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Abstract

Binarization of feature representation is critical for Binarized
Neural Networks (BNNs). Currently, sign function is the
commonly used method for feature binarization. Although
it works well on small datasets, the performance on Ima-
geNet remains unsatisfied. Previous methods mainly focus on
minimizing quantization error, improving the training strate-
gies and decomposing each convolution layer into several
binary convolution modules. However, whether sign is the
only option for binarization has been largely overlooked. In
this work, we propose the Sparsity-inducing Binarized Neu-
ral Network (Si-BNN), to quantize the activations to be either
0 or +1, which introduces sparsity into binary representa-
tion. We further introduce trainable thresholds into the back-
ward function of binarization to guide the gradient propaga-
tion. Our method dramatically outperforms current state-of-
the-arts, lowering the performance gap between full-precision
networks and BNNs on mainstream architectures, achieving
the new state-of-the-art on binarized AlexNet (Top-1 50.5%),
ResNet-18 (Top-1 59.7%), and VGG-Net (Top-1 63.2%). At
inference time, Si-BNN still enjoys the high efficiency of
exclusive-not-or (xnor) operations.

Introduction

Quantizing deep neural networks to the extremely low bit
is an interesting yet challenging problem. There have been
many good efforts to approximate full precision weights us-
ing 1-bit representation (Courbariaux, Bengio, and David
2015; Rastegari et al. 2016; Hu, Wang, and Cheng 2018).
Furthermore, recent methods show that 2-bit activation and
binary/ternary weight quantization can achieve promising
results on ImageNet (Cai et al. 2017; Wang et al. 2018).
However, the grand challenge, constraining both the weights
and activations to 1 bit, has been overcome only on small
datasets, such as MNIST and CIFAR-10 (Courbariaux and
Bengio 2016). A better binary feature representation is of
central importance in training binary neural networks on
large-scale datasets.
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Figure 1: Forward and backward functions for BNN and Si-
BNN. Our approach utilizes sparse representation instead of
dense predictions in previous methods. Both θ and Δ are
trainable parameters to adaptively deactivate activations and
gradients. ρ ∈ [0, 1] is the hyperparameter, which allows
more gradients propagate through activated neurons (i.e., +1
neurons in forward propagation).

Previous BNNs (Courbariaux and Bengio 2016) mainly
use sign as the quantization function to turn activations into
either −1 or +1. Moving forward along this line, XNOR-
Net (Rastegari et al. 2016) further introduces a full-precision
scale factor to minimize binarization error. Using this strat-
egy, XNOR-Net first applies binarized convolutional neural
networks to ImageNet classification.

Different from previous works, we start from the follow-
ing question, whether sign function is optimal for network
binarization? As the name of “binary” implies, there are
only two states in BNNs. From the viewpoint of least square,
the simple and commonly used sign function becomes the
natural choice for binarization. Therefore, this question has
been largely overlooked by previous works, which signifi-
cantly affects the performance of BNNs.

The answer to the above question is not that straight-
forward. To find a better binarization function, there are sev-
eral characteristics that should be satisfied: 1) The dot prod-
uct of two binary vectors x and y can be implemented effi-
ciently using bit-operations, since the ultimate goal of BNNs
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is to replace the computationally expensive floating-point
multiply accumulations (MACs) by xnor and popcount op-
erations. 2) The binarization function needs to be simple,
otherwise, the profit of bit-operations can be canceled out
by the bulky design. 3) A better binarization function should
be more effective for network binarization than the simple
sign function. Only in this way, the proposal of a new bina-
rization function is meaningful.

Inspired by the dynamic sparsity induced by ReLU, we
propose the sparsity-inducing binarization, which quantizes
activations to either 0 or +1. We reveal that the proposed
method is as efficient as sign-based scheme with no extra
computing cost, yet it achieves superior performance over
dense feature representation (i.e., ±1). By exploring the ef-
fect of sparse binary feature representation, we show that
Si-BNN satisfies the above characteristics.

Since the derivative of binarization is zero almost every-
where, the appropriate gradient approximation significantly
contributes to the fast training. In this work, we empower
the well-known straight-through estimator (STE) with train-
able thresholds to better exploit the saturation effect, which
cancels the gradient when input is larger than the learned
threshold. It is surprisingly simple that a linear transforma-
tion combined with sparsity-inducing binarization serves as
the trainable STE.

We conduct extensive experiments on MNIST, CIFAR,
and ILSVRC 2012 datasets, using the mainstream architec-
tures such as AlexNet, ResNet, and VGG-Net. The consis-
tent notable improvements over state-of-the-art binarization
methods (Courbariaux and Bengio 2016; Rastegari et al.
2016), even multi-bit networks (Lin, Zhao, and Pan 2017;
Zhu, Dong, and Su 2019) show that the proposed approach is
generally effective for image categorization. We also imple-
ment a binary network execution framework, with which it
is possible to run Si-BNN models over 14× faster than full-
precision counterparts on CPU, competitive with the popular
GPU-based deep learning framework. The contributions are
summarized as follows:
• Sparsity-inducing Binarized Neural Network (Si-BNN) is

proposed to quantize the activations to be either 0 or +1,
which has prominent advantages over sign-based bina-
rization methods.

• Based on Si-BNN, we further introduce trainable thresh-
olds into the backward function of binarization to guide
the gradient propagation.

• Extensive experiments demonstrate that the proposed Si-
BNN dramatically improves the accuracy, setting new
state-of-the-arts of Binarized Neural Networks.

Related Work

Low-bit quantization (Rastegari et al. 2016; Hu et al. 2018;
He and Cheng 2018) of deep neural networks has recently
received increasing interest of deep learning community. It
is shown that full-precision is not required in achieving high
performance for deep neural networks(Gupta et al. 2015;
Courbariaux, Bengio, and David 2015; Rastegari et al. 2016;
Wang and Cheng 2017). By utilizing fixed-point weights
representation, the model size can be dramatically reduced

by an order of magnitude (up to ∼ 32×) without consider-
able loss in classification accuracy. However, some meth-
ods still use floating-point feature representation, which
limits the acceleration of network computing. To further
explore the advantages of fixed-point multiply accumula-
tions, recent works focus on the optimal quantization of
activations. The extremely low-bit networks with binary
weights and 2-bit activations have approached floating-point
level on ImageNet classification accuracy (Cai et al. 2017;
Tang, Hua, and Wang 2017; Jung et al. 2019).

Beyond low-bit quantization, binary neural networks ben-
efit from ∼ 32× model compression and the replacement of
expensive floating-point matrix multiplication by high com-
putation efficiency popcnt− xnor operations, which makes
the runtime speed of BNN comparable with GPU. In BNN
(Courbariaux and Bengio 2016), the weights and activations
are firstly constrained to either +1 or −1, which produces
reasonable results on small datasets, such as MNIST and
CIFAR-10. When it comes to large-scale classification tasks,
such as ImageNet (Deng et al. 2009), the accuracy drop
between the full precision network and BNN is unaccept-
able. Although the performance of BNN can be refined by
proper training strategies, such as low initial learning rate
(Tang, Hua, and Wang 2017), it is still nearly 15% lower
than floating-point Top-5 accuracy on AlexNet.

To improve the quality of the binary feature representa-
tion, XNOR-Net (Rastegari et al. 2016) introduces scale fac-
tors for both weights and activations during binarization pro-
cess. This relaxation of binary constraint significantly con-
tributes to the accuracy improvement on binary weights neu-
ral networks but still suffers over 10% Top-5 accuracy loss
on binary activation networks. Besides that, a floating-point
2D convolution is required before binary convolution for
calculating the scale factors of the activations. This step has
partially reduced the advantages of efficient popcnt− xnor
operations.

Since weights and activations binarization leads to in-
ference acceleration, DoReFa-Net (Zhou et al. 2016) fur-
ther proposes the 2-bit gradients approximation with 1-bit
weights and activations to boost training on FPGA. Due
to the limited computation resources, nonlinear activation
functions and its backward computing are designed to adapt
the hardware platforms. Even though they achieve no sig-
nificant accuracy loss on SVHN dataset with considerable
energy savings, the performance on AlexNet is lower than
XNOR-Net.

Multi-bit networks decompose a single convolution layer
into K binary convolution operations (Lin, Zhao, and Pan
2017; Zhu, Dong, and Su 2019; Li et al. 2017; Tang, Hua,
and Wang 2017). These methods achieve higher accuracy
than XNOR-Net, however, at the cost of K× extra storage
and computing consumption. We show that Si-BNN with
∼ 32× memory saving and ∼ 64× theoretical computation
saving still outperforms several multi-bit networks.

As a result, while some of these methods have produced
good performances on datasets such as MNIST, CIFAR-10,
and SVHN, the ultimate challenges remain unsolved, such
as ImageNet classification problem using binarized neural
networks (i.e., one base multi-bit networks).
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Approach

In this section, we first revisit the formulation of network bi-
narization then introduce our sparsity-inducing binarization
in detail including how to implement Si-BNN efficiently.
Besides that, we further present trainable thresholds to better
approximates the derivative of binarization function.

Network Binarization

We define a convolutional layer as a tuple 〈W,X〉. WT ∈
R
n×[c·h·w], where (n, c, h, w) refers to output channels, i.e.,

filter number, input channels, kernel height and kernel width,
respectively. X ∈ R

[c·h·w]×[H·W ], where (H,W ) are height
and width of output feature maps. In fully-connected layers,
WT and X degrade to R

n×c and R
c×1 respectively. The

convolution or inner-product can be represented by the fol-
lowing equation:

Y = ψ(WTX). (1)

where ψ represents the nonlinear activation function. This
formulation introduces two inevitable problems along with
the development of deep neural networks: 1) the huge
computational complexity of WTX; 2) the large stor-
age/memory consumption of W. Therefore, binarized neu-
ral networks which solve both problems simultaneously be-
comes an interesting topic in the deep learning literature.

Previous BNNs mainly use sign as the quantization func-
tion, turning all weights and activations into either −1 or
+1. Benefitting from the binary constraint, BNNs replace
the floating-point multiply accumulations by the bit-level
popcnt− xnor operations:

wb
T · xb = N − 2× popcnt(xnor(wb,xb)) (2)

where wb and xb represent the binary vectors of weights
and activations, i.e., wb, xb ∈ {−1,+1}N , where N =
c · h · w. According to the central-limit theorem (CLT), ac-
itvations are nearly “Gaussian” (Ioffe and Szegedy 2015;
Cai et al. 2017), which is hard for sign(X) to capture the
higher-order statistics such as variance. XNOR-Net partly
alleviates this problem by introducing full-precision scale
factors into binarization ψ′(x) = α ·sign(x), which also fa-
cilitates the gradient straight-through estimation, i.e., ∂�

∂wi
≈

∂�
∂ŵi

where ŵi = αwbi.

Sparsity-inducing binarization

Previous activation binarization approaches commonly uti-
lize sign function to turn features into either -1 or +1, be-
cause the dot product between two -1/+1 vectors can be con-
verted into bit-level popcnt − xnor operations (Eq. 2). As
shown in later sections, we show that the dot product be-
tween 0/+1 and -1/+1 vectors can still make use of popcnt−
xnor operations without extra computing cost. This find-
ing enable us to further explore sparse feature representa-
tion, which have shown to be effective (Cai et al. 2017;
Jung et al. 2019). Based on this insight, we propose to bi-
narize activations to be either 0 or 1,

Xb = ψ(X) =

{
1 if X ≥ θ

0 otherwise
, (3)
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Figure 2: Mutual information between x and ŷ in a mini-
mal model. (Left) A three neuron binarized neural network
where Gaussian inputs x after binarization, multiplied by
weight q ∈ {−1,+1}, and feeds through the same binariza-
tion ψ(·) yielding ŷ. (Right) Mutual information between x
and ŷ for different sparsity thresholds.

Inspired by straight-through estimator (STE), we utlize
Eq. 4 for the backward gradient estimation.

∂ψ

∂X
=

{
1 if 0 ≤ X ≤ 1

0 otherwise
, (4)

The forward and backward computation is illustrated in
Figure 1. It is worth noting that the θ in Eq. 3 is not necessar-
ily 0 since the small positive values can be further quantized
to 0 instead of +1 to minimize quantization error. In light of
this, the above scheme leads to the following question: how
to determine the quantization threshold θ?

Inspired by (Saxe et al. 2018; Tishby and Zaslavsky
2015), we focus on the influence of the neural nonlinearity
on the mutual information dynamics with binary constraints,
then prove that θ > 0 retains more information in a minimal
model. Considering a simple three neuron network shown
in Figure 2 (left), the input activation sampled from a scalar
Gaussian distribution N (0, 1) 1 passes through a binariza-
tion function ψ(·), which is then fed through the binarized
weight q. The hidden layer with the same binarization func-
tion yields the final output ŷ = ψ(q · ψ(x)).

Following the above setting, the mutual information
I(x; ŷ) of two discrete random variables x and ŷ is:

I(x; ŷ) =
∑
x∈B

∑
ŷ∈B

p(x, ŷ) log(
p(x, ŷ)

p(x)p(ŷ)
) (5)

where B is either {−1,+1} in BNNs or {0,+1} in Si-BNN.
We assume that q = sign(w) and q has a Rademacher
distribution (based on the common weights initialization of
standard Gaussian), i.e., 1

2 (q+1) ∼ Bernoulli( 12 ). For sign
activation function (shown in Table 1a), it is easy to prove
that I(x; ŷ) = 0 if binarized weight q and activation x are
generally independent. This result shows that ŷ suffers from
huge information loss during the early training phase when
p(q|x) ≈ p(q).

As shown in Figure 2 (right), sparsity-inducing binariza-
tion ψ(·) keeps more information due to the existence of

1It has been shown that feature maps after batch-normalization
are approximate normal distribution (Ioffe and Szegedy 2015; Cai
et al. 2017).
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Table 1: The truth table of the two-input version BNN.

(a) BNN

q
x −1 +1

−1 +1 −1
+1 −1 +1

(b) Si-BNN

q
x

0 +1

−1 0 −1
+1 0 +1

zero. Following the previous assumption on q, we obtain
p(ŷ = 0) = p(x = 0) + p(q = −1)p(x = 1) = p(x =
0) + 1

2 (1 − p(x = 0)) and p(ŷ = 1) = 1
2 (1 − p(x = 0))

where p(x = 0) (p, for short) can be approximated accu-
rately by numerical integration over (−∞, θ]. Based on Ta-
ble 1b, we have the joint probability p(x = 0, ŷ = 0) =
p(ŷ = 0|x = 0)p(x = 0) = p, p(x = 0, ŷ = 1) = 0 and
p(x = 1, ŷ = 1) = p(x = 1, ŷ = 0) = 1

2 (1− p). Therefore,
I(x; ŷ) can be formulated as the function of p:

I(x; ŷ) =
1

2
p log

1− p

1 + p
− 1

2
log

1− p

1 + p
+ p. (6)

Figure 2 (right) shows that the mutual information I(x; ŷ)
changes along with the sparsity threshold θ. Sparsity-
inducing binarization remains most informative over the
range θ ∈ (0.2, 0.4).

Trainable binarization

Though the selection of θ has been partly solved through
heuristic search, it remains unclear whether every binariza-
tion layer should share the same θ. The similar problem still
exists in Eq.(4) where 0/1 clip could be suboptimal. In this
section, we propose a general method to learn those hyper-
parameters from backward propagations.

Since the gradient estimation relies on neurons near the
threshold θ, the backward function of sparsity-inducing bi-
narization coupled with trainable thresholds is ideally

∂ψ

∂X
=

{
1 if θ − pΔ′ ≤ X ≤ θ + qΔ′

0 otherwise
, (7)

where θ,Δ′ are trainable parameters. θ determines the bi-
nary threshold duiring the forward feature computation,
while Δ′ controls the clip interval during backward gra-
dient estimation. The two hyperparameters p and q enable
asymmetric clip interval around θ. By setting Δ = qΔ′ and
ρ = p/q, Eq. 7 turns into

∂ψ

∂X
=

{
1 if θ − ρΔ ≤ X ≤ θ +Δ

0 otherwise
, (8)

where ρ becomes the only hyperparameter, and at the same
time, the learnable parameters becomes θ and Δ.

To make θ and Δ trainable, we rewrite the comparisons in
Eq.(8) as

−ρ ≤ 1

Δ
(X − θ) ≤ 1, (9)

which corresponds to a simple linear transformation com-
bined with threshold comparisons.

By setting X̂ = Δ−1(X − θ), the forward computation
becomes

ψ(X̂) =

{
1 if X̂ ≥ 0

0 otherwise
, (10)

which introdues both Δ and θ into the forward path, yet only
θ serves as the threshold which contributes to the final out-
puts. Note that Eq.(10) performs the same function as Eq.(3)
except trainable θ. In the backward propagation, our gradi-
ent estimation is simply

∂ψ

∂X̂
=

{
1 if − ρ ≤ X̂ ≤ 1

0 otherwise
, (11)

which leads to the following derivatives

∂ψ

∂X
=

1

Δ
·
{
1 if θ − ρΔ ≤ X ≤ θ +Δ

0 otherwise
, (12)

∂�

∂Δ
=

1

Δ2

∑
i

∂�

∂X̂i

(θ −Xi), (13)

∂�

∂θ
= − 1

Δ

∑
i

∂�

∂X̂i

. (14)

It is worth noting that for (12), ∂ψ
∂X benefits from trainable

backward interval [θ− ρΔ, θ+Δ]. Besides, the term 1
Δ fur-

ther refines the gradients. When Δ becomes larger, Eq.(11)
approaches the derivative of linear transformation. In this
case, the gradients can be inaccurate and 1

Δ makes a small
gradient step.

Efficient computing

To apply xnor − popcnt to deep neural networks, previ-
ous works quantize both activations and weights into either
−1 or +1 (with optional scaling factors). In this section, we
show that activations 1/0 binarization is as efficient as ±1-
based methods without extra computing cost. More gener-
ally, it is free to quantize activations into any two real num-
bers without inference speed loss.

In the l-th convolution layer of binary neural networks,
we approximate the n-th filter w ∈ R

N by βwb, where
N = c · h · w, β = 1

N ||w||1 and wb = sign(w). For
featuremap binarization, we set activations Xl to be either 0
or +1 according to Eq.(3), andXb can be further represented
by the linear combination of ±1:{

1 = k(+1) + b

0 = k(−1) + b
(15)

where k = b = 1
2 . Similarly, for any Xb we have the unique

k, b ∈ R. Without loss of generality, we formulate ψ(Xl)
as kHl + bUl where Hl ∈ {−1,+1}[c·h·w]×[H·W ] and Ul

denotes an all-ones matrix with the same shape as Hl. For-
mally, the binary convolution is

wT ∗Xl ≈ (βwb
T ) ∗ ψ(Xl)

= (βwb
T ) ∗ (kHl + bUl)

= (βk)(wb
T ⊕Hl) + (βb)(wb

T ∗Ul)︸ ︷︷ ︸
pre-computed

(16)
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where ∗ denotes floating-point convolution operation and ⊕
refers to a xnor-popcnt-based binary convolution. By utiliz-
ing the pre-computed (βb)(wb

T ∗Ul), we have the compact
binary convolution function:

wT ∗Xl ≈ k′(wb
T ⊕Hl) + b′ (17)

where k′ is βk and b′ refers to (βb
∑
iwbi). Note that both

k′ and b′ are pre-computed before testing, i.e., Eq.17 can
be implemented efficiently using xnor-popcnt operations as
sign-based methods

Network architecture

To achieve higher accuracy, previous network binarization
methods commonly introduce a non-binary activation after
binary convolution. For example, in XNOR-Net (Rastegari
et al. 2016), a ReLU layer is required after each binary con-
volution layer, such as Binary-Convolution + ReLU +
Batch-Normalization + Binarization. The authors of
(Tang, Hua, and Wang 2017) further propose to use PReLU
instead.

Since binarization also serves as a nonlinear activation
function, the ideal scheme should be compatible with the
original architectures. Si-BNN needs to replace the nonlin-
ear activation (e.g., ReLU) in original networks by the pro-
posed trainable sparsity-inducing binarization function in
Eq.(10), no extra computation or storage is introduced. One
of the reason is that our binarization scheme shares similar
characteristics with ReLU, which significantly contributes to
the great improvement on all mainstream networks without
modifying the original structures.

Experiments

In this section, we evaluate the proposed Si-BNN in terms
of accuracy and efficiency. Our experiments are conducted
on MNIST, CIFAR-10 and ImageNet (Deng et al. 2009)
datasets. Several mainstream networks such as AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), VGG-Net (Si-
monyan and Zisserman 2014), and ResNet (He et al. 2016)
are used for testing.

Implementation Details

For ImageNet experiments, the input image is first pro-
portionally resized to 256 × N (N × 256) with the short
edge to 256. Then, subcrops of 224×224 (227×227 for
AlexNet) are randomly sampled from an image or its hor-
izontal reflection. Following XNOR (Rastegari et al. 2016)
and HWGQ (Cai et al. 2017), we add a batch normaliza-
tion layer after each convolution and fully-connected layer.
Following (Rastegari et al. 2016), for networks with multi-
ple fully-connected layers, such as AlexNet and VGG-Net,
we place a dropout layer with p = 0.5 before the last layer,
while no dropout is used for other networks such as ResNet.
For VGG-Net, we use the same architecture as described
in (Cai et al. 2017), namely VGG-Variant. For AlexNet
and ResNet, we follow the setting in (Cai et al. 2017;
Rastegari et al. 2016). Our binary networks are trained from
scratch using Adam (Kingma and Ba 2015) with default set-
tings. The batch size for ImageNet networks is 256. We use
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Figure 3: The accuracy on AlexNet for different sparse
thresholds ranging from 0.1 to 0.9, which is consistent with
the mutual information loss in Figure 2.

Table 2: Validation accuracy (%) of AlexNet on ImageNet
using different ρ. “Fix” indicates the Si-BNN method with
fixed hand-crafted binary threshold.

ρ 1 0.5 0.4 0.3 0.2 0.1 Fix XNOR
Top-1 49.4 49.5 50.2 50.5 50.1 41.9 49.2 44.2
Top-5 73.7 73.9 74.4 74.6 74.6 66.8 73.4 69.2

a weight decay of 1e−6 and momentum of 0.9 in default.
Specifically, we set the weight decay of Δ and θ to zero.
The initial learning rate is 0.001, then reduced by a factor
of 10 at 40th and 80th epoch. We train all the networks on
ILSVRC2012 training dataset for 100 epochs. Following the
setting in previous low-bit networks (Rastegari et al. 2016),
we keep the first and last layer in full precision.

Sparse Binarization Evaluation

In this section, the effect of the proposed sparse binary quan-
tization is explored, showing that sparsity has a significant
effect on the performance of BNN.

The proposed Si-BNN allows us to utilize different spar-
sities by choosing different thresholds θ. We illustrates the
impact of sparsity on the performance of Si-BNN based on
AlexNet. The results are shown in Figure 3.

We can see that when the threshold is smaller than 0.4, the
accuracy will increase with higher sparsity. However, when
the threshold is larger than 0.4, the accuracy keeps decreas-
ing. The experimental results of Figure 3 are consistent with
our analysis in Figure 2. Another finding from Figure 3 is
that when the threshold is 0.8, i.e., more than 75% activa-
tions are zeros, the accuracy can still reach 45.8%, which
shows the effectiveness of the sparse property of Si-BNN.
In another word, even when there are only 1/4 neurons are
activated compared with previous binarization method, our
Si-BNN can still get much higher accuracy than previous
methods. (45.8% v.s. 44.2% of XNOR-Net).

Learnable Sparse Binarization

In the previous section, we have evaluated the performance
under different sparsity selected by hand, which has demon-
strated that the sparse binarization has significant perfor-
mance improvement over non-sparse binarization. However,
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(a) After Conv2 (b) After Conv3 (c) After Conv4

Figure 4: The histogram of θ for trainable binarization func-
tions after convolution layers in AlexNet. Three rows, from
top to bottom, correspond to ρ = 0.1, 0.3, 1.0 respectively. μ
is the mean value of θ across different channels (each chan-
nel has its own θ). Shallow layers require dense representa-
tion while deeper layers tend to have higher sparsity.

the hand-selected sparse threshold may not be optimal. In
this section, we evaluate the proposed trainable sparse bina-
rization method under different hyperparameters ρ.

In light of the empirical success of θ ∈ [0.2, 0.4], we
clip θ which is less than 0.2. As shown in Table 2, train-
able thresholds consistently outperform hand-crafted thresh-
old. Especially for ρ = 0.3, the top-1 accuracy improves by
1.3%, showing that adaptive thresholds have significant ad-
vantages over the fixed threshold. Overall, the Si-BNN with
trainable sparse binarization outperforms previous leading
method XNOR-Net by 6.3% top-1 accuracy.

To further understand the effect of the learnable binariza-
tion, we present the distribution of the learned θ after train-
ing under different ρ, as shown in Figure 4. Note that though
ρ only controls the clip interval during backward propaga-
tion of Si-BNN, it still affects the distribution of θ during
training. From Figure 4, it is noticed that the distribution of
θ changes along with layer going deeper When ρ becomes
smaller (the from bottom to top row), Si-BNN tends to gen-
erate more sparse feature maps, i.e., larger μ and θ. Gen-
erally, low-level features (e.g., Conv2) require dense rep-
resentation, yet high-level features (e.g., Conv4) enjoy the
sparsity where neurons corresponding to indiscriminative re-
gions are deactivated.

Network Binarization Results

In this section, we evaluate the Si-BNN with learnable
sparse thresholds, by comparing with the state-of-the-art
low-bit networks on various architectures. It is shown that
our method notably outperforms previous BNN methods,
even comparable to multi-bit networks and 2-bit activation
schemes. In appendix, we also visualize the feature map of
Si-BNN, it is more interpretable than sign-based method

Table 3: The error rates on MNIST. Bit-width for activations
and weights (before and after ”+”) are reported respectively.

Bit-width Method Error(%)
1+1 BNN (Courbariaux and Bengio 2016) 1.40
1+1 LAB2 (Hou, Yao, and Kwok 2017) 1.38
1+1 Si-BNN 1.26

1+32 LAB (Hou, Yao, and Kwok 2017) 1.18
1+32 BC (Courbariaux, Bengio, and David 2015) 1.29

32+32 Float (Courbariaux and Bengio 2016) 1.19

Table 4: The error rates on CIFAR-10. Bit-width for activa-
tions and weights (before and after ”+”) are reported respec-
tively.

Bit-width Method Error(%)
1+1 BNN (Courbariaux and Bengio 2016) 10.15
1+1 XNOR (Rastegari et al. 2016) 10.17
1+1 LAB2 (Hou, Yao, and Kwok 2017) 12.28
1+1 Si-BNN 9.80

1+32 BC (Courbariaux, Bengio, and David 2015) 9.86
1+32 BWN (Rastegari et al. 2016) 9.88
1+32 LAB (Rastegari et al. 2016) 10.50

32+32 Float (Courbariaux and Bengio 2016) 10.94

with clearer saliency maps.

Results on MNIST We first conduct experiments on
MNIST dataset. For fair comparisons, we use the same net-
work architecture described in BNN, which consists of 3
hidden layers of 2048 binary units (i.e., binarized MLP) with
softmax loss. The Si-BNN results compared with the state-
of-the-art are listed in Table 3.

Results on CIFAR-10 In addition, we evaluate Si-BNN
on CIFAR-10 dataset. For fair comparisons, we set the net-
work architecture to be identical as BNN and XNOR. No
extra preprocessing was used except the standard horizontal
flip. At both training and testing time, we only use the orig-
inal 32×32 color images. Table 4 shows the Si-BNN result
compared with the state-of-the-art. This is consistent with
ImageNet results, and our approach outperforms all previ-
ous binarization methods like BNN and XNOR by a large
margin.

Results on ImageNet To further illustrate the effective-
ness of the proposed approach, we compare Si-BNN with
current state-of-the-art methods on ImageNet dataset. The
comparison results based on AlexNet and ResNet-18 are
shown in Table 5 and Table 6, respectively. These results
show that the Si-BNN outperforms the best previous binary
methods by 2.6% and 5.3% on AlexNet and ResNet-18.

To fully illustrate the superiority of Si-BNN over previous
works, we also compare Si-BNN with strong baseline meth-
ods such as multi-bit networks (i.e., replace a full precision
convolution layer by several binarized convolution layers)
and 2-bit networks. As listed in Table 5, the performance
of Si-BNN on AlexNet notably outperforms recent leading
methods and it is comparable to even 2-bit weights and 2-bit
activation methods. The improvements of ResNets, listed in
Table 6, are consistent with AlexNet. Note that Bi-Real (Liu
et al. 2018) proposes to keep 1 × 1 downsampling layers
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Table 5: Comparison with the state-of-the-art methods on AlexNet. ”-” indicates the accuracy is not reported. ”×” means
multi-bit networks with multi-branch.

Method Weight Activation Top-1 Top-5
BNN (Courbariaux and Bengio 2016) 1 1 27.9 50.4

DOREFA (Zhou et al. 2016) 1 1 43.6 –
XNOR (Rastegari et al. 2016) 1 1 44.2 69.2

XNOR + Distribution Loss (Ding et al. 2019) 1 1 47.8 71.5
Quantization Network (Yang et al. 2019) 1 1 47.9 72.5

Si-BNN 1 1 50.5 74.6

CompactNet (Tang, Hua, and Wang 2017) 1 2 46.6 71.1
WRPN (Mishra et al. 2018) 1×2 1×2 48.3 –
DOREFA (Zhou et al. 2016) 1 2 49.8 –

BENN-SB-3, Bagging (Zhu, Dong, and Su 2019) 1×3 1×3 48.8 –
BENN-SB-3, Boosting (Zhu, Dong, and Su 2019) 1×3 1×3 50.2 –

WEQ (Park, Ahn, and Yoo 2017) 2 2 50.6 75.0

Table 6: Comparison with the state-of-the-art methods using ResNet-18 on ImageNet. “-” indicates the accuracy is not reported.
“*” means ResNet with Bi-Real-like double skip connections, without full precision 1 × 1 downsampling convolutions. ”×”
refers to multi-bit networks with multi-branch or multi-network.

Network Method Weights Activation Top-1 Top-5

ResNet-18

BNN (Courbariaux and Bengio 2016) 1 1 42.2 67.1
ABC (Lin, Zhao, and Pan 2017) 1 1 42.7 67.6
XNOR (Rastegari et al. 2016) 1 1 51.2 73.2

QNet (Yang et al. 2019) 1 1 53.6 75.3
BENN-6, Bagging (Zhu, Dong, and Su 2019) 1×6 1×6 57.9 –

Si-BNN 1 1 58.9 81.3

ResNet-18* Bi-Real (Liu et al. 2018) 1 1 56.4 79.5
Si-BNN 1 1 59.7 81.8

Table 7: The accuracy of Si-BNN (binary weights and bi-
nary activations) on various ImageNet networks, compared
with binary weights and 2-bit activation method (HWGQ)
and full precision baselines.

Model Baselines Si-BNN HWGQ

AlexNet Top-1 60.4 50.5 52.7
Top-5 82.5 74.6 76.3

VGG-Variant Top-1 69.8 63.2 64.1
Top-5 89.7 85.0 85.7

ResNet-18 Top-1 69.3 59.7 59.6
Top-5 89.2 81.8 82.2

ResNet-34 Top-1 73.3 63.3 64.3
Top-5 91.4 84.4 85.7

in full-precision for preserving the performance. To avoid
the extra computing cost and floating-point parameters, we
replace the convolution operation with max pooling. Even
with fewer parameters and computation, Si-BNN surpasses
the current best-performing ensemble method (Zhu, Dong,
and Su 2019).

From Table 7, it is the first time that a binarized neural
network can be competitive with the 2-bit activation methods
(HWGQ (Cai et al. 2017)) on several mainstream network
architectures. Besides that, our VGG-Variant model is ap-
proaching full precision baseline with only 4.7% Top-5 ac-
curacy loss, which could be a huge step towards real-world
applications. Overall, our method is generally effective for
the most challenging image categorization task.

Conclusion

In this paper, we propose a simple yet effective network bi-
narization method, Sparsity-Inducing Binarized Neural Net-
works (Si-BNN). Through simple affine transformations, we
show that quantizing activations to 0 and +1 can enjoy the
sparse feature representation and still benefit from the high-
efficiency xnor-popcnt operations with no extra computing
cost. Besides that, we introduce trainable thresholds into the
forward and backward propagation of sparsity-inducing bi-
narization, which contributes to the state-of-the-arts on most
mainstream architectures using BNN. Experiments on Im-
ageNet, MNIST and FICAR-10 benchmarks demonstrate
that our Si-BNN dramatically outperforms current best-
performing methods, lowering the performance gap between
full-precision networks and binarized neural networks.
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