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Abstract

Recently, end-to-end text spotting that aims to detect and
recognize text from cluttered images simultaneously has re-
ceived particularly growing interest in computer vision. Dif-
ferent from the existing approaches that formulate text detec-
tion as bounding box extraction or instance segmentation, we
localize a set of points on the boundary of each text instance.
With the representation of such boundary points, we estab-
lish a simple yet effective scheme for end-to-end text spot-
ting, which can read the text of arbitrary shapes. Experiments
on three challenging datasets, including ICDAR2015, Total-
Text and COCO-Text demonstrate that the proposed method
consistently surpasses the state-of-the-art in both scene text
detection and end-to-end text recognition tasks.

Introduction

Automatic reading text from natural images has attracted
great attention due to its wide practical applications such
as office automation, network content security, intelligent
transportation system (Zhu et al. 2018; Rong, Yi, and Tian
2016), geo-location, and visual search (Bai et al. 2018).

In the past decade, scene text detection and recogni-
tion are extensively studied as two separated sub-tasks of
a reading system, but in fact, text detection and recogni-
tion are highly relevant and complementary to each other.
This assumption is confirmed by the recent end-to-end text
spotting methods (Jaderberg et al. 2016; Liao et al. 2017;
Liu et al. 2018; Li, Wang, and Shen 2017; He et al. 2018;
Busta et al. 2017; Lyu et al. 2018a) that combine the de-
tection and recognition stages with an end-to-end trainable
neural network. These spotting methods follow a similar
pipeline. First, the horizontal/oriented bounding box of each
text instance is detected. Then, the image patches or CNN
features inside the detected bounding boxes are cropped and
fed to a sequence recognition model. Benefiting from fea-
ture sharing and joint optimization, the performances of de-
tection and end-to-end recognition can be enhanced at the
same time.
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Figure 1: Illustrations of two kinds of methods for text re-
gion representation. (a) An oriented rectangle box is used
to represent the text region and cropped as (b); (c) A set of
boundary points are used to represent the text region, and it
can be transformed into a horizontal region like (d).

Despite promising progress, most existing spotting meth-
ods (Liao et al. 2017; Liu et al. 2018; Li, Wang, and Shen
2017; He et al. 2018; Busta et al. 2017; Jaderberg et al.
2016) suffer from dealing with text of irregular shapes, such
as curve text. For a general end-to-end OCR system, it is
inevitable to handle the text with arbitrary shapes, as curve
text and other types of irregular text are very common in our
real-world. In (Liu et al. 2018; Li, Wang, and Shen 2017;
He et al. 2018; Busta et al. 2017; Liu and Jin 2017;
He et al. 2017), the detected bounding box of each text
instance is represented with a rectangle, which only can
tightly cover straight text instances. Rectangular boxes have
high limitations in describing irregular text for an end-to-
end text spotter since it more or less contains background
information which brings difficulties to the text recognition
stage, as shown in Fig. 1(a). Recently, an end-to-end OCR
model (Lyu et al. 2018a) for spotting arbitrary-shaped text is
presented based on Mask RCNN, which tackles text detec-
tion and recognition via instance segmentation and achieved
state-of-the-art result. However, this method needs extra
character-level annotations for training, and its processes of
instance segmentation brings more computational burden.

In this paper, we propose an end-to-end trainable network
for spotting arbitrary-shaped text without character-level an-
notations. Instead of detecting a rectangle bounding box, our
detection is performed by localizing the boundary of a text
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Figure 2: An overview of the proposed method. The Oriented Rectangular Box Detector is used to predict oriented rectangular
box. The Boundary Point Detection Network inputs each rotated Region of Interest (RoI) feature and predicts a set of boundary
points. Finally, the Arbitrary RoIAlign is used to get rectified features for attention-based text recognizer to predict text labels.
Note that, for all figures, we use the input image for illustration, but operations are actually conducted on feature maps.

instance. More specifically, the aim of our detection is to
predict a set of boundary points, which are more flexible for
describing various shapes of scene text, often embodied in
two dimensional space, as shown in Fig. 1(c). The usage of
boundary points has three advantages for building an end-to-
end OCR system: 1) CNN features of irregular text region
can be accurately acquired with boundary points, resulting
in effectively eliminating the disturb of background noise to
the subsequent recognition; 2) With boundary points, irreg-
ular text can be easily transformed or rectified into a regular
one (i.e. horizontal text), as described in Fig. 1(d), which
is realistic input for a sequence recognition model. Similar
to a recent model for irregular text recognition (Shi et al.
2019), such a transformation operation can be simply im-
plemented and differentiable in CNN; 3) The position of
boundary points can be easily refined through back prop-
agation when training a recognition model, fully enjoying
the improvement of detection performance from recognition
stage. Therefore, boundary points appear to be a reasonable
representation that can smoothly and effectively bridge text
detection and recognition modules.

However, directly detecting boundary points of text is
challenging due to the diversity of text shape and scale. To
effectively extract text boundary points, we adopt a coarse-
to-fine strategy: First, the minimum oriented rectangular box
of each text instance is detected with a two-stage CNN de-
tector, as shown in in Fig. 1(a); Then, the boundary point
prediction is performed in the oriented rectangular box. Our
experiments have validated the effectiveness of the proposed
boundary point detection. Additionally, benefiting from the
representation of boundary points, the proposed method
achieves state-of-the-art performance in both text detection
and text spotting on several benchmark datasets.

The contributions in this work are two-fold: 1) We recom-
mend the representation of boundary points for end-to-end
text spotting, which is more suitable than a rectangular box
or segmentation mask for connecting detection and recogni-

tion modules. 2) We design a novel end-to-end trainable net-
work for joint optimizing boundary point detection and text
recognition, which can read both straight and curve text.

Related Work

Scene text reading has attracted great attention in computer
vision. Plenty of excellent works have appeared in the past
decade. Due to the page limit, we can not detail the works
about scene text detection and recognition which are re-
ferred to (Long, He, and Yao 2018; Zhu, Yao, and Bai 2016).
Here, related works about scene text spotting are introduced.

Methods on text spotting could be roughly divided into
two categories according to the representation of text region:
rectangular box based methods and segmentation based
methods. In the first category, previous methods (Liao et
al. 2017; Jaderberg et al. 2016) train text detector and rec-
ognizer separately. And image patches are cropped based
on rectangular boxes for recognition. The separate pipeline
results in unsatisfactory performance on both tasks, since
the relationship within them is ignored. (Liu et al. 2018;
Li, Wang, and Shen 2017; He et al. 2018; Busta et al.
2017) share a common idea: text region features are ex-
tracted for subsequent recognizer. In (Li, Wang, and Shen
2017), text region is formulated as horizontal rectangular
box, which can only support horizontal text instance. Meth-
ods in (Liu et al. 2018; He et al. 2018; Busta et al. 2017;
Sun et al. 2018) extract text features in the minimum ori-
ented rectangular box, which can tackle oriented text. But
those works suffer from handling curved text. As the only
segmentation based method (Lyu et al. 2018a), each text
instance and corresponding characters are segmented. Al-
though curved text could be represented by the segmenta-
tion map, extra character-level annotations are required. In
addition, the trained model ignores contextual information
between characters of a word, which will affect the recogni-
tion performance.

In order to read arbitrary-shaped text in an end-to-end
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Figure 3: (a) Regression from the axis-aligned box of RPN to the oriented rectangular box. (b) The minimum rectangular
box. (c) Regression from a set of default points which are uniformly distributed at the upper and lower sides of the minimum
rectangular box to boundary points. (d) Aligning boundary points to the original image.

manner, a set of boundary points are proposed to describe
text regions. Although boundary points are also used for
text region representation in (Zhang et al. 2019; Zhu and
Du 2018), a complex post processing is required to gener-
ate them, which is not differentiable for training. In spite of
predicting boundary points directly without post processing
in (Wang et al. 2019), a recurrent neural network based net-
work is time consuming for end-to-end task. Compared to
(Liu et al. 2018; Li, Wang, and Shen 2017; He et al. 2018),
the novel representation is more flexible and accurate to rep-
resent text with arbitrary shapes than rectangle box. Com-
pared to (Lyu et al. 2018a), such a description is free from
character-level annotations. More details about the proposed
method will be introduced in the following sections.

Methodology

As illustrated in Fig. 2, our pipeline is composed of three
parts: the oriented rectangular box detector, the boundary
point detection network, and the recognition network. As
for the oriented rectangular box detector, we first apply a
RPN (Ren et al. 2015), where the backbone is FPN (Lin
et al. 2017) equipped with ResNet-50 (He et al. 2016), to
generate horizontal text proposals. Then, an oriented rect-
angular box of each proposal is generated via predicting its
center point, height, width, and orientation. Next, the bound-
ary points of each oriented rectangular box are regressed by
the boundary point detection network (BPDN). Finally, with
the predicted boundary points, the feature maps are rectified
as regular ones for the subsequent text recognizer.

As shown in Fig. 3(a), the boundary points can be pre-
dicted for each horizontal proposal by BPDN, but we ob-
serve that BPDN suffers from text instances of various direc-
tions and shapes since such cases contain more background
noise and have stronger deformation. To alleviate this effect,
an oriented rectangular box of each proposal is predicted,
with which the feature maps are transformed into horizontal
ones via RotatedRoIAlign (Huang et al. 2018), as illustrated
in Fig. 3(b). Concretely, we follow the method proposed in
(Ma et al. 2018) to obtain the oriented rectangular box by

predicting its center point, height, width, and orientation.
Here, a module composed of three stacked fully connected
layers is designed. More details about detecting the oriented
rectangle are referred to Fig. 3(a).

Boundary Point Detection Network

BPDN consists of four stacked 3×3 convolutional layers and
one fully connected layer. Inspired by RPN where propos-
als are regressed based on default anchors, a set of default
points are predefined for boundary points to refer, as shown
in Fig. 3(c). Specifically, K points are equidistantly sampled
on each long side of text instance as target boundary points.
And corresponding default points are evenly placed along
long sides of the minimum rectangular box. Instead of di-
rectly predicting the coordinates of boundary points, offsets
to its associated default points are first generated. The mod-
ule predicts a 4K-d vector which is coordinate offsets (2-d)
of 2K boundary points. Given the coordinate offsets (Δx′,
Δy′), the boundary point (x′

b, y
′
b) can be obtained from

x′
b = x′

d + w0Δx′

y′b = y′d + h0Δy′,
(1)

where (x′
d, y

′
d) represents default point. w0 and h0 are the

width and height of the minimum rectangular box.
To be consistent with original features, we align the

boundary points (x′
b, y

′
b) in transformed horizontal feature

maps to the original ones (xb, yb) using[
xb

yb
1

]
= M−1

[
x′
b

y′b
1

]
, (2)

M =

[
swcosα −shsinα −swx

′
ccosα+ shy

′
csinα

swsinα shcosα −swx
′
csinα− shy

′
ccosα

0 0 1

]
,

(3)
(x′

c, y
′
c) is the center point of the oriented rectangle. sw and

sh equal to wo/w
′ and ho/h

′ respectively. And α is the an-
gle from the positive direction of the x-axis to the direction
parallel to the long side of the oriented rectangle.
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Type Configurations Out
[size,stride,padding] Channels

Encoder

conv bn relu [3,1,1] 256
max-pool [2,1,0] 256
conv bn relu [3,1,1] 256
max-pool [2,1,(0,1)] 256
conv bn relu [3,1,1] 256
max-pool [2,1,(0,1)] 256

Decoder Att. GRU 256
FC |S|

Table 1: The architecture of the recognition branch, which
consists of three stacked convolutional layers, “Att. GRU”
which stands for attentional GRU decoder and a fully-
connection layer. |S| represents the number of decoded char-
acters. We set the number of decoded characters in our ex-
periments to 63, which corresponds to digits (0-9), English
characters (a-z/A-Z), and an end-of-sequence symbol.

Following (Shi et al. 2019), ArbitraryRoIAlign is adopted
to flatten features of text instances with arbitrary shapes.
Specifically, given the boundary points of each text in-
stance, Thin-Plate-Spline transformation (Bookstein 1989)
is adopted to rectify the features to regular ones.

Recognition Network

CRNN (Shi, Bai, and Yao 2017) is the first method to
treat text recognition as a sequence-to-sequence problem by
combining CNN and RNN in an end-to-end network. In
some latest works (Zhan and Lu 2019; Yang et al. 2019;
Luo, Jin, and Sun 2019), recognition network is a com-
mon attentional sequence-to-sequence network. The recog-
nizer predicts a character sequence from the rectified fea-
tures. The architecture of the recognition branch is given
in Tab. 1. Firstly, the rectified features are fed into encoder
to extract higher-level feature sequence F ∈ �n×C . Then
the attention-based decoder is adopted to translate F into a
symbol sequence y = (y1, ..., yT ), where T is the length of
the label sequence. At step t, the decoder predicts a charac-
ter based on the encoder output F , the internal state st−1

and the result yt−1 predicted in the last step. In the cur-
rent step, the decoder starts by computing a vector of at-
tention weights, αt, through its attention mechanism. Then,
the weighted feature gt is calculated according to

gt =
n∑

i=1

αt,iFi

αt,i = exp(et,i)/

n∑
j=1

exp(et,j)

et,j = wT tanh(Wst−1 + V Fi + b),

(4)

where w, W , V and b are trainable weights.
Taking st−1, gt and yt−1 as inputs, the RNN calculates an

output vector xt and a new state vector st via

(xt, st) = RNN(st−1, (gt, onehot(yt−1))), (5)
where (gt, onehot(yt−1)) is the concatenation of gt and the
one-hot embedding of yt−1. In our method, a GRU is used as

RNN unit. Finally, a distribution of the current-step symbol
is predicted through

p(yt) = softmax(Woxt + bo), (6)

where Wo and bo are learnable parameters.

Loss Functions

The objective function consists of four parts, which is de-
fined as follows,

L = Lrpn + Lor + Lbp + Lrecog, (7)

where Lrpn is the loss of RPN, which is identical as in (Ren
et al. 2015). Lor is the loss that regression from axis-aligned
rectangular proposal to oriented rectangular box, which is
similar as (Ma et al. 2018). Since the above losses are not
our main contributions, we do not detail them here due to
the page limit. Lbp is the loss of boundary point regression
which is calculated as Smoothed-L1 loss. The loss function
can be formulated as

Lbp =
1

2K

2K∑
i=1

(
SmoothL1(x̂

′
b,i, x

′
b,i)+

SmoothL1(ŷ
′
b,i, y

′
b,i)

)
,

(8)

where (x′
b,i, y

′
b,i) is the i-th predicted boundary point, whose

associated target boundary point is (x̂′
b,i, ŷ

′
b,i).

In the recognition network, the recognition loss can be
formulated as

Lrecog = − 1

T

T∑
t=1

log p(yt). (9)

Experiments

To confirm the effectiveness of the proposed method on
arbitrary-shaped text spotting, we conduct exhaustive exper-
iments and compare with other state-of-the-art methods on
four popular benchmarks which consist of a horizontal text
set ICDAR2013 (Karatzas et al. 2013), two oriented text sets
ICDAR2015 (Karatzas et al. 2015) and COCO-Text (Veit et
al. 2016), a curved text set TotalText (Ch’ng and Liu 2019).
The details about these datasets are as follows.

Datasets

SynthText (Gupta, Vedaldi, and Zisserman 2016) has about
800,000 images, which are generated via synthesizing en-
gine. Text instances within the images are multi-oriented,
whose annotations consist of word-level and character-level
oriented bounding boxes, as well as text sequences.

TotalText contains horizontal, multi-oriented, and curved
text in images. The dataset contains 1,255 training images
and 300 test images. All images are annotated with polygons
and transcriptions in word-level.

ICDAR2015 focuses on multi-oriented scene text detec-
tion and recognition in natural images. There are 1,000 train-
ing images and 500 test images. Word-level quadrangles and
transcriptions of each image are given.

ICDAR2013 is a dataset which focuses on the horizontal
scene text detection and recognition in natural images. The
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Algorithm 1 Generate Target Boundary Points
Require:

Points on each long side: P = {p0, p1, ..., pN−1}.
The excepted number of sampled points: K.

Ensure:
The generated target boundary points:
Q = {q0, q1, ..., qK−1}.

1: distance[0] =0; len[0] = 0;
2: for i=0; i < N-1; i++ do
3: // calculate distance between two adjacent points
4: distance[i+ 1] = distance(pi, pi+1);
5: end for
6: for j=1; j<N; j++ do
7: len[j] = len[j − 1] + distance[j];
8: end for
9: average distance = 1

K−1 ∗∑ distance[i];
10: for i=0; i < K; i++ do
11: cur pos = average distance ∗ i;
12: for j=0; j < N-1; j++ do
13: if len[j] � cur pos < len[j + 1] then

14: qi =
(pj+1−pj)∗(cur pos−len[j])

len[j+1]−len[j] + pj ;
15: end if
16: end for
17: end for

dataset consists of 229 images in the training set and 233
images in the test set. Similar to SynthText, the bounding
box and the transcription for each word-level and character-
level text instance are also provided.

COCO-Text contains 63,686 images. Though it is eval-
uated with axis-aligned bounding boxes, the text instances
in the images are distributed in various orientations. Owing
to no lexicon provided in the evaluation, the text must be
recognized without any prior knowledge.

Implementation Details

Different from previous text spotting methods (Liu et al.
2018; Li, Wang, and Shen 2017) which use alternating train-
ing strategy, our boundary point detector and text recognizer
could be trained in an end-to-end manner. The whole train-
ing process contains two steps: first, we pretrain the network
on SynthText, then real data is adopted to finetune the model.

During pretraining, the mini-batch is set to 16, and the
longer sides of input images are resized to 800 while keep-
ing the aspect ratio. The maximum number of proposals in
each image on the recognition branch is set to 16. In the fine-
tuning stage, for the data augmentation, we randomly crop
a patch whose edges range from 210 to 1100 while keeping
all the text instance not cropped and resize the patch to (640,
640). Finally, the resized patch is randomly rotated 90◦ with
a probability of 0.2. We collect the training images from IC-
DAR2013, ICDAR2015, and TotalText to finetune the model
with the mini-batch set to 16. We optimize our model using
SGD with a weight decay of 0.0001 and momentum of 0.9.
We train our model for 270k iterations for pretraining, with
an initial learning rate of 0.01, and decayed to a tenth at
the 100k and the 200k iteration. In the finetuning stage, the

Method Detection E2E
P R F None Full

TotalText 40.0 33.0 36.0 - -(Ch’ng and Liu 2019)
TextBoxes 62.1 45.5 52.5 36.3 48.9(Liao et al. 2017)

MaskTextSpotter 87.0 80.2 83.4 52.9 71.8(Lyu et al. 2018a)
Boundary 85.2 83.5 84.3 - -(det only)
Boundary

88.9 85.0 87.0 65.0 76.1(end-to-end)

Table 2: Results on TotalText. “P”, “R” and “F” mean Pre-
cision, Recall and F-measure in detection task respectively.
“E2E” means end-to-end, “None” means recognition with-
out any lexicon, “Full” lexicon contains all words in test set.
Following tables follow the same usage.

initial learning rate is set to 0.001 and then is decreased to
0.0001 and 0.00001 at the 80k and 120k iteration. The fine-
tuning process is terminated at the 140k iteration. We im-
plement our method in Pytorch and conduct all experiments
on a regular workstation with Nvidia Titan Xp GPUs. The
model is trained in parallel and evaluated on a single GPU.

Label Generation During training, we need equidistantly
spaced boundary points to train BPDN. However, only cor-
ner points are given in the groundtruth. So we need to sample
points on the longer sides of text boundary using Algorithm
1. In our experiments, K is set to 7.

Curved Text

The proposed method focuses on arbitrary-shaped text spot-
ting. To verify its effectiveness, we first conduct experiments
on TotalText. During testing, the longer sides of images are
resized to 1,100. For a fair comparison, we follow the eval-
uation protocols in the latest method (Lyu et al. 2018a).

The performance on TotalText is given in Tab. 2. Our
method achieves state-of-the-art performance on both detec-
tion and end-to-end recognition. Specifically, the proposed
method outperforms MaskTextSpotter with improvements
of 3.6% and 12.1% respectively on detection and end-to-end
recognition without lexicon. The improvement over other
methods gives credit to the following four points: 1) Com-
pared with MaskTextSpotter, the attention-based decoder in
our recognition module can capture the relationship between
characters of a word, which is helpful for the recognition
task. However, MaskTextSpotter predicts the characters sep-
arately, ignoring the context within them. 2) Compared with
other methods, before being fed into the text recognizer, text
with arbitrary shapes is rectified to a regular one, which at-
tenuates text irregularities and therefore decreases the recog-
nition difficulty. 3) Due to the better recognition results, the
detection results could be implicitly improved through the
shared backbone features. 4) Using boundary points to de-
scribe the shapes of text instances is more flexible and effi-
cient to locate the text instances.
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ICDAR2015 ICDAR2013
Method Detection E2E Detection E2E

P R F S W G P R F S W G
DeepTextSpotter (Busta et al. 2017) - - - 54.0 51.0 47.0 - - - 89.0 86.0 77.0

TextBoxes++ (Liao, Shi, and Bai 2018) 87.2 76.7 81.7 73.3 65.9 51.9 88.0 74.0 81.0 93.0 92.0 85.0
He* et al. (He et al. 2018) 87.0 86.0 87.0 82.0 77.0 63.0 91.0 89.0 90.0 91.0 89.0 86.0
FOTS* (Liu et al. 2018) 91.0 85.2 88.0 81.1 75.9 60.8 - - 88.3 88.8 87.1 80.8

MaskTextSpotter (Lyu et al. 2018a) 91.6 81.0 86.0 79.3 73.0 62.4 95.0 88.6 91.7 92.2 91.1 86.5

Boundary (det only) 88.1 82.2 85.0 - - - 89.3 85.2 87.2 - - -
Boundary (end-to-end) 89.8 87.5 88.6 79.7 75.2 64.1 93.1 87.3 90.1 88.2 87.7 84.1

Table 3: Results on ICDAR2015 and ICDAR2013 (DetEval). “S”, “W” and “G” mean recognition with strong, weak and generic
lexicon respectively. “*” denotes that training dataset of MLT2017 is used for training. Following tables follow the same usage.

Method Detection E2E
P R F P R F

Baseline A**
83.8 23.3 36.5 68.4 28.3 40.0(Veit et al. 2016)

Baseline B**
59.7 10.7 19.1 9.97 54.5 16.9(Veit et al. 2016)

Baseline C** 18.6 4.7 7.5 1.7 4.2 2.4(Veit et al. 2016)
DeepTextSpotter - - - 31.4 16.8 21.9(Busta et al. 2017)

Boundary 59.0 67.7 63.0 55.7 32.8 41.3(end-to-end)

Table 4: Results on COCO-Text. Lexicon is not used for
end-to-end testing. “MS” means testing with multiple scales.
Methods with “**” are evaluated using V1.1 annotations.

Oriented Text

We also conduct experiments on ICDAR2015 to confirm the
superiority of the proposed method on the oriented scene
text. Images are resized to 1080×1920 before being fed into
the framework. As shown in Tab. 3, our method slightly
outperforms previous methods in detection and end-to-end
recognition with a general lexicon by 0.6% and 1.1% re-
spectively. However, besides SynthText, extra 9,000 im-
ages in MLT2017 are used for training by (Liu et al. 2018;
He et al. 2018). For a fair comparison, we follow the
same settings with MaskTextSpotter, in which the images
of MLT2017 are not used. We can observe that our method
gets respectively 2.6% and 1.7% improvements in detection
and end-to-end tasks with general lexicon.

Horizontal Text

Besides promising performances have been achieved on
curved and oriented benchmarks, we also evaluate the pro-
posed method on horizontal scene text. The longer sides of
input images are resized to 1280 while keeping the aspect
ratio of the images. As shown in Tab. 3, our method gets
comparable performance on both tasks. However, character-
level annotations are required for MaskTextSpotter. Addi-
tionly, extra 9,000 images from MLT2017 are added to im-
prove the performance by FOTS and (He et al. 2018).

Datasets Proposal Detection E2E
P R F None

ICDAR2015 axis-aligned 88.2 87.5 87.8 63.1
oriented 89.8 87.5 88.6 64.1

TotalText axis-aligned 87.3 84.3 85.8 63.8
oriented 88.9 85.0 87.0 65.0

Table 5: Comparison of axis-aligned proposal and oriented
rectangular proposal. “axis-aligned” means that axis-aligned
proposal is used to predict boundary points, “oriented”
means that oriented rectangular proposal is used.

Generalization Evaluation

We evaluate the generalization of our method on COCO-
Text. Following (Lyu et al. 2018b), our model is not trained
with the training set of COCO-Text. The detection task in
Tab. 4 is evaluated with the annotations V1.4 for a fair com-
parison with previous methods, while the end-to-end task
is evaluated with the newest annotations V2.0. The longer
sides of input images are resized to 1280 while keeping the
aspect ratio of images. As shown in Tab. 4, our method
achieves state-of-the-art performance on both tasks, which
confirms that our method has stronger generalization ability.

Visualization

The results of several images containing text instances with
arbitrary shapes are illustrated Fig. 4. With the novel repre-
sentation of text regions, the proposed system can read texts
of arbitrary shape. Even for some vertical text instances (pic-
tures at bottom left and bottom right of Fig. 4), our method
can successfully localize and recognize them. Those chal-
lenging samples confirm the superiority and robustness of
the proposed boundary points.

Although our method can achieve promising perfor-
mances, there are still some failure cases, as shown in Fig.
5. We observe that it is difficult to correctly spot texts com-
posed of rare art fonts, since there are few samples in the
training set. Besides, our method also struggles to detect or
recognize extremely tiny or long texts and blurred texts.

Ablation Study

Oriented Rectangular Box Detector As we mentioned be-
fore, the oriented rectangular box detector plays an impor-
tant role in our whole pipeline. It provides better features
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Figure 4: Examples of text spotting results of our method on Total-Text, ICDAR2015, and ICDAR2013.

Figure 5: Some failure cases produced by our method.

through RotatedRoIAlign for boundary point regression. If
we do not predict the oriented rectangular box and use the
axis-aligned proposal from RPN, the boundary of text in-
stance in the proposal changes dramatically, and it’s hard to
predict the precise location by regression.

As shown in Tab. 5, using oriented rectangular proposal
obtained from oriented rectangular box detector improves
the performance of the detection and end-to-end recogni-
tion stably compared to the axis-aligned proposal. On IC-
DAR2015, the performance respectively improves by 0.8%
and 1.0% in the detection and end-to-end tasks. On Total-
Text, the oriented rectangular proposal provides significant
improvements of 1.2% and 1.2%. These results show that
the oriented rectangular proposal can reduce the difficulty
of boundary point prediction and make it more precise.

Conclusion

In this paper, we present an end-to-end trainable network
that defines text of arbitrary shape as a set of boundary
points. Our method has achieved the state-of-the-art in both

tasks of scene text detection and end-to-end text recogni-
tion on the standard benchmarks including oriented text and
curved text, which confirms its robustness and effectiveness
in reading scene text. The flexible and accurate represen-
tation of boundary points is potential to become the main-
stream description for scene text spotting. Besides, both text
detection and recognition tasks benefit from boundary point
representation. In the future, we would like to improve the
efficiency of detecting boundary points.
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