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Abstract

Aesthetic image cropping is a practical but challenging task
which aims at finding the best crops with the highest aesthetic
quality in an image. Recently, many deep learning methods
have been proposed to address this problem, but they did not
reveal the intrinsic mechanism of aesthetic evaluation. In this
paper, we propose an interpretable image cropping model to
unveil the mystery. For each image, we use a fully convo-
lutional network to produce an aesthetic score map, which
is shared among all candidate crops during crop-level aes-
thetic evaluation. Then, we require the aesthetic score map
to be both composition-aware and saliency-aware. In par-
ticular, the same region is assigned with different aesthetic
scores based on its relative positions in different crops. More-
over, a visually salient region is supposed to have more sensi-
tive aesthetic scores so that our network can learn to place
salient objects at more proper positions. Such an aesthetic
score map can be used to localize aesthetically important re-
gions in an image, which sheds light on the composition rules
learned by our model. We show the competitive performance
of our model in the image cropping task on several bench-
mark datasets, and also demonstrate its generality in real-
world applications.

1 Introduction

Given an image, the image cropping task aims at finding the
crops with the best aesthetic quality. It is an important task
that can be widely used in a lot of down-stream applications,
e.g., photo post-processing (Chen et al. 2017b), view rec-
ommendation (Li et al. 2018; Wei et al. 2018), and image
thumbnailing (Esmaeili, Singh, and Davis 2017). In order to
find the best crop, an image cropping model will first gen-
erate a large number of candidate crops and then determine
the best crop based on crop-level aesthetic evaluation. So an
image cropping model is usually composed of two stages,
candidate generation and aesthetic evaluation. A good image
crop is achieved by selecting important contents and placing
them with a good composition. The required knowledge for
such a task can be categorized into two parts, i.e., content
preference and composition preference. Therefore, a good
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Figure 1: Images crop with composition rules. The orange
box in each image denotes a good crop found based on
human-defined composition rules. The white dotted lines de-
note the auxiliary lines used in these composition rules.

image cropping model should be able to learn and leverage
such preferences when searching for the best crop.

Early methods achieve this goal by explicitly utilizing
some photography knowledge like human-defined compo-
sition rules, e.g., Rule of Thirds and Rule of Central (See
Figure 1). With the development of deep learning, recent
researchers learn image cropping in a data-driven manner
and many aesthetic datasets are constructed to encode the
aesthetic preference of humans. Recent methods (Wang and
Shen 2017; Chen et al. 2017b; Wei et al. 2018; Lu et al.
2019c) treat it as an object detection task. They used aes-
thetic datasets to train an aesthetic evaluation model and ap-
plied it to compare candidate crops. Due to the power of
deep learning, these methods have brought progresses in this
field, but the intrinsic mechanism remains unrevealed.

In this paper, we propose an interpretable image cropping
model to produce both composition-aware and saliency-
aware Aesthetic Score Maps, called ASM-Net. Our ap-
proach was first inspired by the Class-Activation-Map
(CAM) method (Zhou et al. 2016), which uses a class activa-
tion map to localize the most discriminative image regions
in image classification task. Similarly, we expect to use an
aesthetic score map to localize aesthetically important image
regions. The aesthetic score of a region can be obtained via
average pooling and the regions with larger aesthetic scores
are of higher aesthetic quality. However, direct application
of CAM has been proven ineffective because the aesthetic
evaluation task is more complicated than classification and
one region cannot be simply represented by a single score.
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For example, in Rule of Central (left panel in Figure 1), we
always place the key object at the center to achieve a sym-
metric and balanced photo crop. So the aesthetic score of
the key object located at the center should be larger than
off-center. So we realize that the aesthetic score of a region
should vary with its relative position in different crops.

To achieve this goal, we first design some composi-
tion patterns to accommodate composition rules so that our
model is capable of capturing different composition pref-
erences in the training data. Each composition pattern di-
vides a crop into multiple non-overlapping composition par-
titions (see Figure 3). Given a composition pattern, the aes-
thetic score of a region depends on the composition par-
tition it belongs to in different crops. We name this prop-
erty as “composition-aware”. In this case, one region is not
represented by a single score, but a set of composition-
aware scores. Based on such a composition-aware aesthetic
score map, we design composition-aware pooling to calcu-
late crop-level aesthetic scores efficiently.

Furthermore, we believe that our aesthetic score map
should focus more on visually salient objects, so we intro-
duce visual saliency into our model as extra supervision.
Previous saliency-based image cropping methods (Wang
and Shen 2017; Lu et al. 2019b) generally assume that the
most salient object is the most important content and must be
included in the best crop. However, we find that this assump-
tion does not hold in many real-world images. For example,
landscape photos could have no salient objects, while a party
photo might have multiple salient figures that are equally im-
portant. These methods could fail in such images.

Unlike previous saliency-based methods, our assumption
is more flexible and practical: a salient region should be
more sensitive to the composition partition it belongs to than
other regions. We design a novel saliency-aware loss to real-
ize this assumption. By enforcing salient regions to be more
composition-sensitive, our model could learn to place salient
objects in the proper positions. With such a composition-
aware and saliency-aware aesthetic score map, we could un-
veil the intrinsic mechanism of image cropping by locat-
ing the aesthetically important regions. Moreover, our model
can be easily applied to a wide range of real-world applica-
tions. The main contributions of our work are as follows:
• We propose a novel image cropping model ASM-Net with

composition-aware and saliency-aware aesthetic score
map, which can encode content preference and compo-
sition preference.

• Our model is able to unveil the intrinsic mechanism of
image cropping, by localizing aesthetically important re-
gions based on our aesthetic score map.

• Our model outperforms the state-of-the-art methods on
three benchmark datasets and has good generality to real-
world applications.

2 Related Work

Aesthetic Evaluation: Recently, some large scale aesthetic
datasets, like AVA (Murray, Marchesotti, and Perronnin
2012) and AADB (Kong et al. 2016), have been constructed,
which enables learning aesthetic evaluation models in a

data-driven manner. By using these datasets, many deep
learning methods (Lu et al. 2014; 2015; Hosu, Goldlucke,
and Saupe 2019) have been proposed for image-level aes-
thetic evaluation. However, some researchers realized that
we need more fine-grained aesthetic annotations for image
cropping so that many similar crops could be compared.
Thus, Chen et al. (2017a) first proposed a dataset to com-
pare randomly sampled crops from one image. Following
this idea, Wei et al. (2018) increased the number of crops
in each image and proposed the first densely annotated im-
age cropping dataset, in which each image has 24 annotated
crops with aesthetic scores. Zeng et al. (2019) took a further
step and presented another densely annotated dataset with
about 85 crops for each image. In our method, we use such
datasets to train our image cropping model.
Aesthetic-based Image Cropping: Aesthetic-based image
cropping improves the cropping results by increasing their
aesthetic quality. Early methods (Zhang et al. 2013; Yan et
al. 2013; Fang et al. 2014) achieve this goal by using hand-
crafted features and composition rules. By introducing deep
learning into this area, some methods proposed to solve im-
age cropping in a data-driven manner. Wei et al. (2018) used
an object detection framework (Liu et al. 2016) with two
networks, one for generating candidate crops and one for
aesthetic evaluation. More recently, (Zeng et al. 2019) pro-
posed new metrics to evaluate the performance of image
cropping models. Compared with these deep learning-based
approaches, our method is more interpretable.
Saliency-based Image Cropping: The saliency-based
methods (Sun and Ling 2013; Chen et al. 2016; Wang and
Shen 2017; Lu et al. 2019b; 2019a; Li et al. 2019) focused on
preserving the most important content in the best crop. Wang
and Shen (2017) used a saliency dataset (Jiang et al. 2015)
to train a network to generate candidate crops that cover the
most salient region. Similarly, Lu et al. (2019b) proposed to
generate an initial visual saliency rectangle to include the
most important objects. Unlike these methods, our method
has a different assumption on the relationship between vi-
sual saliency and aesthetic evaluation.

3 Methodology
The flowchart of our method is illustrated in Figure 2.

3.1 Composition-Aware Aesthetic Score Map

Aesthetic Score Map: Similar to Class-Activation-Map
(CAM) (Zhou et al. 2016), which can localize discriminative
regions based on class activation map, we attempt to obtain
an aesthetic score map for ease of localizing aesthetically
important regions, which can be achieved by Fully Convo-
lutional Network (Chen et al. 2015; Long, Shelhamer, and
Darrell 2015). Considering that a high-resolution score map
could be beneficial for region localization and imaging crop-
ping, we upsample the feature maps from different layers to
the input image size and concatenate them as our feature
map. Then, we apply a 1 × 1 convolutional layer to trans-
form this feature map to an aesthetic score map, with a larger
score indicating higher aesthetic quality.

We use I = {pi,j |0 < i ≤ H, 0 < j ≤ W} to denote an
H×W input image with pi,j being its pixel. Besides, we use
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Figure 2: Illustration of our model. Train stage: We first obtain the aesthetic score map based on multi-scale features and then
produce crop-level scores with composition-aware pooling. Finally, we train our model with ranking loss and saliency-aware
loss. Inference stage: For each test image, we use the learned model to obtain its aesthetic score map. Then we apply two-stage
searching to find the best image crop.

M to represent the aesthetic score map of I. At first, we as-
sume that M is a H×W matrix with mi,j being its element.
Given an image crop Xk ⊆ I, we can obtain the aesthetic
score of this crop via average pooling 1

|Xk|
∑

pi,j∈Xk
mi,j .

Similarly, the aesthetic score of a region in this crop can also
be calculated via average pooling. In this case, one region
will get the same aesthetic score in different crops contain-
ing this region. However, as discussed in Section 1, we find
that this design is not compatible with aesthetic evaluation.
When evaluating the aesthetic quality of a region, we should
consider its relative position in different crops.

Therefore, we propose composition patterns to achieve
this goal. Several instantiations of composition patterns are
listed in Figure 3, which share similar spirit with the aux-
iliary lines used in human-defined composition rules (see
Figure 1). We assume that a composition pattern has L non-
overlapping composition partitions indexed by 1, 2, ..., L.
Then, given a crop and the composition pattern, we can di-
vide this crop into L corresponding composition partitions
based on the composition pattern. For each region in this
crop, we can easily get its partition index (i.e., 1, 2, ..., L)
based on its relative position in this crop. The aesthetic
score of a region should be aware of its composition par-
tition index in different crops, and we refer to this property
as “composition-aware”.

Inspired by R-FCN (Dai et al. 2016), we expand the aes-
thetic score map to a tensor M ∈ RH×W×L with one
channel corresponding to one composition partition. Given
an image crop Xk ⊆ I and a pixel pi,j ∈ Xk, we use
γk(i, j) ∈ {1, 2, ..., L} to denote the composition partition
index of pi,j in Xk. So the composition-aware score of pi,j
in Xk is φk(i, j) = mi,j,γk(i,j).
Composition-Aware Pooling: To calculate crop-level aes-
thetic scores, we design a composition-aware pooling op-
eration to realize this function. We use Φ(·) to denote
composition-aware pooling and thus Φ(Xk) is the crop-level
aesthetic score of Xk. In particular, the crop-level aesthetic
score Φ(Xk) is defined as the average of the composition-

Figure 3: Four different composition patterns. 3x3 Grid: 9
partitions of the same size. Multi-rectangle: 3 partitions,
center, middle, and outer. As the white dotted lines show, it
can be divided into a 6 × 6 grid in implementation. Multi-
direction: 8 partitions for 8 directions. Cross-rectangle: 12
partitions, inspired by the camera auxiliary lines.

aware aesthetic scores of all pixels in the crop Xk (see the
visualization results in Figure 4):

Φ(Xk) ≡ 1

|Xk|
∑

pi,j∈Xk

φk(i, j) (1)

In our implementation, we calculate (1) in an efficient way.
Given a h × w crop Xk, we first obtain its crop-level score
map Mk ∈ Rh×w×L from M.

Suppose our used composition pattern is x × y grid pat-
tern, we perform spatial average pooling within each cell
of Mk to get the pooled score map M

′
k ∈ Rx×y×L. Note

that L = x · y for x × y grid pattern, so M
′
k can be fur-

ther reshaped into a square matrix M
′′
k ∈ RL×L. Then the

crop-level score of Xk is:

Φ(Xk) =
1

L

∑
diag(M

′′
k), (2)
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Figure 4: The crop-level aesthetic score maps for three crops
in the same image. The annotated scores are in black and the
predictions are in red.

in which diag(·) denotes the diagonal elements.
When dealing with a non-grid pattern with L partitions,

we first transform this pattern to a grid pattern with L̃ parti-
tions. In particular, we divide each partition into small cells
and each small cell is a new partition (see the multi-rectangle
in Figure 3 with L̃ = 36). The multi-direction pattern is a
little special but can also be handled in the same way. To
be exact, we divide the whole pattern into 12 × 12 cells
(L̃ = 144) so that each partition is approximately covered by
18 cells. Then we use M ∈ RH×W×L to build a new map
M̃ ∈ RH×W×L̃. If the l̃-th new partition comes from the
l-th old partition, we have mi,j,l̃ = mi,j,l, ∀ i, j. Then we

directly use M̃ to replace M for composition-aware pooling.
Training with Ranking Loss: We use {(Xk, yk)|Xk ∈
I, k = 1, ...,K} to denote the K annotated crops from I,
in which yk is the annotated score of Xk. During training,
we need to learn Φ(Xk) with supervision from yk. Follow-
ing (Chen et al. 2017b; Wei et al. 2018), we learn the relative
ranking order of all the crops with the ranking loss, because
the ability to correctly ranking crops with similar contents is
essential in image cropping (Chen et al. 2017a).

For each training image, we first use its annotated crops to
generate training pairs based on the differences of the anno-
tated scores. Specifically, given a threshold δ, the crop pairs
are denoted as

R = {(k, t)|yk − yt ≥ δ; k �= t;Xk,Xt ∈ I}. (3)

Since we have totally K annotated crops, we can generate
at most (K2 − K)/2 crop pairs with δ = 0. By increasing
δ, we can filter out confusing pairs that might be harmful to
training. Then the remaining crop pairs are used to train our
model with ranking loss:

Lrank =
∑

(k,t)∈R
max{0, 1 + Φ(Xt)− Φ(Xk)}. (4)

3.2 Saliency-Aware Aesthetic Score Map

Before introducing visual saliency to our model, we first de-
scribe the concept of aesthetically important regions, which
is helpful in interpreting image cropping.
Aesthetically Important Region: We use the term “aesthet-
ically important” to denote the regions that are very influ-
ential in image cropping. We summarize two types of aes-
thetically important regions: 1) A region has important con-
tent which needs to be preserved, and thus a good crop is

supposed to include this region. These “content-important”
regions will seriously influence the location of good crops.
2) A region is sensitive to its composition partition index.
When including such “composition-sensitive” region in a
crop, they should be carefully placed in proper positions;
otherwise they may lead to aesthetic catastrophe.

In fact, content-important regions and composition-
sensitive regions can be explained based on our aesthetic
score map. We define two statistics θavg(·) and θstd(·), in
which θavg(pi,j) is the average aesthetic score of pi,j over
all composition partitions and θstd(pi,j) is the corresponding
standard deviation:

θavg(pi,j) =
1

L

L∑
l=1

mi,j,l, (5)

θstd(pi,j) =

(
1

L

L∑
l=1

(mi,j,l − θavg(pi,j))
2

)1/2

. (6)

Intuitively, a region with high θavg has a large aesthetic
score on average, and good crops are most likely to contain
this region. So the regions with high θavg could be deemed
as content-important regions. A region with θstd is more sen-
sitive to its composition partition index, because θstd(·) de-
scribes the average score difference caused by the change of
its belonging composition partition. So the regions with high
θstd could be treated as composition-sensitive regions. After
obtaining an aesthetic score map, we can draw heat maps
based on θavg and θstd to localize aesthetically important re-
gions.
Saliency-Aware Loss: Visual saliency is a perceptual qual-
ity that can make objects attract more human attention (Hou
and Zhang 2009). It is studied in different applications like
saliency prediction (Pan et al. 2016), salient object detection
(Borji et al. 2015), and video object segmentation (Wang
et al. 2017). In the image cropping task, we can detect the
salient regions to preserve the important contents in the
best crop. Some previous methods (Wang and Shen 2017;
Lu et al. 2019b) have already tried in this direction with
a simple assumption: the most salient region should be a
content-important region. On the premise of this assump-
tion, their methods generate candidate crops covering the
detected salient region, so that the predicted best crop will
not miss the salient region. If our model follows this assump-
tion, we should add a constraint that the salient regions have
large θavg during training.

However, we realize that such an assumption has several
limitations. First, many real-world images like a party photo
could have multiple salient regions, and we cannot only fo-
cus on the most salient one. Second, a landscape photo may
not have any salient object, which could result in failure
cases as reported in (Lu et al. 2019b). Third, a salient ob-
ject could also be a distraction that should be excluded from
a good crop.

In our method, we adopt a more reasonable assump-
tion: salient regions should be composition-sensitive, which
can be explained as follows. According to the definition of
saliency, a salient region must be visually attractive. When
looking at an image, salient regions will draw more attention
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Figure 5: Performance variation of our method with different
trade-off parameter λ on the validation set of CPC dataset.

than others, so people will care more about whether they are
placed in proper positions. We first use the saliency detec-
tion model (Hou and Zhang 2007) to obtain a saliency map
S for image I, in which si,j ∈ [0, 1] is the saliency score
for pi,j . Then, we propose our saliency-aware loss Lsal by
weighing θstd(pi,j) with saliency score:

Lsal =
1

HW

∑
pi,j∈I

(1− si,j)
θstd(pi,j)

θ̄std
, (7)

in which θ̄std is the average of all θstd(pi,j) in I. For non-
salient regions, (1 − si,j) is large, so they will be penalized
for having large θstd. For salient regions, (1−si,j) is small, so
they are allowed to have large θstd. Notice that θstd(·) reflects
our model capacity. In extreme case, if θstd(pi,j) = 0 for
all pixels, our aesthetic score tensor will reduce to aesthetic
score matrix with only one channel, and the shrinked model
capacity will cause the difficulty of minimizing Lrank. By
penalizing θstd of non-salient regions, we actually encourage
salient regions to have larger θstd in order to fit the train-
ing data. In this way, salient objects are encouraged to be
composition-sensitive, so that our model can learn to place
salient objects in proper positions.

In the training stage, we use images with annotated crops
and their saliency maps to train our ASM-Net with the total
training loss:

L = Lrank + λLsal, (8)

in which λ is a trade-off parameter.

3.3 Two-Stage Search for Image Cropping

During inference, the saliency map is no longer needed.
Given an image, we first use the learned model to pro-
duce an aesthetic score map. Based on the aesthetic score
map, we aim to find the best crop by generating a lot
of candidate crops and comparing their crop-level scores.
Previous methods (Chen et al. 2017b; Wei et al. 2018;
Zeng et al. 2019) adopt different strategies in this step. Here,
we design a simple yet effective searching strategy to reduce
the searching space. Specifically, our searching method has
two stages. In the first stage, we conduct a coarse-grained
search on a set of pre-defined anchor boxes as in (Wei et al.
2018). In the second stage, we conduct fine-grained search-
ing around the top crops (e.g., top 10) in the first stage, by
slightly varying their center position, size, and aspect ratio.

Pattern #Partitions Accuracy↑
1× 1 grid 1 59.46
1× 3 grid 3 75.64
3× 1 grid 3 71.33
5× 5 grid 25 86.38

multi-rectangle 5 81.34
multi-direction 8 83.22
cross-rectangle 12 87.59

Table 1: Accuracies (%) of our method with different com-
position patterns on the validation set of CPC dataset.

4 Experiments

4.1 Datasets

We use four image cropping datasets for experiments, two
for training and two for testing.
CPC: The CPC dataset (Wei et al. 2018) is the first densely
annotated image cropping dataset. It contains 10797 images,
and each image has 24 crops with multiple scores annotated
by Amazon Mechanical Turk workers. We use the average
annotated score for each crop as ground truth.
GAICD: The GAICD dataset (Zeng et al. 2019) is also a
densely annotated dataset, but each image has more anno-
tated crops than the CPC dataset. It has 1236 images and
about 86 crops for each image.
FCDB & FLMS: The FCDB (Chen et al. 2017a) and FLMS
(Fang et al. 2014) datasets only have annotations for the
best crop in each image, which are given by ten annotators.
FCDB contains 358 images, and FLMS contains 500 im-
ages. These two datasets are only used as the test set in the
image cropping task.

4.2 Implementation Details

Following the setting in (Wei et al. 2018; Zeng et al. 2019),
we use VGG16 as the backbone model for feature extraction.
For generating crop pairs, we have δ = 0.3 for CPC dataset
and δ = 0.9 for GAICD dataset. We choose an unsupervised
method in (Hou and Zhang 2007) to produce saliency maps
for training images.

4.3 Ablation Study

We first conduct experiments to study the effectiveness of
different composition patterns and our saliency-aware loss.
Here, we train our model with the CPC dataset and leave
2000 images as the validation set. We report the ranking ac-
curacy, i.e., the accuracy of correctly ranking the generated
crop pairs, on the validation set of CPC dataset.
Composition Pattern: We explore four types of composi-
tion patterns in Figure 3 and the results are reported in Ta-
ble 1. First, we investigate the grid pattern with different
numbers of partitions. When using 1 × 1 grid, our model is
no longer composition-aware because it will assign a region
with the same score regardless of its different composition
partition indices in different crops. When using 1× 3 (resp.,
3×1) grid, our model is only aware of horizontal (resp., ver-
tical) shift. We observe that 1 × 3 gird has higher accuracy,
which means that horizontal shift has more impact on the
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Method IoU↑ Disp↓
RankSVM (Chen et al. 2017a) 0.6020 0.106
AesRankNet (Kong et al. 2016) 0.4843 0.140
MNA-CNN (Mai, Jin, and Liu 2016) 0.5042 0.136
VFN (Chen et al. 2017b) 0.6842 0.084
VPN (Wei et al. 2018) 0.7109 0.073
VEN (Wei et al. 2018) 0.7349 0.072
ASM-Net (ours) 0.7489 0.068

Table 2: Results of different methods on the FCDB dataset.

Method IoU↑ Disp↓
Chen et al. (2016) 0.6400 0.075
Fang et al. (2014) 0.7400 -
Suh et al. (2003) 0.7200 0.063
ABP+AA (Wang and Shen 2017) 0.8100 0.057
VPN (Wei et al. 2018) 0.8352 0.044
VEN (Wei et al. 2018) 0.8365 0.041
ASM-Net (ours) 0.8486 0.039

Table 3: Results of different methods on the FLMS dataset.

aesthetic quality of a crop, which has also been proved by
empirical studies (Palmer, Schloss, and Sammartino 2013;
Abeln et al. 2016). Then, we compare four types of com-
position patterns and report the best results for four types
of composition patterns. We conjecture that their perfor-
mance differences are attributed to their sensitivity to dif-
ferent types of position shifts. To be exact, multi-rectangle
and multi-direction are only sensitive to one type of position
shift (i.e., in-out shift or directional shift), which restrains
them from capturing more complicated composition rules in
the training data, so they have lower results. The best result
comes from the cross-rectangle, which is like a combina-
tion of multi-rectangle and multi-direction. It is inspired by
camera auxiliary lines, which proves to be more compati-
ble with learning composition rules. Due to the competitive
performance of the cross-rectangle, we use it as the default
composition pattern for the rest of the experiments.
Saliency-Aware Loss: Recall that we have a trade-off pa-
rameter λ before our saliency-aware loss in (8). We vary
λ in the range of [0, 100] and report the results in Figure
5. When we do not use the saliency-aware loss (λ=0), the
accuracy drop is 3.22% compared with the best accuracy
achieved when λ=0.1. When λ becomes larger, the accuracy
begins to drop because it will reduce our model capacity, as
discussed in Section 3.2. We use λ=0.1 by default for the
rest of experiments.

4.4 Performance on Image Cropping

Image cropping models are usually evaluated based on sin-
gle best crop prediction. However, Zeng et al. argue that im-
age cropping is naturally a subjective and flexible task with-
out a unique solution, and thus suggest evaluation based on
multiple crop ranking. Here we conduct experiments based
on both best crop prediction and multiple crop ranking.
Predicting Best Crop: In this task, we predict the best crop
and compare it with the ground truth crop. We follow the ex-

Method SRCC↑ Acc5 ↑ Acc10 ↑
VFN (Chen et al. 2017b) 0.450 26.7 38.7
VEN (Wei et al. 2018) 0.621 37.6 50.9
GAIC (Zeng et al. 2019) 0.735 50.2 68.5
ASM-Net (ours) 0.766 54.3 71.5

Table 4: Results of different methods on the GAICD dataset.

periment setting in (Chen et al. 2017b; Wei et al. 2018) and
use two metrics for performance evaluation: intersection-
over-union (IoU) and boundary displacement (Disp). We use
the CPC dataset as the training set, and FCDB and FLMS
datasets as two test sets. The results of our ASM-Net and
baseline methods are reported in Table 2&3. On FLMS, we
beat the saliency-based approach (Wang and Shen 2017).
Our method achieves the best performance on both FCDB
and FLMS datasets.
Ranking Multiple Crops: The above experiments are de-
signed for locating a single best crop, where only the pre-
diction of the best crop is evaluated. In the densely anno-
tated dataset, each image has multiple annotate crops, so
Zeng et al. (2019) proposed to compare the ranking order
of all annotated crops with two different metrics: Spear-
man’s rank-order correlation coefficient (SRCC) and gen-
eralized top-N accuracy (AccN ). While IoU and Disp only
care about the best crop prediction, SRCC and AccN evalu-
ate the performance of correctly ranking multiple annotated
crops. Following (Zeng et al. 2019), we choose 1036 im-
ages in GAICD dataset for training and the remaining 200
images for testing. Many previous methods can only predict
the best crop, so they are not applicable to this task. The re-
sults are summarized in Table 4, from which we observe that
our method beats all the applicable baseline methods.
Discussion: The main advantage of our method is that the
aesthetic score map is both composition-aware and saliency-
aware. Remember that a good image crop is achieved by
placing important content with a good composition, so these
two properties are very important in the image cropping task.

With saliency-aware property, our model can focus on
the salient regions, which are more likely to contain im-
portant content. Compared with the saliency-based approach
((Wang and Shen 2017)), our method has a more reasonable
assumption that is more compatible with aesthetic evalua-
tion. With composition-aware property, our model is able to
encode complicated composition rules learned from training
data. Especially when ranking the overlapping crops which
are visually similar, our method gains an edge by referring
to the composition partition index of their common content.
In summary, our model is more compatible with the image
cropping task, so it can make better use of the training data
and have better performance on both tasks.

4.5 Application

Localizing Aesthetically Important Region: Following
the discussion in Section 3.2, we locate aesthetically impor-
tant regions by drawing heat maps with θavg(·) and θstd(·)
in Figure 6. We compare the heat maps between λ=0 and
λ=0.1. We can observe that when not using saliency-aware
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Figure 6: Illustration of aesthetically important regions
based on the heat maps of θstd(·) and θavg(·) with λ=0 and
λ=0.1.

Figure 7: Illustration of spatial bias. High-score crops are
prone to cover four corners of the whole image.

loss (λ=0), the image corners are aesthetically important. We
believe it is caused by the spatial bias in the training images.

The spatial bias means that the annotated score of a crop
is related to its position in the whole image. For example,
since most photos will place the important contents at the
center, the high-score crops are usually central and large
enough to cover them, so they are more likely to cover the
four corners of the image compared with low-score crops
(see Figure 7). So the model is prone to assign high aes-
thetic scores to the corners of the image. In fact, a previous
method GAIC has leveraged such statistical prior informa-
tion to reduce low-score crops in candidate crop generation.
By using saliency-aware loss, we are actually preventing the
model from overfitting such spatial bias, so the aesthetically
important regions are closer to the salient regions.
Diverse Image Cropping: To demonstrate the ability of
our model, we visualize our cropping results in three typi-
cal scenes: one salient object, multiple salient objects, and
no salient object. We first show the best cropping result
in three typical scenes (two images for each scene) with
five aspect ratios (9:16, 3:4, 1:1, 4:3, and 16:9) in Figure 8
(see more results in Supplementary). Notice that a saliency-
based method might fail in the scene with no salient object,
as reported in (Lu et al. 2019b). However, the results have
demonstrated that our model can generally produce satisfac-
tory results in different scenes with different aspect ratios.
Circular Cropping: Since we obtain crop-level aesthetic
score by pooling the aesthetic score map, our model can be
naturally used to evaluate image crops of arbitrary shape, by
slightly changing the composition-aware pooling operation.

Figure 8: Image cropping results on six images (left column)
with different aspect ratios and shapes.

Now we extend the rectangle cropping task to circular crop-
ping since it can be used in real-world applications like gen-
erating circular user icons for websites. We use Xt ⊂ I to
denote a candidate circular crop, which is also the inscribed
circle of a square crop Xk. During training, we still use rect-
angle crops due to the lack of annotated circular crops. Dur-
ing prediction, we use φk(i, j) from Xk as the composition-
aware score of pi,j but only pool from the inscribed circle
Xt, so the circular crop-level score of Xt is :

Φ
′
(Xt) =

1

|Xt|
∑

pi,j∈Xt

φk(i, j). (9)

With the circular crop-level score defined above, our model
finds some best circular crops, which are shown in Figure
8 (see more results in Supplementary). The results demon-
strate the generality of our proposed model. Since we have
not trained the model with any annotated circular image
crops, it also proves that our model has mastered a univer-
sal aesthetic evaluation criterion that can be shared among
crops with different shapes.

5 Conclusions

In this paper, we have proposed an interpretable model to un-
veil the intrinsic mechanism of the image cropping model.
Our model can produce an aesthetic score map, in which
the aesthetic score of a region is aware of its composition
partition index in different crops. Moreover, by introducing
visual saliency, our model can learn to place salient objects
in proper positions. Our model has achieved the best per-
formance in image cropping tasks and demonstrated good
generality in real-world applications.

Acknowledgement

The work is supported by the National Key R&D Program
of China (2018AAA0100704) and is partially sponsored by
Shanghai Sailing Program (BI0300271) and Startup Fund
for Youngman Research at SJTU (WF220403041).

12110



References

Abeln, J.; Fresz, L.; Amirshahi, S. A.; McManus, I. C.;
Koch, M.; Kreysa, H.; and Redies, C. 2016. Preference for
well-balanced saliency in details cropped from photographs.
Frontiers in human neuroscience 9:704.
Borji, A.; Cheng, M.-M.; Jiang, H.; and Li, J. 2015. Salient
object detection: A benchmark. IEEE transactions on image
processing 24(12):5706–5722.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2015. Semantic image segmentation with deep
convolutional nets and fully connected crfs. In ICLR.
Chen, J.; Bai, G.; Liang, S.; and Li, Z. 2016. Automatic im-
age cropping: A computational complexity study. In CVPR,
507–515.
Chen, Y.-L.; Huang, T.-W.; Chang, K.-H.; Tsai, Y.-C.; Chen,
H.-T.; and Chen, B.-Y. 2017a. Quantitative analysis of au-
tomatic image cropping algorithms: A dataset and compara-
tive study. In WACV, 226–234. IEEE.
Chen, Y.-L.; Klopp, J.; Sun, M.; Chien, S.-Y.; and Ma, K.-L.
2017b. Learning to compose with professional photographs
on the web. In ACM-Multimedia, 37–45. ACM.
Dai, J.; Li, Y.; He, K.; and Sun, J. 2016. R-fcn: Object
detection via region-based fully convolutional networks. In
NIPS, 379–387.
Esmaeili, S. A.; Singh, B.; and Davis, L. S. 2017. Fast-
at: Fast automatic thumbnail generation using deep neural
networks. In CVPR, 4622–4630.
Fang, C.; Lin, Z.; Mech, R.; and Shen, X. 2014. Au-
tomatic image cropping using visual composition, bound-
ary simplicity and content preservation models. In ACM-
Multimedia, 1105–1108. ACM.
Hosu, V.; Goldlucke, B.; and Saupe, D. 2019. Effective aes-
thetics prediction with multi-level spatially pooled features.
In CVPR, 9375–9383.
Hou, X., and Zhang, L. 2007. Saliency detection: A spectral
residual approach. In CVPR, 1–8. Ieee.
Hou, X., and Zhang, L. 2009. Dynamic visual attention:
Searching for coding length increments. In NIPS, 681–688.
Jiang, M.; Huang, S.; Duan, J.; and Zhao, Q. 2015. Salicon:
Saliency in context. In CVPR, 1072–1080.
Kong, S.; Shen, X.; Lin, Z.; Mech, R.; and Fowlkes, C. 2016.
Photo aesthetics ranking network with attributes and content
adaptation. In ECCV, 662–679. Springer.
Li, D.; Wu, H.; Zhang, J.; and Huang, K. 2018. A2-rl: Aes-
thetics aware reinforcement learning for image cropping. In
CVPR, 8193–8201.
Li, X.; Li, X.; Zhang, G.; and Zhang, X. 2019. Image aes-
thetic assessment using a saliency symbiosis network. Jour-
nal of Electronic Imaging 28(2):023008.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. Ssd: Single shot multibox
detector. In ECCV, 21–37. Springer.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In CVPR,
3431–3440.

Lu, X.; Lin, Z.; Jin, H.; Yang, J.; and Wang, J. Z. 2014.
Rapid: Rating pictorial aesthetics using deep learning. In
ACM-Multimedia, 457–466. ACM.
Lu, X.; Lin, Z.; Shen, X.; Mech, R.; and Wang, J. Z. 2015.
Deep multi-patch aggregation network for image style, aes-
thetics, and quality estimation. In ICCV, 990–998.
Lu, P.; Zhang, H.; Peng, X.; and Jin, X. 2019a. An
end-to-end neural network for image cropping by learn-
ing composition from aesthetic photos. arXiv preprint
arXiv:1907.01432.
Lu, P.; Zhang, H.; Peng, X.; and Peng, X. 2019b. Aesthetic
guided deep regression network for image cropping. Signal
Processing: Image Communication.
Lu, W.; Xing, X.; Cai, B.; and Xu, X. 2019c. List-
wise view ranking for image cropping. arXiv preprint
arXiv:1905.05352.
Mai, L.; Jin, H.; and Liu, F. 2016. Composition-preserving
deep photo aesthetics assessment. In CVPR, 497–506.
Murray, N.; Marchesotti, L.; and Perronnin, F. 2012. Ava: A
large-scale database for aesthetic visual analysis. In CVPR,
2408–2415. IEEE.
Palmer, S. E.; Schloss, K. B.; and Sammartino, J. 2013.
Visual aesthetics and human preference. Annual review of
psychology 64:77–107.
Pan, J.; Sayrol, E.; Giro-i Nieto, X.; McGuinness, K.; and
O’Connor, N. E. 2016. Shallow and deep convolutional
networks for saliency prediction. In CVPR, 598–606.
Suh, B.; Ling, H.; Bederson, B. B.; and Jacobs, D. W. 2003.
Automatic thumbnail cropping and its effectiveness. In Pro-
ceedings of the 16th annual ACM symposium on User inter-
face software and technology, 95–104. ACM.
Sun, J., and Ling, H. 2013. Scale and object aware im-
age thumbnailing. International journal of computer vision
104(2):135–153.
Wang, W., and Shen, J. 2017. Deep cropping via attention
box prediction and aesthetics assessment. In ICCV, 2186–
2194.
Wang, W.; Shen, J.; Yang, R.; and Porikli, F. 2017. Saliency-
aware video object segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 40(1):20–33.
Wei, Z.; Zhang, J.; Shen, X.; Lin, Z.; Mech, R.; Hoai, M.;
and Samaras, D. 2018. Good view hunting: Learning photo
composition from dense view pairs. In CVPR, 5437–5446.
Yan, J.; Lin, S.; Bing Kang, S.; and Tang, X. 2013. Learning
the change for automatic image cropping. In CVPR, 971–
978.
Zeng, H.; Li, L.; Cao, Z.; and Zhang, L. 2019. Reliable and
efficient image cropping: A grid anchor based approach. In
CVPR, 5949–5957.
Zhang, L.; Song, M.; Yang, Y.; Zhao, Q.; Zhao, C.; and Sebe,
N. 2013. Weakly supervised photo cropping. IEEE Trans-
actions on Multimedia 16(1):94–107.
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba,
A. 2016. Learning deep features for discriminative localiza-
tion. In CVPR, 2921–2929.

12111


