtrain
i )) = min

wi

E(xt,yt)∈Dtrain
i

[Lbase(fφ(xt), yt;wi)],

(1)
where Lbase represents the loss function of the base learner.
xt, yt denote the training sample and its label in support set
Dtrain

i of task Ti, respectively. The squared loss is used as
Lbase in this paper.

However, if we ignore the knowledge that can be trans-
ferred between tasks and only re-train a predictor for new
task with a few examples, the predictor cannot achieve satis-
factory performance. For this issue, the meta learner aims to
minimize the generalization (or test) error across tasks, and
helps the base learner to improve performance. The objec-
tive used to calculate the parameter φ of the meta learner fφ
can be written as:

min
φ

M∑

i=1

Lmeta(Dtest
i ;wi, φ)

=min
φ

M∑

i=1

Lmeta(Dtest
i ; Λ(Dtrain

i ;φ), φ),

(2)

where Lmeta denotes meta-learning loss function. In this pa-
per, we adopt the cross-entropy loss for Lmeta.

In fact, CNN is usually used as the embedding model
fφ. In order to optimize the φ in Equation (2) by back-
propagation and stochastic gradient descent (SGD), Λ is pre-
ferred to be a simple and efficient model (e.g., nearest neigh-
bor methods or linear models) (Bertinetto et al. 2019). Once

12089



the embedding model fφ is learned, the base learner for a
new task Tnew = (Dtrain

new ,Dtest
new) can be got by Equation (1).

The Proposed MetaSegNet

In this section, we describe each module of the proposed
MetaSegNet in detail.

Embedding network. In order to effectively extract the
meta-knowledge for K-way, N -shot semantic segmentation,
we propose a novel architecture of embedding network as a
meta learner in our framework as illustrated in Figure 2.

The proposed embedding network consists of two sub-
modules, i.e., the feature extractor and the feature fusion
module. The architecture of our embedding network is dif-
ferent from the existing methods which utilize two separate
modules to extract features of support and query set, respec-
tively (Shaban et al. 2017; Hu et al. 2019). In our framework,
we use one feature extractor to extract the local and global
feature simultaneously for support and query set, and the fu-
sion module is used to fuse local and global information for
better predicting the label of each pixel.

Besides, most existing methods directly use VGG-16 or
ResNet-50 pre-trained on the ImageNet as the backbone.
To tackle the distribution divergence as aforementioned, we
train MetaSegNet from scratch without introducing any ex-
tra information. So, we just use ResNet-9 which has fewer
parameters as backbone in order to prevent the possible
over-fitting. With the same goal of these previous seman-
tic segmentation methods, our framework is also required
to conduct the dense prediction for a full-resolution out-
put. Specifically, to handle the conflicting demands of multi-
scale reasoning and full-resolution dense prediction, we first
remove the max-pooling layers behind block-3 and block-4,
and use the dilated convolution (Yu and Koltun 2015) in-
stead of the traditional convolution in block-4 to aggregate
the multi-scale contextual information.

In particular, we argue that the dilated convolution in
block-4 is not enough to extract the local information for
semantic segmentation. Inspired by (Liu, Rabinovich, and
Berg 2015), we add an additional branch to extract the global
context to help semantic segmentation. Typically, two max-
pooling layers are inserted ahead and behind the block-5 in
the global context branch to expand the receptive fields.

In the feature fusion module, we first unpool (repli-
cate) global feature to the same size of local feature map
spatially and then concatenate them together. Since the two
kinds of features could have different scales and norms,
we apply �2-norm in each channel for normalization. After
this normalization, we reshape the combined feature map to
pixel feature map for pixel-wise classification.

Differentiable linear base learner. According to
(Franceschi et al. 2018; Balcan, Khodak, and Talwalkar
2019), the choice of base learner is important for optimiza-
tion based meta-learning methods. Because the remaining
embedding model is optimized to generalize across different
tasks in Equation (2), the parameter of base learner Λ needs
to be calculated in an efficient way. Moreover, when we
apply the stochastic gradient descent (SGD) to estimate
the parameters φ of the embedding model, the gradients of

Model Params(M)

Without
pre-

training

End-
to-end

Mean
IoU(%)

Fine-tuning 14.2 × � 28.6
Prototype 14.2 × � 35.0
SG-One 19 × � 39.4
PANet 14.2 � � 41.3
PLSEG 28.4 × × 42.6

MetaSegNet
(ours) 13.1 � � 43.3

Table 1: The performance of 2-way, 5-shot semantic seg-
mentation on PASCAL-52. The proposed MetaSegNet needs
no extra knowledge. Moreover, the parameter of MetaSeg-
Net is least among all models.

the test error Lmeta(Dtest;w, φ) with respect to φ should be
precisely computed.

The no-parametric metric based model avoids the opti-
mizing parameter in base learner. And the linear model is
easy to compute the derivative of the linear model parameter
w with respect to φ. Their efficacy has been proven in few-
shot classification problem (Lee et al. 2019). However, the
classical semantic segmentation frameworks (Long, Shel-
hamer, and Darrell 2015; Chen et al. 2018) use deconvo-
lution layer as segmentation head to predict label for each
pixel. It is difficult to calculate the analytic or optimal so-
lution for deconvolution layer, thus if we directly use it as
base learner in Equation (2), the whole framework will be
hard to train. Therefore, we choose the differentiable linear
model (i.e., ridge regression) as base learner in our frame-
work. Hence, the base learner Λ can be written as:

Λ(X) = argmin
w

‖Xw − y‖2 + λ‖w‖2, (3)

where X ∈ R
n×c is the pixel feature matrix obtained from

the embedding network. y ∈ R
n is the label of each pixel.

Furthermore, there is a closed form solution for Equation
(3). Support for task Ti = (Dtrain

i , Dtest
i ), we can directly

obtain w as:

w = (X�X+ λI)−1X�y. (4)

Due to the property of Equation (3) (i.e., there exists the
closed solution), it is very easy to integrate ridge regression
into meta-learning optimization framework. We can directly
optimize parameter φ of the embedding model in Equation
(2) by back-propagation algorithm.

In fact, the ridge regression was originally designed for
the regression task, we also adjust the prediction of base lin-
ear Λ by Equation (5), as in (Bertinetto et al. 2019).

ŷ = αX′w + β, (5)

where X′ ∈ R
n×c is the feature matrix of the test image. The

α ∈ R and β ∈ R denote the scale and bias, respectively.

Meta-learning objective. In the proposed framework, we
adopt the cross-entropy loss to evaluate the pixel-wise pre-
diction. And we regard λ in Equation (4) and α, β in Equa-
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tion (5) as learnable parameters. Finally, the meta-learning
objective can be written as:

Lmeta(T ;w, φ, α, β, λ) =

− 1

|T | · |Dtest
i ||I|

∑

i∈T

∑

(x,y)∈Dtest
i

∑

p∈I
log(Spyp

). (6)

I is the set of pixels in the image. Let spc be the score
of pixel p and class c, which can be got by Equation (5).
Spc = exp(spc)/

∑N
k=1 exp(spk) represents the softmax

probability of class c at pixel p.

Experiments

Dataset, Metric and Implementation

Dataset. We perform the extensive evaluation on two se-
mantic segmentation benchmark datasets, i.e., PASCAL
VOC and COCO: (1) PASCAL VOC 2012 (Hariharan et al.
2015) contains 20 different object categories which consists
of 10,582 and 1,449 images as the training and validation
sets, respectively. (2) COCO 2014 (Lin et al. 2014) dataset
is a challenging large-scale dataset which contains 80 differ-
ent object categories. In COCO, 82,783 and 40,504 images
are used for training and validation, respectively.

Evaluation metric. To compare the performance of the
different models, the average of mean intersection-over-
union (mIoU) for each task is introduced for evaluation.

Implementation details. Our proposed MetaSegNet in-
volves five residual blocks. Each residual block consists of
three modules, and each module includes a 3×3 convolution
with k filters, a batch normalization and a LeakyReLU (0.1).
The size of five residual blocks are set as 64, 128, 256, 512
and 512, respectively. We set block-1 to block-2 as the back-
bone which is followed by a 2× 2 max-pooling.

In the global feature branch, two 2×2 max-pooling layers
are inserted before and after block-5, respectively. A global
pooling is employed to extract the global feature. In the local
feature branch, the dilated convolution is introduced here to
extract the multi-scale local features. Specifically, in the 1-
way segmentation setting, the dilation for block-4 is set as
2, 4 and 8, respectively. While, in the K-way setting, the
dilated convolution is used in block-3 with dilation as 1, 2
and 4, and the dilation for block-4 is set as 8, 16 and 32.

For optimization, we use Adam (Kingma and Ba 2014)
with learning rate as 0.001. For PASCAL, our model is
meta-trained for 40 epochs, and each epoch consists of
1000 episodes. For COCO, our model is meta-trained for 80
epoches, and each epoch consists of 500 episodes. During
meta-training, we adopt horizontal flip, and randomly rotate
the image with 0, 90, 180 or 270 degree for data augmenta-
tion. We implement our method by PyTorch on two NVIDIA
2080 Ti GPUs with 12 GB memory.

Results on PASCAL (K-way, N -shot)

Setting. PASCAL-5i (Shaban et al. 2017) is a very popu-
lar few-shot segmentation benchmark, thus we also report
our results on this dataset. In fact, PASCAL-5i comes from
PASCAL, the 20 object categories in PASCAL are divided

Model Shot=1 Shot=5 Shot=10

Prototype 11.0 12.8 14.3
Fine-turning 29.3 28.2 29.1

MetaSegConv 26.9 27.3 26.8
MetaSegNet (ours) 33.2 37.9 38.3

Table 2: The performance of 2-way semantic segmentation
on COCO. All the models are not pre-trained.

into 4 splits with three splits for training and the rest one
for testing. Typically, because of the unbalance of the multi-
object image in each split, we choose PASCAL-52 as the test
split, and evaluate our method in 2-way semantic segmenta-
tion setting, which are the same with (Dong and Xing 2018).
The images that only contain one object in training splits
are used to complement the meta-training set. The images
in PASCAL-52 which contain person and another held-out
class are sampled as support and query set for new tasks. In
fact, there are four situations of the new tasks, i.e., {(table,
person), (dog, person), (horse, person), (motobike, person)}.
We randomly sample 100 tasks for each situation, and cal-
culate the average performance of the four situations. Query
set in each new task has two images.

To evaluate our MetaSegNet in 2-way semantic segmen-
tation task on PASCAL-52, we compare it with two base-
line models (i.e., baseline fine-tuning and baseline proto-
type model (Dong and Xing 2018) ), one 1-way segmen-
tation model SG-One (running 2 times) (Zhang et al. 2018)
and two state-of-the-art K-way, N -shot semantic segmenta-
tion models (i.e., PLSEG (Dong and Xing 2018) and PANet
(Wang et al. 2019)). The fine-tuning model is a standard
FCN that employs a VGG-16 pretrained on the ImageNet
as the backbone. The images from training classes are first
used to train this backbone, then the support set in new task
is used to fine-tune this model.

Results. We report the results in Table 1. In the 2-way, 5-
shot setting, our framework achieves the state-of-the-art per-
formance in spite of simple embedding model and no extra
information. Although the information from ImageNet pro-
vides extra knowledge for baselines and SG-One model, the
multi-object metric or matching problem hinders these ap-
proaches from reaching satisfied results in K-way setting.
Differently, the proposed MetaSegNet can handle multi-
object matching problem from classification perspective,
and achieve good performance in this setting. Furthermore,
compared with the other state-of-the-art K-way semantic
segmentation models (i.e., PLSEG and PANet), MetaSegNet
can learn more useful cross-task meta knowledge, which can
effectively guide the semantic segmentation in query set.

Results on COCO (K-way, N -shot)

Setting. Similar to (Zhang et al. 2019), we choose a sub-
set of the original COCO dataset to evaluate our model and
baselines. We choose 18 categories as training classes, and
7 categories as new classes. The training class IDs are {1, 2,
4, 5, 7, 8, 9, 19, 20, 21, 23, 24, 25, 62, 63, 64, 65, 70}, and
the testing class IDs are {3, 6, 16, 17, 18, 22, 67}. Because
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Figure 3: Visual examples for baselines and MetaSegNet. The left part is the results of two tasks in 2-way, 5-shot single object
semantic segmentation on PASCAL-5i

val. The right part is the results of two tasks in 2-way, 5-shot multi-object semantic
segmentation on PASCAL-52. Red and green regions represent the labels of different semantic objects.

Model Params (M)
Extra
images

Mean
IoU(%)

co-FCN (param.) 34.2 1.2× 106 58.3
OSLSM 276.7 1.2× 106 61.5

MetaSegNet (ours) 13.1 0 53.4
MetaSegNet (ours) 13.1 6× 104 59.5

Table 3: The results of 1-way, 5-shot segmentation on
PASCAL-5i. All results are computed by taking the aver-
age of 4 splits on PASCAL-5i. Extra images represent the
number of images for per-training the model. Although,
MetaSegNet uses 1/20 extra images and 1/21 model size
compared with OSLSM, the Mean IoU of MetaSegNet just
decreases 2% (61.5 vs. 59.5) accuracy.

of the limitation of images that contain multiple classes, we
evaluate MetaSegNet on 2-way with 1-shot, 5-shot and 10-
shot few-shot semantic segmentation tasks. Considering that
the images in the training classes are more abundant than
that in PASCAL, we directly sample images from training
classes which contain 2 classes to complement the meta-
training set. In addition, these images are cropped according
to the bounding box of semantic objects to reduce the size
of background. There are 1500 tasks in total sampled from
new classes as meta-testing set, where the query set in each
task includes 2 images.

According to our best knowledge, our work is the first
attempt to deal with K-way, N -shot semantic segmenta-
tion on COCO 2014. For comparison, we design three base-
line models. As the same as the previous experiment, the
fine-tuning model is also a variant of traditional FCN. The
embedding module in MetaSegNet without global context
branch and 1 × 1 conv layer are used as backbone and seg-
mentation head for fine-tuning model, respectively. The im-
ages from training classes are used to train the model, and
the support set for new task is used to fine-tune this model.
The MetaSegConv utilizes the same model with fine-tuning
model, however, MetaSegConv is trained by the optimiza-
tion based meta-learning framework. The 1 × 1 conv layer
is regarded as a base learner that is optimized by one step by
Adam with learning rate as 0.001. As for prototype baseline,
the embedding module is the same as MetaSegNet. How-
ever, the ridge regression is replaced by Euclidean distance,
and the mean of pixel features is as the prototype for one

semantic category as in (Snell, Swersky, and Zemel 2017).
Results. The results are reported in Table 2. Although the

COCO 2014 is more difficult than PASCAL as we know, our
MetaSegNet still outperforms the baselines with a large mar-
gin in all cases. Also, we could notice that the performance
of MetaSegNet increases with the increasing number of shot,
while all the other baselines have no obvious variance.

Extension to 1-way, N -shot

To fully investigate the performance of our MetaSegNet, we
degenerate our proposed method from the K-way, N -shot
task to the traditional 1-way, N -shot task and report the per-
formance on PASCAL-5i.

Setting. Since most of conventional methods are specif-
ically designed to solve this 1-way, N -shot task, for a fair
comparison, we directly follow the same experiment settings
as (Shaban et al. 2017). In particular, one class is sampled
from training classes as the foreground, and the other cat-
egories are regarded as the background. Thus, the mask in
this case is a binary map. The four splits on PASCAL-5i are
all used to evaluate MetaSegNet. In each split, 1000 tasks
are sampled from new classes as the meta-testing set, and
there is one image in query set for each new task.

Two state-of-the-art 1-way segmentation models, i.e., co-
FCN (Rakelly et al. 2018) and OSLSM (Shaban et al. 2017),
are introduced for comparison. Since there is no multi-object
metric case in this setting, the superiority of MetaSegNet
is not so obvious when compared with these models. We
also use extra images to pre-train our MetaSegNet. As using
the entire ImageNet for pre-training is too heavy and time-
consuming, we only pre-train our MetaSegNet on the mini-
ImageNet (60,000 images) (Vinyals et al. 2016). Besides, we
also evaluate MetaSegNet without pre-training.

Results. We report the results in Table 3. It is very conve-
nient for metric-based methods to measure the similarity be-
tween foregrounds when each foreground only contains one
object. Therefore, the metric-based approaches perform well
in this setting. Although MetaSegNet is designed for K-
way, N -shot task by using simple model and much less ex-
tra knowledge, it can still achieve a competitive result when
compared with other 1-way methods in the 1-way setting.

Ablation Study

Considering that there are no validation categories on
PASCAL-5i, we use a new few-shot semantic segmenta-
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Model
Episodic
Training

Linear
model

GC
-branch

Mean
IoU(%)

Fine-tuning 27.28
MetaSegConv � 35.00

MetaSegNet-NG � � 37.75
MetaSegNet

(ours)
� � � 38.92

Model
Episodic
Training

Linear
model

GC
-branch

Mean
IoU(%)

Fine-tuning 31.95
MetaSegConv � 36.04

MetaSegNet-NG � � 48.34
MetaSegNet

(ours)
� � � 49.44

Table 4: Ablation study on PASCAL-5i
val in 2-way setting.

The top table is the results of 1-shot, and the bottom table is
the results of 5-shot. GC-branch represents the global con-
text branch in embedding module.

tion dataset, i.e., PASCAL-5i
val, in ablation study. Similar

to PASCAL-5i, the PASCAL VOC 2012 is also divided into
4 splits to evaluate our method. However, in each split, three
classes are chosen as validation set (i.e., 6-8 in split 0; 11-
13 in split 1; 16-18 in split 2 and 1-3 in split 3), and the
other 12 classes are used as training classes. All images
in new categories are sampled to make up support set and
query set for new tasks in meta-testing set, just like miniIm-
ageNet (Vinyals et al. 2016) utilized for the few-shot clas-
sification task. Because the images containing multiple ob-
jects are limited on PASCAL-5i

val, all the methods are eval-
uated in 2-way single object semantic segmentation. Each
image in query set contains one semantic object which be-
longs to the K categories. We randomly sample 500 tasks as
meta-testing set. There are four images in query set for new
tasks (i.e., two images for each class).

Global context branch. To verify efficacy of the
global context branch, we evaluate the performance of
MetaSegNet-NG which uses the embedding module without
the global context branch. The dilation of block-4 is set as 2,
4, 8, which is the same with MetaSegNet. The experimen-
tal results are shown in Table 4. As seen, the global context
branch indeed benefits the few-shot semantic segmentation.

Linear classification model. The MetaSegConv is used
to evaluate the impact of the ridge regression, which
employs the same embedding module with MetaSegNet-
NG. Besides, MetaSegConv leverages 1 × 1 conv layer
as base learner, unlike the ridge regression is utilized
in MetaSegNet-NG. According to Table 4, the mIoU
of MetaSegNet-NG outperforms MetaSegConv by 2.75%
(37.75 vs. 35.00) and 12.3% (48.34 vs. 36.04) in 1-shot and
5-shot, respectively. The main reason is that the conv layer
is too complex as base learner and it is not conductive to op-
timization whereas the ridge regression can avoid this issue.

Also, Table 4 shows the performance of fine-tuning in K-
way, N -shot semantic segmentation to further confirm the
power of meta-learning in few-shot semantic segmentation.

Efficacy of shot in support set. In this part, we research
the impact of shot in support shot during meta-testing. As

seen in Figure 4, the performance of our method is in pos-
itive correlation with the shot in support set. However, the
change of the baselines is not very obvious. This is at-
tributable to our framework can learn how to efficiently use
the information from support set by meta-learning frame-
work. Just like human, we cannot learn well in extremely
short of information (e.g., 1-shot) in a new task, but our skill
to solve a new task is in positive correlation with attempts.

1 2 3 4 5
Shot in support set

30

35

40

45

50

55

m
Io

U
(%

)

Fine-tuning
MetaSegConv(baseline)
MetaSegNet

Figure 4: The results of different shots in support set for 2-
way semantic segmentation on PASCAL-51val.

Conclusion

In this paper, we aim to solve the K-way, N -shot few-shot
semantic segmentation task, which is more difficult than
the conventional 1-way setting. Different from the existing
works, we formulate this task as a pixel classification prob-
lem instead of measuring the similarity between images. Un-
der this formulation, a novel few-shot semantic segmenta-
tion framework based on optimization meta-learning is pro-
posed. Thanks to the proposed embedding module and linear
model, our framework can achieve impressive performance.
Furthermore, our method provides a new alternative to deal
with K-way, N -shot few-shot segmentation, which is more
meaningful than the conventional setting.
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