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Abstract

Global reasoning plays a significant role in many computer
vision tasks which need to capture long-distance relation-
ships. However, most current studies on global reasoning fo-
cus on exploring the relationship between pixels and ignore
the critical role of the regions. In this paper, we propose an
novel approach that explores the relationship between regions
which have richer semantics than pixels. Specifically, we de-
sign a region aggregation method that can gather regional fea-
tures automatically into a uniform shape, and adjust theirs
positions adaptively for better alignment. To achieve the best
performance of global reasoning, we propose various rela-
tionship exploration methods and apply them on the regional
features. Our region-based global reasoning module, named
ReGr, is end-to-end and can be inserted into existing visual
understanding models without extra supervision. To evaluate
our approach, we apply ReGr to fine-grained classification
and action recognition benchmark tasks, and the experimen-
tal results demonstrate the effectiveness of our approach.

Introduction

Recently, more and more studies focus on exploring rela-
tionships to perform global reasoning in visual understand-
ing models (Yue et al. 2018; Wang et al. 2018) and it has
achieved outstanding performance in many computer vision
tasks like image classification, image generation, and action
recognition. The relationship is calculated and distributed
based on pixel-level features to make each of pixels contains
the information of the whole input. However, these methods
ignore the significance of regions in building relationships.

As described in (Wang and Gupta 2018), finding regions
and establishing relationships are two key ingredients to
understand the visual input. Humans can find the objects
quickly and make global reasoning due to the prior knowl-
edge and the ability of global perception. As shown in Fig. 1,
when we apperceive images, we always find the objects first,
and then we explore the relationships between them (like the
person is playing football or watching television). Through
the relationships, global reasoning is performed, and we can
realize the role of each object played and understand the
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Figure 1: Two pictures both contain a football but have dif-
ferent meanings. When we see these pictures, we find the
primary objects (red boxes in the second column), determine
the relationships between them (arrows in the third column)
and realize the role of each object played in the image, to
achieve the purpose of understanding. The football in the
yellow box is the protagonist and it is a decoration in the
green box due to the relationship between person and foot-
ball in the below is obviously stronger than that in the above.

complete content expressed by the whole visual data ulti-
mately. Therefore, modeling relationships between regions
is significant for the understanding procedure.

Motivated by the observation, we hope to introduce re-
gions into the relationship exploration to promote global rea-
soning. Compared to pixels, regions contain richer semantic
information and more complete spatial-temporal informa-
tion which can contribute to the understanding of the visual
scene. However, global reasoning through the relationship
between regions is difficult. On the one hand, regions with
rich semantics always have different scales, so it is challeng-
ing to locate these regions and extract their features. On the
other hand, the regions contain richer information than the
pixels which makes it more complicated to explore the rela-
tionship between regions.

To overcome the above difficulties, in this work, we pro-
pose an elaborate approach which can enable the CNN ar-
chitectures to perform region-based global reasoning. For
generating meaningful regions, we first split the input into
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several multi-scale raw regions and aggregate these regions
through a special aggregation process which can unify re-
gions into fixed feature vector representations while preserv-
ing spatial information as much as possible. To solve the
problem of misalignment, instead of using explicit regional
offset learning which will result in difficulty of feature ex-
traction, we implicitly exchange the feature of one region
with its neighbors to achieve the purpose of moving the re-
gion in spatial space. To better explore relationship between
regions, we design three methods which model the regional
relationship from different perspective. There will be a cor-
responding descriptor existed in the produced relationship
for each region, and by applying the descriptor to the re-
gion, it can obtain the information contained in other regions
which may be far apart. Therefore, every region can realize
whether it is the protagonist through the global reasoning.
To avoid breaking the flow of information on the network,
we then distribute the regional relationship into all pixels
according to a group of local descriptors which are gener-
ated from the regional feature the pixel belongs to so that it
can be easily embedded in modern CNN architectures.

We design an end-to-end trainable module named ReGr
for region-based global reasoning, which can be embedded
into many modern visual understanding models without ex-
tra supervision. We show the effectiveness and generality of
our designed module in the tasks of fine-grained classifica-
tion and action recognition. Extensive experiments demon-
strate that given the regional reasoning module, the perfor-
mance of state-of-the-art CNN models can be boosted with
a clear-cut improvement, and it can bring more promotion
than other global reasoning methods. Our contributions can
be concluded as follows:
• We propose a novel regional aggregation method which

can extract richer semantic regional features without ex-
tra supervision to reserve more spatial information and
achieve better alignment. It can enable our proposed ReGr
to embed into current CNN architectures seamlessly.

• We design three regional relationship exploration mech-
anisms to sufficiently explore the relationships between
regions which usually have more complicated semantics
than the pixels. More importantly, we give an insightful
analysis on building these different regional relationships.

• We conduct extensive experiments on various datasets.
Our proposed approach achieves superior performance
compared with the state-of-the-art methods on the chal-
lenging fine-grained classification task and action recog-
nition task.

Related Work

Global Reasoning. Conditional random fields are often
used to build global relationship among the entire image
for semantic segmentation (Lafferty, McCallum, and Pereira
2001; Chen et al. 2018a). These methods are generally
used as post-processing processes and cannot be well em-
bedded into the CNN architectures for optimization. Graph
Convolutional Network(GCN) (Kipf and Welling 2017) is
adopted for building the relationship between detected ob-
jects to extract rich semantic information for video classi-

fication (Wang and Gupta 2018), which needs extra anno-
tations of regions and its performance is seriously affected
by the capability of used detector. Recently, GCN also is
applied to the action recognition task (Chen et al. 2019)
in which the feature maps are projected to a special space
to perform global reasoning. Bilinear pooling is also found
to be able to explore the long-distance relationship to per-
form global reasoning (Wang et al. 2018; Chen et al. 2018c;
Yue et al. 2018). However, there exists a definite gap in
their produced relationship, which is built directly on pix-
els without the alleviation of regions. (Hu et al. 2018a;
Chen et al. 2018b) also want to use regions to perform global
reasoning, but they need extra annotations which limit their
application. (Li and Gupta 2018) uses clustering to find re-
gions, but the number of vertices can seriously affect its re-
sults. Compared to these methods, we bridge the gap via
modeling the relationship between regions, and the designed
module can be used in many modern visual understanding
models without additional bounding-box annotations.
Regional Feature Representation. Regional feature rep-
resentation is widely used in computer vision tasks, e.g.,
SIFT (Lowe 2004), Fisher Kernel (Perronnin, Sánchez, and
Mensink 2010) and LBP (Ojala, Pietikäinen, and Harwood
1994). Recently, average pooling used in SENet (Hu, Shen,
and Sun 2018) and GENet (Hu et al. 2018b) aggregates the
regional feature to produce local attention for each pixel
within the region. However, the attention without the rela-
tionship between regions is not enough, which lacks guid-
ance from global information. SPP-Net (He et al. 2015)
and Fast-RCNN (Girshick 2015) adopt a particular pool-
ing method for object detection task, but it lacks the abil-
ity to recover spatial information. T-C3D (Liu et al. 2018)
segments the video into many regions over time and sum-
marizes their scores to the final score. ARG-Net (Liu and
Ma 2019) designs a regional loss for exploring the effec-
tiveness of regions in anomaly detection. The aggregation
function in our approach can be applied to multi-scale re-
gions and it can adjust the regional feature with its surround-
ing regions to achieve better alignment. Compared with the
pooling methods mentioned above, the aggregated features
of our approach can be recovered through matrix multiplica-
tion without losing lots of spatial information.
Deep Architecture Design. Designing a better module to
enhance the performance of CNN has always been the con-
cern of researchers. VGG (Simonyan and Zisserman 2015)
combines multiple convolution layers as a basic module to
explore the impact of the depth of CNNs. ResNet (He et al.
2016) and DenseNet (Huang et al. 2017) introduce the resid-
ual pathway to build modules which achieve non-locality
of the network at the level of layers. STN (Jaderberg et al.
2015) and DCN (Dai et al. 2017) propose a new mapping
function for convolutional operation and improve the abil-
ity of the network to model deformed objects. The series of
InceptionNets (Ioffe and Szegedy 2015) continually explore
the effects of different convolutional kernels to improve the
capability of CNNs. These modules need to stack layers to
model the relationship of disjoint regions, which will cause
inefficiency of global perception and reasoning. Given our
proposed approach, the weakness can be relieved and the
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Figure 2: The overview of our approach. In regional feature aggregation, we first split the input tensor into several raw regions
and then aggregate them into a uniform shape with better alignment. In regional relationship exploration, we design and analyze
the effects of various relationship building methods to produce a relationship matrix. Finally, we perform global reasoning on
the regional relationships and distribute the relationship to pixels according to the local regional features.

performance of these networks will be boosted.

Approach

The overview of our approach is shown in Fig. 2, which
can be split into three parts, regional feature aggregation,
regional relationship exploration, and regional relationship
distribution. By applying regional feature aggregation, we
can gather the regional features into a uniform shape with
better alignment. Then, the relationship exploration method
is performed and we can obtain a regional relationship ma-
trix. Finally, we perform global reasoning and distribute the
relationship into every pixel.

Regional Feature Aggregation

To generate regions, we first split the whole input into sev-
eral parts at spatial space with various scales. For one scale
of region Ki with the shape of {Hi,Wi} and input feature
map X ∈ R

C×T×H×W (C denotes the channel dimension,
H denotes height dimension, W denotes width dimension,
T denotes temporal dimension, the dimension of T should
be 1 for image), we formulate the process as:

XKi = ρ(X,Ki) ∈ R
T× H

Hi
× W

Wi
×C×HiWi . (1)

For the scale Ki, we can finally split the input into total
T HW

HiWi
regions and each region has a feature tensor XKi

j ∈
R

C×HiWi where j is its index in the resulted regions. We
union all the regions to form a region set XK =

⋃
∀j X

Kj

and let XK
i denote the i-th region in the set.

This method is easily implemented and widely adopted
in feature extraction methods (Girshick 2015; Lowe 2004;
Ojala, Pietikäinen, and Harwood 1994), but it has two dis-
advantages. First, the shape of the produced region varies

depending on the scale Ki, and the inconstancy of shapes
makes the calculation of the relationship between regions
complicated. Average pooling, max pooling or RoI pooling
(He et al. 2015; Girshick 2015) can regular these regions
into same shape, but the spatial information contained in re-
gions will be damaged and cannot be restored easily. Sec-
ond, these handcrafted regions may not be aligned well to
the objects contained in the input. Learning the offsets of
the regional location directly is difficult and will cause frac-
tional regional coordinates, which will hamper the extraction
of the regional feature. To overcome the above difficulties,
we design a special aggregation function to gather regional
features. Compared with previous methods which extract re-
gional feature after moving regional position, we first extract
regional features and then implicitly move the regions by ex-
changing information with their adjacent regions to achieve
better alignment.

For a region XK
i , the formulation of aggregation function

can be described as:

Ai = μ(XK
i ;Wμ)� ν(XK

i ;Wν)
T . (2)

In Eq.2, μ with parameter Wμ and ν with parameter Wν

compact regional information, � denotes matrix multiplica-
tion. After reshaping, the output Ai can be represented as
a feature vector whose length is denoted as M and is con-
trolled by μ and ν. Therefore, we aggregate the multi-scale
regional feature into a uniform shape. If we set the μ and ν
to identity maps, the XK

i can be recovered by matrix mul-
tiplication when it is full rank. Therefore,compared to the
previous pooling operations, our method can reserve more
spatial information.

To solve the problem of misalignment, we exchange the
contents of a region with its neighbors which is called refine
operation. We assume that the Ai is at the {x, y} position
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(a) (b)

Figure 3: Illustration of exchanging content of R(x, y) with
its neighbors. In 3a, the blue and orange nodes denote the
regional features and the red node is the output of bilinear
interpolation. We achieve the movement of regions in spa-
tial space as shown in 3b by exchanging the regional feature
values with its neighbors as shown in a.

in the spatial space and is denoted as R(x, y), so the co-
ordinates of its neighbors and its own can be described as
C(x, y) = {(x− 1, y − 1), (x− 1, y), · · · , (x+ 1, y + 1)}.
We learn a pair of offset parameters δx, δy and an amplitude
parameter m from R(x, y):

δx, δy,m = η(R(x, y);Wη), (3)

then we exchange its content with its neighbors via bilinear
interpolation:

R(x+ δx, y + δy) = m ∗
∑

q∈C(x,y)
B(q, δ) ·R(q), (4)

where B(q, δ) = g(qx, x + δx) · g(qy, y + δy), g(a, b) =
max(0, 1 − |a − b|). As shown in Fig. 3, the learnable pa-
rameters δx and δy can be seen as the direction in which
the region is to be moved, and the m can be regarded as the
weight of the region when the information is exchanged. We
uniform the δx, δy into range (-1.0,1.0) and uniform m into
range(0.0,1.0) to make sure that the region always exchange
information with its neighbors.

Consequently, we aggregate the regional feature into a
concise and unified representation with better alignment. In
the next subsection, we will describe how to build long-
distance relationships among these regions. We concatenate
all the aggregated regional features as V ∈ R

N×M where N
denotes the total number of regions and use Vi to denote the
i-th aggregated regional feature vector.

Regional Relationship Exploration

As mentioned above, it is the relationship between regions
that gives the visual data a rich meaning. Therefore, the
method of building long-distance regional relationships is a
very significant component in our approach. Regions usually
have more complicated semantics than pixels, so the capa-
bility of regional relationship exploration method affects the
performance of global reasoning seriously. In this subsec-
tion, we design three regional relationship exploration mech-
anisms to sufficiently explore the relationships, providing a

comprehensive description and insightful analysis for these
methods which includes bilinear pooling, graph convolution
network and attention.
Bilinear Pooling. Bilinear pooling (BP ) is adopted in fine-
grained classification taks (Lin, Roy Chowdhury, and Maji
2015) and then it has been modified and used in NonLocal-
Net (Wang et al. 2018) to model non-local relationships. For
input X ∈ R

N×M , the modified bilinear pooling that used
for capturing long-distance relationship can be formulated
as:

R = X �X� ∈ R
N×N . (5)

The output R is a two-dimensional matrix and the (i, j)-th
element in the matrix can be seen as the relation between the
i-th region and the j-th region. Following NonLocalNet net
(Wang et al. 2018), we apply two convolution layers on V
receptively and then use bilinear pooling on their outputs to
produce relationship matrix R:

R = Conv(V )� Conv(V )T ∈ R
N×N . (6)

Graph Convolution Network. Graph convolution networks
(GCN ) have shown effecient ability of relationships reason-
ing in mutliply domains. It can take unregular data as input
and learn the weight of nodes and edges through training.
For a graph G with N nodes and its adjacency martix Dg ,
a single-layer GCN (Kipf and Welling 2017) can be defined
as:

Z = GUWg = ((I −Dg)U)Wg, (7)
where I is the identity matrix, U denotes information dif-
fusion of nodes and Wg denotes a linear transformation for
updating the state of nodes.

The GCN can be trained with gradient decent and we use
the regional features as basic nodes during training. Follow-
ing GloRe-Net (Chen et al. 2019), we adopt two 1D convo-
lution layers to implement the graph convolution:

R = Conv1D
(
Conv1D(V T )T

) ∈ R
N×N . (8)

The convolution layers are applied on different dimensions
to perform node-wise learning and channel-wise learning re-
ceptively. After the node-wise learning, each node has the
information of other nodes and we modify the second con-
volution layer which expand the dimension of node feature
from M to N to present the relation with other nodes.
Attention. Attention (Att) plays an important role in hu-
man perception. It helps humans selectively focus on salient
parts in a sequence of glimpses instead of processing the
whole scene, which can benefit us to capture visual structure
better. Many researchers incorporate the attention mecha-
nism into CNNs to imporve performance. Inspired by SENet
(Hu, Shen, and Sun 2018), for the input V , we design a
method which sequentially infers a 1D channel attention
map Lc(V

T ) ∈ R
1×M and a 1D regional attention map

Ls(V ) ∈ R
N×1:

Z = Ls

((
Lc(V

T )⊗ V
)T)⊗ V ∈ R

N×M , (9)

where ⊗ denotes element-wise multiplication. Each atten-
tion function is composed by two 1D convolution layers and
one 1D max-pooling layer:

L(V )c/s = Conv1D (Conv1D(Pooling(V ))) . (10)
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Figure 4: Illustration of global reasoning on regional fea-
tures. For a descriptor ri, it describes the degree of asso-
ciation of each region with the i-th region. By adding the
weights of the regional features, the information contained
in each region is fused and applied to the i-th region.

Distribution of Regional Relationship

Compared with previous global reasoning methods, the pro-
duced relationship of our approach is about regions which
can not be applied on pixels directly. Therefore, we first dis-
tribute the produced relationship into each region to perform
global reasoning, so that the region can realize the role it
played in the input. Then, for each region, we distribute its
feature into pixels within it depending on local descriptors.

For the regional features V ∈ R
N×M and regional rela-

tionships R ∈ R
N×N , we first distribute relationship infor-

mation into regions:

Z = R� V ∈ R
N×M , (11)

where R is the relationship matrix produced in the last step
and Z is the regional features which have already involoved
other regional information. Look closer to see the details that
how the global reasoning is performed. As we mentioned
above, the i-th row ri in R is a descriptor which indicates
the influence of all regions on i-th regions. As shown in Fig.
4, when the descriptor is applied on the regional features, it
gathers all regional information into one feature vector with
different weights:

zi = ri · V =
∑
j

ri,jvi ∈ R
1×M . (12)

Therefore, every region has an impact on the i-th region and
the impacts of high related regions are deeper. Note that this
method is not applied to the attention method, in which the
global reasoning has already been performed when the at-
tention is applied to the region features.

Then we describe how to distribute the i-th regional fea-
ture zi into every pixel within it, which is called elemen-
tal distribution. For one region, we first learn a group of
local descriptors from its original feature tensor XK

i ∈
R

M×Hk×Wk (k denotes the scale that produces this region).
According to these descriptors, we distribute the regional in-
formation into pixels within it:

Yi = zi · ξ(XK
i ;Wξ) ∈ R

C×Hk×Wk , (13)

where ξ denotes the process of learning descriptors. Two dis-
joint regions are associated together through the regional re-
lationship and the information contained in the regions is
distributed into every pixels within regions. Therefore, two
distant pixels can perceive each others. We gather all the Yis
whose XK

i are produced by the same scale, then we reshape
them into the same size as the input tensor and add them to-
gether. After a BatchNorm layer (Ioffe and Szegedy 2015),
we add them with the input tensor to construct a residual
connection.

Experiments

We first describe the benchmark datasets and implementa-
tion details. Then we conduct extensive ablation studies to
illustrate the impact of different components on the perfor-
mance of our proposed ReGr module. Finally, we report our
results on different tasks and compare the performance of
our approach with the state-of-the-art approaches.

Datasets and Implementation Details

Datasets. We empirically evaluate our approach on two
challenge tasks: fine-grained classification and action recog-
nition. For fine-grained classification task, we adopt the
Birds-200-2011 (CUB) dataset (Welinder et al. 2010) as the
benchmark dataset. For action recognition task, we evalu-
ate our approach on the UCF101 (Soomro, Zamir, and Shah
2012) and Kinetics (Carreira and Zisserman 2017). For ac-
tion recognition task, all models are trained and tested on
RGB input. We report the results of UCF101 according to its
official split1 file. For Kinetics, there are about 240k train-
ing videos can be downloaded for experiments due to the
corruption of urls and we train our networks on these videos.
Baseline. For the fine-grained classification task, we use the
standard 2DResNet (He et al. 2016) as the baseline. For ac-
tion recogniton task, we use C2DResNet (Wang et al. 2018)
to conduct ablation experiments on the UCF101. We com-
bine I3DResNet (Carreira and Zisserman 2017) with our
module and evaluate it on the Kinetics dataset. Their archi-
tectures can be found in the supplementary material.
Training. We use the models pretrained on ImageNet to
initialize the weights and set the weight of BN layer in
our module to zero. A dropout layer with ratio 0.5 is in-
serted after the pooling layer to avoid overfitting. For ac-
tion recognition task, we randomly crop out 64 consecutive
frames from the full-length video and then extract 8 frames
with random interval. We resize the shorter side randomly
in [256,320] and crop random 224 × 224 pixels as input.
For fine-grained classification task, we crop a patch which is
random in [0.08 ,1.25] of the original input, then we resize
the patch to 448×448. We adopt SGD as the optimizer with
a weight decay of 0.0001 and momentum of 0.9. The strat-
egy of gradual warmup is used during training. We train our
models for 100 epochs in total, starting with a learning rate
of 0.01 and reducing it by a factor of 10 at 30th, 60th and
80th epochs, receptively.
Testing. For fine-grained classification task, we resize the
shorter side of the input to 512 and take a center crop of
448×448 pixels as the input. For action recognition task, we
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Table 1: Results of different scales on CUB200. Scale (4,4)
achieves the better results than scale (7,7). When we com-
bine the scale (4,4) and scale (7,7), the accuracy is improved,
but too many scales will cause the accuracy to drop.

Model (1,1) (4,4) (7,7) (4,7) (7,4) Acc. Top1
Res50 84.61%

Res50
+

ReGr

� 85.40%
� 85.69%

� 85.55%
� � 86.19%
� � � � 85.47%

Table 2: Results of different scales on UCF101 dataset. We
use smaller scales than fine-grained classification task due
to the difference of input size.

Model (1,1) (3,3) (5,5) (3,5) (5,3) Acc. Top1
Res50 82.80%

Res50
+

ReGr

� 83.67%
� 83.79%

� 83.50%
� � 83.98%
� � � � 83.95%

use spatially fully convolutional inference (Simonyan and
Zisserman 2015) to report the video-level results. We evenly
sample 10 clips from the whole video and resize its shorter
side to 256. Multi-crop is used to cover the entire spatial
space along the longer side. We average the softmax scores
of all clips as the prediction.

Ablation Studies

To study the effects of each parts of our approach on the
results, we conduct ablation experiments for regional scales,
relationship exploration methods and types of architectures.
Regional Scales. We first investigate the impact of regional
scales. We use (a, b) to represent the region of a × b size
on the feature map and the results is present in Table 2. The
scale (4, 4) can bring more improvement and (1, 1) and (7,
7). When there are many scales, the performance is further
improved, but excessive regions cause the performance to
decrease. The special scale (1, 1) denotes that to build rela-
tionship between pixels which is commonly used in other
methods, and the lower accuracy indicates that the long-
distance relationship through the pixels is worse than that
built through the regions. In addition, all the scales have the
same amount of parameters and the difference in results is
directly due to regional scale changes.
Relationship Exploration Methods. We investigate the ef-
fect of three relationship exploration methods proposed in
Section. Table 3 summaries the results. We can observe
that Bilinear Pooling is more suitable for learning the long-
distance relationship than other two methods. The Attention
method has a small amount of calculation due to the Pool op-
eration and it achieves good results in fine-grained classifi-
cation task. For the GCN, we assume that the fully connected

Table 3: Results of different global reasoning methods. Bi-
linear pooling can obtain best performance on both CUB200
and UCF101 than the other global reasoning methods.

Model Dataset + ReGr
BP GCN Att

Res50 CUB200 86.19% 85.87% 85.92%
UCF101 83.98% 83.10% 82.81%

Table 4: Results of different module numbers. Five modules
can obtain best performance on both CUB200 and UCF101,
which shows that more modules can bring more perfor-
mance gains.

Model Num. Dataset
CUB200 UCF101

Res50

None 84.61% / 96.36% 82.80% / 95.25%
+1 ReGr 86.19% / 97.05% 83.98% / 96.94%
+2 ReGr 86.00% / 96.98% 84.13% / 96.74%
+5 ReGr 86.31% / 96.86% 84.28% / 97.12%

graph structure may limit its reasoning ability and building
a better graph structure may promote its performance.
Module Number. We add 1, 2 and 5 units in ResNet50 re-
ceptively and study the impression of module numbers on
performance. The result shown in Table 4 demonstrates that
adding more modules can improve the results.
Aggregation Method. For traditional pooling methods, av-
erage pool and max pool, we conduct experiments on
the CUB200 dataset. Our proposed aggregation method
(86.19%) can surpass them by 1.02% (85.17%) and 1.12%
(85.07%) receptively with the same settings. The results
show the effectiveness of our aggregation method.

Results

In this subsection, we compare our approach with state-of-
the-art global reasoning methods, e.g. NL Unit (Wang et al.
2018), CGNL Unit (Yue et al. 2018), GloRe Unit (Chen et
al. 2019). The results are shown in Table 5 and Table 6.
Our approach can surpasses other global reasoning methods
on both CUB200 dataset and UCF101 dataset. And the re-
sult also shows that the refine operation can benefit the pro-
cess of building regional relationships. We add five ReGr

Table 5: Results of different global reasoning units on the
CUB200 dataset. Our approach surpasses other approaches
even without the refining operations. The result is the aver-
age of multiple experiments.

Unit Acc. Top1 Acc. Top5

Res50

None 84.61% 96.36%
NL (CVPR18) 85.45% 96.36%

CGNL (NeurlIPS18) 85.12% 96.41%
GloRe (CVPR19) 85.78% 96.27%

ReGr w/o refine (our) 85.88% 96.65%
ReGr w/ refine (our) 86.19% 97.05%
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(a) (b)

(c) (d)

Figure 5: Visualization analysis. (a) and (c) show the high related regions. The regions pointed by the arrows have strong rela-
tionship with the region where the arrow starts. For birds, the high related regions locate at their heads, claws and wings which
are usually the most recognizable places. For videos, the high related regions usually have obvious objects and discriminated
behaviors. The heatmap shown in (b) and (d) present the feature maps before and after our module. After our module, high
responses are gathered in rich semantic regions and some interference information is eliminated.

Table 6: Results of different global reasoning methods on the
UCF101 dataset. Without refine operation, the result of our
module is worse than other global reasoning methods and by
adopting the refine operation, the perfomance of our module
is boosted with a clear improvement.

Unit Acc. Top1 Acc. Top5

Res50

None 82.80% 95.25%
NL (CVPR18) 83.40% 96.19%

CGNL (NeurlIPS18) 83.33% 96.00%
GloRe (CVPR19) 83.30% 96.78%

ReGr w/o refine (our) 83.12% 95.89%
ReGr w/ refine (our) 83.98% 96.94%

modules into I3DResNet (Carreira and Zisserman 2017) to
turn it as ReGrNet and train ReGrNet on kinetics to see
its performance on large datasets. Table 7 shows the re-
sults on Kinetics dataset. Compared with other methods, our
approach can produce comparable result with the state of
the art methods, showing the effectiveness of our approach
on large datasets. We compare our approach with multiple
state-of-the-art mehtods, e.g., I3D-RGB (Carreira and Zis-
serman 2017), R(2+1)D-RGB (Tran et al. 2018), S3D-G
(Xie et al. 2018), NL-Nets (Wang et al. 2018) and GloRe-
Nets (Chen et al. 2019).

To further understand the effects of our approach, the
visualization analysis is shown in Fig. 5. We first present
the high related regions according the produced relationship
martix and we can see that the high related regions are gath-
ered at the most recognizable places, e.g. the heads, claws
and wings of birds and the key points of human. Then we

Table 7: Results on Kinetics dataset. For fair comparison,
we reproduce the result of NL-Net which is the standard
method to model relationship between pixels. Our approach
surpasses it on both clip-level and video-level.

Method Clip Top-1 Video Top-1
I3D-RGB (CVPR17) - 71.1%

R(2+1)D-RGB (CVPR18) - 72.0%
S3D-G (ECCV18) - 74.7%
NL-Net (CVPR18) 67.02% 74.47%

ReGr-Net(Ours) 67.57% 75.02%

show the feature map before and after our module, and we
can see that the high responses are gathered in semantic re-
gions, showing the effectiveness of our approach.

Conclusion

We have introduced an approach named ReGr that can en-
able the current CNN architectures to perform region-based
global reasoning. It extracts regional features into a con-
cise and unified representation with better alignment auto-
matically through a well-designed aggregation process, ex-
plores regional relationships effectively by applying rela-
tionship exploration methods, and distributes the relation-
ship to make it end-to-end. Ablation experiments illustrate
that incorporating regional relationships into global reason-
ing can improve its performance. Extensive experiments
show that our model produces competitive or better results
on various benchmark datasets than other methods, showing
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the effectiveness of our approach.
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