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Abstract

Object detection and instance segmentation are two funda-
mental computer vision tasks. They are closely correlated but
their relations have not yet been fully explored in most pre-
vious work. This paper presents RDSNet, a novel deep archi-
tecture for reciprocal object detection and instance segmenta-
tion. To reciprocate these two tasks, we design a two-stream
structure to learn features on both the object level (i.e., bound-
ing boxes) and the pixel level (i.e., instance masks) jointly.
Within this structure, information from the two streams is
fused alternately, namely information on the object level in-
troduces the awareness of instance and translation variance
to the pixel level, and information on the pixel level re-
fines the localization accuracy of objects on the object level
in return. Specifically, a correlation module and a cropping
module are proposed to yield instance masks, as well as a
mask based boundary refinement module for more accurate
bounding boxes. Extensive experimental analyses and com-
parisons on the COCO dataset demonstrate the effectiveness
and efficiency of RDSNet. The source code is available at
https://github.com/wangsr126/RDSNet.

1 Introduction

Object detection and instance segmentation are two funda-
mental and closely related tasks in computer vision, focusing
on progressive image understanding on the object level and
the pixel level respectively. Due to the application of deep
neural networks, recent years have witnessed significant ad-
vances of these two tasks. However, their relations have not
yet been fully explored in most previous work. Therefore,
it remains meaningful and challenging to improve the per-
formance of these two tasks by leveraging the interaction
between the object-level and pixel-level information.

The goal of object detection is to localize each object with
a rectangular bounding box and classify it into a specific cat-
egory. In this task, one of the most critical challenges lies in
object localization, namely the specification of an inclusive
and tight bounding box. As can be commonly observed in
many state-of-the-art methods, localization error can easily

∗The work was done when Shaoru Wang was an intern in Hori-
zon Robotics Inc.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c) (d)

Figure 1: Localization errors in object detection. (a)(b)
Boxes do not fully enclose objects. (c)(d) Boxes do not en-
close objects tightly. Most of these errors can be easily cor-
rected if we fully leverage the reciprocal relations between
the object detection and instance segmentation tasks. Results
are obtained by Mask R-CNN (He et al. 2017).

degrade their performance, as illustrated in Fig. 1. Local-
ization error mainly results from the mechanism of using
regression method to obtain the bounding boxes, as point-
wise regression is not directly aware of the whole object.
For this reason, it is more rational to cast object localization
into a pixel-level task, which is consistent with the defini-
tion of bounding box, i.e., the minimum enclosing rectangle
of the object mask. Therefore, if the object masks are pro-
vided, it will be more straightforward and accurate to obtain
the bounding boxes according to the masks.

Instance segmentation aims to further predict the per-
pixel binary mask of each object besides category. The core
idea of instance segmentation is to introduce instance-aware
pixel category. Currently, most existing approaches follow
a two-stage paradigm (e.g. Mask R-CNN (He et al. 2017)),
that is, masks are generated separately for each detection
proposal. In this way, the masks are aware of individual ob-
ject instances naturally. However, such step-by-step process
makes the masks heavily depend on the bounding boxes ob-
tained by the detector and vulnerable to their localization
errors. Moreover, the utilization of the operator as ROI pool-
ing (Girshick 2015) largely restricts the mask resolution for
large objects. The FCIS model (Li et al. 2017) introduces
position-sensitive map for instance-aware segmentation, but
the resulting masks are still restricted to the detection re-
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sults. Some other methods get rid of detectors (Fathi et al.
2017) , but they are inferior in accuracy. The origin of these
drawbacks mainly lies in the insufficient and inadequate uti-
lization of the object-level information.

According to the above analyses, object detection and in-
stance segmentation have non-negligible potentials to bene-
fit from each other. Unfortunately, few existing works focus
on the relations between them. HTC (Chen et al. 2019a) is a
representative work that adopts cascade architecture for pro-
gressive refinement of the two tasks and achieves promising
results. However, such multi-stage design brings relatively
high computation cost.

In this work, we present a Reciprocal Object Detection
and Instance Segmentation Network (RDSNet) to leverage
the relation between these two tasks. RDSNet adopts a two-
stream structure, i.e., object stream and pixel stream. Fea-
tures from such two streams are extracted jointly and si-
multaneously, and then fused alternately across each other.
Specifically, the object stream focuses on the object-level
features and is formed by a regression-based detector, while
the pixel stream focuses on the pixel-level features and fol-
lows the FCN (Long, Shelhamer, and Darrell 2015) architec-
ture to ensure high-resolution outputs. To leverage object-
level cues from the object stream, a correlation module and
a cropping module are proposed, which introduce the aware-
ness of instances and the translation-variance property to the
pixel stream, and yield instance-aware segmentation masks.
In turn, a mask based boundary refinement module is pro-
posed to alleviate the localization error with the help of the
pixel stream, i.e., produce more accurate bounding boxes
based on the instance masks.

RDSNet takes a sufficient consideration of reciprocal re-
lations between object detection and instance segmentation
tasks. Compared with previous approaches, it has the fol-
lowing three advantages: 1) Masks generated by RDSNet
have consistent high resolution for objects in various scales;
2) Masks are less dependent on detection results thanks to
the ingenious cropping module; 3) More accurate and tighter
bounding boxes are obtained with a novel pixel-level formu-
lation of object bounding box locations.

Our main contribution is that we explore the reciprocal re-
lations between the object detection and instance segmenta-
tion tasks. And an end-to-end unified architecture RDSNet is
proposed to leverage such object-level and pixel-level tasks
from each other, which demonstrates the potentials of the
multi-tasks fusion concept.

2 Related Works
Object Detection. Most modern CNN-based detectors
rely on the regression methods to obtain the bounding boxes
of objects. One typical approach is the anchor based meth-
ods (2016; 2016; 2017a; 2017b), which is first used in the
Faster R-CNN model (Ren et al. 2015). Dense anchors of
multiple scales and aspect ratios are put at each sliding-
window location and serve as regression references. Detec-
tors classify such anchor boxes and regress the offsets from
the anchor boxes to the bounding boxes. Another branch
of regression-based detectors eliminates the anchor boxes,
i.e., anchor-free, which directly predict the center of objects

and regress boundary1 at each location (Huang et al. 2015;
Yang et al. 2019; Tian et al. 2019). In this work, we propose
a simple but effective method, extending above regression-
based detectors to the instance segmentation task and the
localization accuracy will be improved.

Recently, some newly proposed approaches detect objects
as keypoints related to the bounding box (Law and Deng
2018; Zhou, Zhuo, and Krahenbuhl 2019; Duan et al. 2019),
but complicated post-processing is required to group such
points belonging to the same instance.

Instance Segmentation. Existing instance segmentation
approaches can be grouped as two-stage and one-stage ones.
Two-stage approaches follows the top-down process, i.e.,
detect-then-segment(He et al. 2017), in which the object is
firstly detected as a bounding box and then a binary mask
is generated for each object. Approaches built on Mask R-
CNN (e.g. (Liu et al. 2018)) have dominated several popular
benchmarks (Lin et al. 2014; Cordts et al. 2016). However,
such step-by-step process makes mask quality heavily de-
pend on the box accuracy.

One-stage approaches are also known as single-shot ones,
since objects are directly classified, located and segmented
without generating candidate region proposals. A branch of
one-stage approaches (2017; 2017; 2017; 2017; 2019) fol-
lows the bottom-up process, i.e., label-pixels-then-cluster,
in which pixels are firstly labeled with a category or em-
bedded to a feature space, and then grouped into each ob-
ject. These approaches derive from methods developed for
semantic segmentation, and higher-resolution masks are ob-
tained naturally. However, the unawareness of objects status
(numbers, locations, etc.) beforehand complicates the design
of predefined categories or embedded space, resulting in in-
ferior results. We consider the origin of predicament lies in
the lack of object-level information. Another branch of one-
stage approaches (Li et al. 2017; Bolya et al. 2019) is pro-
posed to leverage the top-down and bottom-up approaches
jointly. These methods follow the label-pixels-then-cluster
process roughly while the grouping method relies on detec-
tion results, directly or indirectly (e.g., cropping the masks
with bounding boxes predicted by the detector). Our ap-
proach follows this process in general, but the object-level
information are introduced to simplify the embedded space
design with a correlation module, and a modified cropping
module is proposed to lower the dependencies of the in-
stance masks on the bounding boxes.

Boundary Refinement Cascade R-CNN (Cai and Vas-
concelos 2018) adopts a cascade architecture to refine the
detection results by multi-stage iterative localization. HTC
(Chen et al. 2019a) further improves the information flow.
But these methods are designed for two-stage approaches.
Instead, our method refines the boundary localization based
on a novel formulation, with the compatibility to one-stage
approaches and less computation.

1Unless otherwise specified, we use boundary to refer to the
box boundary, not object boundary.
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Figure 2: The architecture of the proposed RDSNet, which follows a two-stream structure, i.e., object stream and pixel stream.
Information from these two streams are mutually interacted by several well-designed modules: the correlation module and
cropping module introduce the awareness of instance and the translation variance to pixel stream, assisting in generating the
instance masks (see Sec. 3.2). In turn, the instance masks assist the object stream in obtaining more accurate bounding boxes (see
Sec. 3.3). c denotes the class number, k denotes the anchors number at one location, d denotes the representation dimensions,
and � denotes the convolution operation.

3 RDSNet

In this section, we first introduce the overall architecture
of RDSNet, where the core is a two-stream structure, con-
sisting of the object stream and the pixel stream, as shown
in Fig. 2. Then the bidirectional interaction across the two
streams are presented, i.e., leveraging the object-level infor-
mation to facilitate instance segmentation and the pixel-level
information to facilitate object detection.

3.1 Two-stream structure

The core of RDSNet is the two-stream structure, namely the
object stream and the pixel stream. These two streams share
the same FPN (Lin et al. 2017a) backbone and are then sep-
arated for each corresponding task. Such parallel structure
enables the decoupling of object-level and pixel-level infor-
mation and alterable resolutions for different tasks.

Object Stream. The object stream focuses on object-level
information, including object categories, locations, etc. It
can be formed by various regression-based detectors (Liu et
al. 2016; Redmon and Farhadi 2018; Lin et al. 2017b). In ad-
dition, we add a new branch in parallel with the classification
and regression branches to extract the object feature for each
anchor (or location). This stream is responsible for produc-
ing detection results that will later be refined by pixel-level
information (see Sec. 3.3).

Pixel Stream. The pixel stream focuses on pixel-level in-
formation, and follows the FCN (2015) design for high-
resolution outputs. Specifically, per-pixel features are ex-
tracted in this stream, and then used to generate instance
masks by utilizing object-level information (see Sec. 3.2).

3.2 Object Assisted Instance Segmentation

This subsection introduces a novel way to yield instance
masks by leveraging the object-level information with new
designed correlation and cropping modules.

From Instance-agnostic to Instance-aware. Instance
segmentation aims to assign an instance-aware category to
each pixel, but it often suffers from the ambiguity that no
predefined categories for pixels are available due to the un-
certain numbers and locations of objects in 2D image plane.
A proper solution is to leverage the object-level information
to introduce the awareness of instances. To this end, a cor-
relation module is designed to link each pixel to its corre-
sponding instance according to the similarity between their
representations, which are learned from the object stream
and the pixel stream, respectively.

Given an object o, we denote its representation by φ(vo) ∈
R

2×d×1×1, where vo represents the feature of that object
from object stream, and d is the dimension of the repre-
sentation. The 2 dimension of φ(vo) indicates that we take
both foreground and background into consideration. Simi-
larly, we denote the pixel representations of the entire image
as Ψ(U) ∈ R

1×d×hf×wf , where U represents the feature
map from pixel stream, hf and wf are the spatial dimen-
sions of Ψ(U).

The purpose of the correlation module is to measure the
similarity between φ(vo) and Ψ(U). The correlation opera-
tion is defined by

Mo = softmax(Ψ(U) � φ(vo)) , (1)

where � stands for the convolution operator. The two chan-
nels of similarity map Mo ∈ R

2×1×hf×wf can be viewed as
the foreground and background probabilities of each pixel
corresponding to object o. Pixel-wise cross entropy loss is
appended on Mo in training stage. For all objects in an im-
age, the correlation operation is repeated respectively and
synchronously. The correlation module enables the mask
generator to be trained end-to-end. In a sense, the training
process of our approach with correlation is similar to metric
learning (Fathi et al. 2017), that is, pulling the representa-
tions of foreground pixels towards their corresponding ob-
ject representation in feature space, and pushing those of
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Figure 3: Illustration for the representations of the objects2

and pixels, both of which are embedded into d-dimension
feature space in the object and pixel streams respectively.
Pixel representations are close to corresponding instance
representation in feature space and different objects have
distinct representations. Dimension reduction (from d to 3)
and L2 normalization are performed to representations.

background pixels away, as illustrated in Fig. 3.

From Translation-invariant to Translation-variant.
Unlike most two-stage instance segmentation approaches
(He et al. 2017), mask generated by the above correlation
module for each object covers the whole image, regardless
of the object size and location. Such characteristic guar-
antees high-resolution results, but noise is easily involved.
This drawback is largely attributed to the translation-
invariant property of convolution: any two pixels with
similar appearances tend to have similar representations,
although they might actually belong to different instances or
background. The property makes it difficult to exclude the
noise directly due to the absence of spatial information in
the pixel representations. Fortunately, we can overcome this
drawback simply by using the bounding boxes produced
by the object stream as they can provide adequate spatial
restrictions. Specifically, for each object, pixels outside its
bounding box are directly set as background and ignored
during training. Such cropping strategy makes the instance
mask restricted to the internal area of the bounding box
and the pixels faraway are not involved in the instance
mask even though they have similar appearances. However,
simply cropping with such bounding boxes makes the
instance masks suffer from the localization errors of detec-
tion results (as shown in Fig. 1 (a)(b)) and unexpectedly
leads to a strong coupling relation between detection and
segmentation results.

To address this issue, a compromise is made by crop-
ping the masks with expanded bounding boxes. During in-
ference, such strategy guarantees relatively low dependen-

2Only foreground channel is taken.

cies of masks on bounding boxes, and the pixels far enough
are not involved in the masks. Moreover, cropping with the
expanded bounding boxes enables a reasonable diversity of
negative pixels during training. Two extreme cases, i.e., no
cropping and cropping without expanding, are both harmful
for our task because too much diversity causes convergence
difficulty while insufficient diversity results in deficient fea-
ture space, respectively.

It should be noted that cropping with expanded bound-
ing boxes makes more background pixels involved for each
object during training, making the background pixels easily
dominate the training procedure. To maintain a manageable
balance between the foreground and background (1:1 in our
experiments), online hard example mining (OHEM) (Shri-
vastava, Gupta, and Girshick 2016) for background pixels is
adopted.

3.3 Mask Assisted Object Detection

In this section, we introduce how to enhance the detection
results by utilizing the pixel-level information. According to
the aforementioned analyses, pixel-level information has the
potential to benefit the detection task, especially for object
boundary localization. To this end, we develop a new for-
mulation for boundary localization based on the Bayes’ the-
orem. In this formulation, we comprehensively utilize the
bounding box and instance mask obtained from the object
stream and pixel stream to get a more accurate bounding
box of each object. Based on this formulation, a mask based
boundary refinement module (MBRM) is proposed.

Mask Based Boundary Refinement Module. Bounding
box is originally defined as the minimum enclosing rectan-
gle of an object, indicating that it absolutely depends on the
region covered by the instance mask. In this sense, it seems
indirect to obtain bounding boxes by regression methods
that are commonly adopted in existing object detection ap-
proaches. Instead, if an instance mask is provided, a quite
straightforward solution is to use its minimum enclosing
rectangle as the detection result. This is exactly our base-
line named direct. In this case, the regressed bounding box
is only used for mask generation in the pixel stream.

Although the regressed bounding boxes might contain lo-
calization errors, we think they still provide a reasonable
prior for the object boundary location to some extent. There-
fore, our formulation leverages the detection and segmenta-
tion results jointly. Specifically, we view the coordinate of a
boundary as a discrete random variable. From the probabilis-
tic perspective, an object boundary location is the argmax of
the probability of a coordinate where the boundary locates,
namely

x = argmax
i

P (X = i|M ′) , (2)

where X is the discrete random variable for the horizontal
coordinate of the left boundary, M ′ ∈ R

h×w is the fore-
ground channel of M in Eq. (1) up-sampled to the input im-
age size, h × w, with all the dimensions of size 1 removed,
and P (X = i|M ′) denotes the posterior probability given
the corresponding instance mask M ′.
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Method Scale epoch aug FPS APm APm
50 APm

75 APm
S APm

M APm
L

two-stage:
Mask R-CNN (He et al. 2017) † 800 12 ◦ 9.5/V 36.2 58.3 38.6 16.7 38.8 51.5
MS R-CNN (Huang et al. 2019) † 800 12 ◦ 9.1/V 37.4 57.9 40.4 17.3 39.5 53.0

one-stage:
FCIS (Li et al. 2017) 600 12 ◦ 6.6/P 29.2 49.5 - 7.1 31.3 50.0
YOLACT (Bolya et al. 2019) 550 48

√
33.0/P 29.8 48.5 31.2 9.9 31.3 47.7

RDSNets (ours) 550 48
√

32.0/P 32.1 53.0 33.4 11.0 33.8 51.0

TensorMask (Chen et al. 2019c) 800 72
√

2.6/V 37.3 59.5 39.5 17.5 39.3 51.6
RDSNet (ours) 800 12 ◦ 8.8/V 34.6 55.8 36.7 14.9 37.4 50.3
RDSNet (ours) 800 24

√
8.8/V 36.4 57.9 39.0 16.4 39.5 51.6

Table 1: Instance segmentation results on COCO test-dev. P means Titan XP or 1080Ti, and V means Tesla V100. ‘aug’ means
data augmentation during training: ◦ is trained with only horizontal flipping augmentation and

√
is trained further with scale

augmentation. † means this entry is obtained by models provided by mmdetection (Chen et al. 2019b).

Method Scale Backbone FPS APbb APbb
50 APbb

75 APbb
S APbb

M APbb
L

two-stage:
Mask R-CNN (He et al. 2017)† 800 R-101 9.5/V 39.7 61.6 43.2 23.0 43.2 49.7
Cascade Mask R-CNN (2018)† 800 R-101 6.8/V 43.1 61.5 46.9 24.0 45.9 55.4
HTC (Chen et al. 2019a)† 800 R-101 4.1/V 45.1 64.3 49.0 25.2 48.0 58.2
one-stage:
YOLOv3(Redmon and Farhadi 2018) 608 D-53 19.8/P 33.0 57.9 34.3 18.3 35.4 41.9
RefineDet (Zhang et al. 2018) 512 R-101 9.1/P 36.4 57.5 39.5 16.6 39.9 51.4
CornerNet (Law and Deng 2018) 512 H-104 4.4/P 40.5 57.8 45.3 20.8 44.8 56.7

RDSNet
RetinaNet (Lin et al. 2017b) 16.8/V 36.0 55.2 38.7 17.4 39.6 49.7
+ mask 600 R-101 15.5/V 36.1 56.7 38.5 17.3 38.9 51.3
+ MBRM 14.5/V 37.3 56.7 39.3 17.0 40.0 54.0
RetinaNet (Lin et al. 2017b) 10.9/V 38.1 58.5 40.8 21.2 41.5 48.2

RDSNet + mask 800 R-101 8.8/V 39.4 60.1 42.5 22.1 42.6 49.9
+ MBRM 8.5/V 40.3 60.1 43.0 22.1 43.5 51.5

Table 2: Object detection results on COCO test-dev. We denote the backbone by network-depth, where R, D and H refer
to ResNet (He et al. 2016), DarkNet (Redmon and Farhadi 2018) and Hourglass (Newell, Yang, and Deng 2016), respectively.

In the following, we only take the derivation for the left
boundary as an example, and it can be easily extended to the
other boundaries.

Following the Bayes’ theorem, we have

P (X = i|M ′) =
P (X = i)P (M ′|X = i)

∑w
t=1 P (X = t)P (M ′|X = t)

, (3)

where P (X = i) and P (M ′|X = i) are the corresponding
prior and likelihood probabilities.

Assuming that the boundary is only related to the maxi-
mum of each row in M ′, and it only affects its neighboring
pixels, the likelihood probability can be defined as

P (M ′|X = i) = P (mx|X = i) (4)
= P (mx

i−s,...,i+s|X = i) , (5)

where mx
i = max

1≤j≤h
M ′

ij , and s is a hyper-parameter, de-

scribing the influence scope of the boundary on its neigh-
boring pixels. Ideally, a pixel on the boundary only affects
its two nearest neighboring pixels, i.e., the one outside the
bounding box has probability 0 and the other inside has

probability 1. In this case, s = 1. However, the instance
mask is not so sharp, making it difficult to provide a proper
formulation for P (mx

i−s,...,i+s|X = i). Therefore, we ap-
proximate it with a one-dimensional convolution with kernel
size 2s + 1, followed by a sigmoid function for normaliza-
tion, and the parameters are learned by back-propagation.

For P (X = i), we simply adopt a discrete Gaussian dis-
tribution

P (X = i) = αe−(i−μ)2/2σ2
x , (6)

where α is the normalization coefficient. Obviously, the dis-
tribution of the boundary location is related to the instance
scale, thus we set

μ = xr , σx = γwb , (7)

where wb denotes the width of the bounding box, xr denotes
the horizontal coordinate of the regressed left boundary, and
γ specifies the weighting of the regressed boundary. It can
be seen that a smaller γ indicates a higher weighting of the
regressed boundary, and vice versa.

During training, the ground-truth boundary is transformed
to one-hot format along the width or height directions of the
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Figure 4: Visual comparisons of some results on COCO
val2017. The top, middle and bottom rows are obtained by
Mask R-CNN, RDSNet w/o expanded cropping or MBRM,
and full version of RDSNet. RDSNet gives sharper masks
compared to Mask R-CNN. The circled regions highlight the
advantage of MBRM in alleviating localization errors.

image, and cross entropy loss is used to train the above co-
ordinate classification task.

3.4 Training and Inference

Our model is trained with the following multi-task loss:

L = Lcls + λrLreg + λmLmask , (8)

where Lcls and Lreg are the commonly used classification
and regression losses in detection tasks (Ren et al. 2015;
Lin et al. 2017b), and Lmask is the pixel-wise cross entropy
loss described in Sec. 3.2. Only the representations of posi-
tive anchors (matched with ground-truth boxes) are fed into
the correlation module to generate instance masks, which
are then cropped with the expanded ground-truth boxes and
used to calculate Lmask. In other words, pixels outside the
expanded boxes are ignored in Lmask. Lrefine is the cross
entropy loss defined in Sec. 3.3. λr and λm are hyper-
parameters for loss re-weighting. The parameters in MBRM
is trained individually with Lrefine after all others param-
eters are trained to convergence with L. The reason is that
MBRM only requires relatively good regression boxes and
instance masks.

During inference, the object categories and bounding
boxes are first obtained by the detector in the object stream,
along with the representation of each instance. Meanwhile,
the pixel representations are generated in the pixel stream.
Next, only proposals after NMS are processed in the cor-
relation module to generate instance masks, which are then
cropped with the expanded boxes obtained by the detector.
In order to get the exact coordinates, such instance masks
are up-sampled to the input image size and then fed into
MBRM. The masks are binarized with threshold 0.4 at last.

4 Experiments

In this section, experimental analyses and comparisons
are performed to demonstrate the reciprocal relations be-
tween the object detection and instance segmentation tasks.
We report the results on COCO dataset (Lin et al. 2014)
and use the commonly-used metrics for both object detec-
tion (APbb) and instance segmentation (APm). We train on
train2017, and evaluate on val2017 and test-dev.

4.1 Implementation Details

We implement RDSNet based on mmdetection (Chen et al.
2019b). We use ResNet-101 (He et al. 2016) with FPN (Lin
et al. 2017a) as our backbone. For the object stream, we
choose a strong one-stage detector, RetinaNet (Lin et al.
2017b) as our detector unless otherwise indicated, as well
as our baseline, to validate the effectiveness of our method.

For the pixel stream, we adopt the architecture of semantic
segmentation branch in PanopticFPN (Kirillov et al. 2019)
to merge the FPN pyramid into a single output, i.e.pixel rep-
resentations, except that the number of channels is modified
to 256 for richer representations.

Dimensions of the instance and pixel representations are
32. We use different expanding ratios of bounding boxes for
cropping masks during training and inference. During train-
ing, we use ground-truth bounding boxes and expand both
the heights and the widths of them by 1.5 times with center
point retaining. During inference, the expanding ratio is set
to 1.2. All λs are set to 1.

We train our models on 4 GPUs (2 images per GPU) and
adopt 1× training strategy (Chen et al. 2019b) along with
all other settings same as RetinaNet, and then parameters in
MBRM are trained individually for another 1k iterations.

4.2 Object Assisted Instance Segmentation

In this section, we first validate the effectiveness of our cor-
relation and cropping module. We compare RDSNet with
YOLACT (Bolya et al. 2019), another one-stage approach
for instance segmentation. We adopt the backbone and de-
tection head of YOLACT and apply the correlation module
with the expanded cropping strategy (denoted as RDSNets),
compared with the linear combining method with simply
cropping in YOLACT. As shown in Tab. 3, 31.0 mAP (+1.1
mAP) is achieved for instance segmentation with correla-
tion method compared to 29.9 mAP of YOLACT. What’s
more, the fast speed is maintained. Compared to only fore-
ground coefficients with additional restriction in YOLACT,
modeling both foreground and background representations
for each object possibly contributes to easier convergence
and thus better results.

Additional ablation experiments in Tab. 3 shows the ef-
fectiveness of the cropping module. If we simply crop the
masks with expanded regressed bounding boxes during in-
ference, performance degradation is observed (row 2 v.s.
row 3), which indicates that the model is unable to handle
the large diversity of background pixels unless expanding
strategy is applied during training (row 3 v.s. row 5). Once
OHEM for negative pixels is adopted, 1.9 mAP improve-
ment over YOLACT is observed (row 7).
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No. Method TE OHEM IE FPS APm

1 YOLACT LC 33 29.9
2 31.0+1.1

3
√

30.0
4 RDSNets Corr

√
32 30.7

5
√ √

30.8
6

√ √
31.6

7
√ √ √

31.8+1.9

Table 3: Demonstration of the effectiveness of the crop-
ping module on COCO val2017. LC: Linear Combina-
tion, Corr: Correlation, TE: Expand during training, IE: Ex-
pand during inference. Our finally adopted choice (last row)
yields the highest mAP. It should be noted that by using Corr
instead of LC, RDSNet already outperforms YOLACT by
1.1 in mAP.

Figure 5: Hyper-parameter sensitivity of MBRM.

Then, we compare RDSNet with the state-of-the-art meth-
ods for instance segmentation. As shown in Tab. 1, our
method achieves better balance between speed and accuracy
among one-stage methods. With small input size (550 or
600), we achieve 32.1 mAP with a real-time speed (32 fps).
With 800 input size, RDSNet outperforms most one-stage
methods except TensorMask (Chen et al. 2019c), which is
however nearly 3 times slower. Compared to the two-stage
methods, it is worth noting that RDSNet overcomes the in-
herent drawbacks of Mask R-CNN (He et al. 2017) to a large
extent, such as the low resolution of masks, strong depen-
dencies of masks on bounding boxes, etc., as demonstrated
in Fig. 1 and Fig. 4 . Besides, we argue that the speed of
RDSNet is restricted to the speed of our detector (Lin et
al. 2017b) (10.9 fps). As shown in Tab. 2, only slight la-
tency is brought to the original detector in RDSNet. As a
consequence, further speeding up is achievable by switch-
ing to other faster detectors, which is beyond the scope of
this work.

4.3 Mask Assisted Object Detection

For detection task, the key novelty of RDSNet is to refine
bounding boxes with instance mask in a one-stage process.
As shown in Tab. 2, we find multi-task training with an extra
mask generator does bring a certain amount of improvement
on our baseline (RetinaNet (Lin et al. 2017b)), but further

Method APbb APbb
S APbb

M APbb
L

baseline 35.9 17.1 39.7 53.3
direct 34.2−1.7 11.8−5.3 37.7−2.0 55.1+1.8

MBRM 37.2+1.3 16.9−0.2 40.8+1.1 56.5+3.2

Table 4: Demonstration of the effectiveness of MBRM on
COCO val2017. Simply regarding the minimum enclos-
ing rectangle of the instance mask as detection results (row
2) does not work well on small objects. However, our
MBRM (row 3) works better by introducing the regression
bounding box as prior.

consistent improvement is achieved by MBRM with negligi-
ble computational cost. Note that the gain all comes from the
more accurate localization of boundary, instead of all other
aspects. For fair comparison, only single model results with-
out test-time augmentations are shown in the table.

We further analyze the sensitivity of hyper-parameter in
MBRM on COCO val2017, i.e., s and γ, as shown in
Fig. 5. When γ = 0, the refinement module is not activated.
We observe that different γ results in variant improvement.
γ around 0.05 works stably so γ = 0.05 is used in all experi-
ments. s indicates how faraway a pixel from the boundary is
still affected. Larger s leads to more accurate results within a
certain range, while further increasing s does not bring much
improvement. We use s = 4 for all experiments.

Then, we compare our MBRM with the direct method, as
shown in Tab. 4. We find direct method works badly on small
objects, which indicates that the prior of regression bound-
ing box is necessary. Our MBRM works better especially for
large objects, while slight decline on small objects is negli-
gible, which would be fixed if more precise masks for small
objects are provided.

5 Conclusion

We have proposed a unified architecture for object detec-
tion and instance segmentation, and experimental analy-
ses demonstrate the reciprocal relations between these two
tasks. The drawbacks of previous works like the low reso-
lution of instance masks, heavy dependencies of masks on
boxes and localization errors of bounding boxes are largely
overcome in this work. We argue that object detection and
instance segmentation tasks should not be studied separately
and hope future work focus on the co-relation between dif-
ferent image perception tasks.

6 Acknowledgments

This work is supported by the NSFC-general technol-
ogy collaborative Fund for basic research (Grant No.
U1636218), the Natural Science Foundation of China (Grant
No. 61672519, 61751212, 61721004), Beijing Natural Sci-
ence Foundation (Grant No. L172051), the Key Research
Program of Frontier Sciences, CAS, Grant No. QYZDJ-
SSW-JSC040, the CAS External cooperation key project,
and the National Natural Science Foundation of Guangdong
(No. 2018B030311046).

12214



References

Arnab, A., and Torr, P. H. 2017. Pixelwise instance segmentation
with a dynamically instantiated network. In IEEE Conference on
Computer Vision and Pattern Recognition, 441–450.

Bolya, D.; Zhou, C.; Xiao, F.; and Lee, Y. J. 2019. Yolact: Real-
time instance segmentation. In IEEE International Conference on
Computer Vision.

Cai, Z., and Vasconcelos, N. 2018. Cascade r-cnn: Delving into
high quality object detection. In IEEE Conference on Computer
Vision and Pattern Recognition, 6154–6162.

Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.;
Liu, Z.; Shi, J.; Ouyang, W.; et al. 2019a. Hybrid task cascade for
instance segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 4974–4983.

Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.;
Feng, W.; Liu, Z.; Xu, J.; Zhang, Z.; Cheng, D.; Zhu, C.; Cheng,
T.; Zhao, Q.; Li, B.; Lu, X.; Zhu, R.; Wu, Y.; Dai, J.; Wang, J.; Shi,
J.; Ouyang, W.; Loy, C. C.; and Lin, D. 2019b. Mmdetection: Open
mmlab detection toolbox and benchmark.

Chen, X.; Girshick, R.; He, K.; and Dollar, P. 2019c. Tensormask:
A foundation for dense object segmentation. In IEEE International
Conference on Computer Vision.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.;
Benenson, R.; Franke, U.; Roth, S.; and Schiele, B. 2016. The
cityscapes dataset for semantic urban scene understanding. In IEEE
Conference on Computer Vision and Pattern Recognition, 3213–
3223.

Dai, J.; Li, Y.; He, K.; and Sun, J. 2016. R-fcn: Object detection via
region-based fully convolutional networks. In Advances in Neural
Information Processing Systems, 379–387.

De Brabandere, B.; Neven, D.; and Van Gool, L. 2017. Semantic
instance segmentation with a discriminative loss function. arXiv
preprint arXiv:1708.02551.

Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; and Tian, Q. 2019.
Centernet: Keypoint triplets for object detection. In IEEE Interna-
tional Conference on Computer Vision.

Fathi, A.; Wojna, Z.; Rathod, V.; Wang, P.; Song, H. O.; Guadar-
rama, S.; and Murphy, K. P. 2017. Semantic instance segmentation
via deep metric learning. arXiv preprint arXiv:1703.10277.

Girshick, R. 2015. Fast r-cnn. In IEEE International Conference
on Computer Vision, 1440–1448.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 770–778.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask r-
cnn. In IEEE International Conference on Computer Vision, 2980–
2988. IEEE.

Huang, L.; Yang, Y.; Deng, Y.; and Yu, Y. 2015. Densebox: Unify-
ing landmark localization with end to end object detection. arXiv
preprint arXiv:1509.04874.

Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; and Wang, X. 2019.
Mask scoring r-cnn. In IEEE Conference on Computer Vision and
Pattern Recognition, 6409–6418.

Kirillov, A.; Girshick, R.; He, K.; and Dollár, P. 2019. Panop-
tic feature pyramid networks. In IEEE Conference on Computer
Vision and Pattern Recognition, 6399–6408.

Law, H., and Deng, J. 2018. Cornernet: Detecting objects as paired
keypoints. In European Conference on Computer Vision, 734–750.

Li, Y.; Qi, H.; Dai, J.; Ji, X.; and Wei, Y. 2017. Fully convolu-
tional instance-aware semantic segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2359–2367.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan,
D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft coco: Common
objects in context. In European Conference on Computer Vision,
740–755.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; and Be-
longie, S. 2017a. Feature pyramid networks for object detection.
In IEEE Conference on Computer Vision and Pattern Recognition,
2117–2125.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P. 2017b.
Focal loss for dense object detection. In IEEE International Con-
ference on Computer Vision, 2980–2988.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-
Y.; and Berg, A. C. 2016. Ssd: Single shot multibox detector. In
European Conference on Computer Vision, 21–37.
Liu, S.; Jia, J.; Fidler, S.; and Urtasun, R. 2017. Sgn: Sequential
grouping networks for instance segmentation. In IEEE Interna-
tional Conference on Computer Vision, 3496–3504.
Liu, S.; Qi, L.; Qin, H.; Shi, J.; and Jia, J. 2018. Path aggrega-
tion network for instance segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, 8759–8768.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convolutional
networks for semantic segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 3431–3440.
Neven, D.; Brabandere, B. D.; Proesmans, M.; and Gool, L. V.
2019. Instance segmentation by jointly optimizing spatial embed-
dings and clustering bandwidth. In IEEE Conference on Computer
Vision and Pattern Recognition, 8837–8845.
Newell, A.; Yang, K.; and Deng, J. 2016. Stacked hourglass net-
works for human pose estimation. In European Conference on
Computer Vision, 483–499.
Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental im-
provement. arxiv 2018. arXiv preprint arXiv:1804.02767.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks.
In Advances in Neural Information Processing Systems, 91–99.
Shrivastava, A.; Gupta, A.; and Girshick, R. 2016. Training region-
based object detectors with online hard example mining. In IEEE
Conference on Computer Vision and Pattern Recognition, 761–
769.
Tian, Z.; Shen, C.; Chen, H.; and He, T. 2019. Fcos: Fully convo-
lutional one-stage object detection. In IEEE International Confer-
ence on Computer Vision.
Yang, Z.; Liu, S.; Hu, H.; Wang, L.; and Lin, S. 2019. Reppoints:
Point set representation for object detection. In IEEE International
Conference on Computer Vision.
Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; and Li, S. Z. 2018. Single-
shot refinement neural network for object detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 4203–4212.
Zhou, X.; Zhuo, J.; and Krahenbuhl, P. 2019. Bottom-up object de-
tection by grouping extreme and center points. In IEEE Conference
on Computer Vision and Pattern Recognition, 850–859.

12215


