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Abstract

Monocular depth estimation enables 3D perception from a
single 2D image, thus attracting much research attention for
years. Almost all methods treat foreground and background
regions (“things and stuff”) in an image equally. However,
not all pixels are equal. Depth of foreground objects plays
a crucial role in 3D object recognition and localization. To
date how to boost the depth prediction accuracy of fore-
ground objects is rarely discussed. In this paper, we first an-
alyze the data distributions and interaction of foreground and
background, then propose the foreground-background sepa-
rated monocular depth estimation (ForeSeE) method, to es-
timate the foreground and background depth using separate
optimization objectives and decoders. Our method signifi-
cantly improves the depth estimation performance on fore-
ground objects. Applying ForeSeE to 3D object detection,
we achieve 7.5 AP gains and set new state-of-the-art results
among other monocular methods. Code will be available at:
https://github.com/WXinlong/ForeSeE.

1 Introduction

Depth bridges the gap between 2D and 3D perception in
computer vision. A precise depth map of an image provides
rich 3D geometry information like locations and shapes for
objects and stuff in a scene, thus attracting more and more
attention in both 2D and 3D understanding fields. Monocu-
lar depth estimation, which aims to predict the depth map
from a single image, is an ill-posed problem, as infinite
number of 3D scenes can be projected to the same 2D
image. With the development of deep convolutional neu-
ral networks (Krizhevsky, Sutskever, and Hinton 2012; Si-
monyan and Zisserman 2014; He et al. 2016), recent works
have made great progress (Xu et al. 2018; Fu et al. 2018;
Li et al. 2018). They typically consist of an encoder for fea-
ture extraction and a decoder for generating the depth of the
whole scene, either by regressing the depth values or predict-
ing the depth range categories. Plausible results have been
shown.

∗This work is done when Xinlong Wang is an intern at
Bytedance AI Lab.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Examples of low precision prediction of fore-
ground depth. For each row, the left picture is the projected
point cloud transformed from ground truth depth map and
RGB image; the right picture is the bird’s-eye-view close-
up to compare the depth (in green) predicted by the baseline
depth estimation method with the ground truth (in white).
The inaccurate object location and shape pose challenges for
3D recognition, localization and orientation estimation.

When the monocular methods are applied to other tasks
focusing on foreground object analysis, e.g., 3D object de-
tection, there are two main obstacles from the low precision
of foreground depth: (1) Poor estimate of the object cen-
ter location; (2) Distorted or faint object shapes. We show
some examples in Figure 1. The inaccurate object location
and shape make the downstream localization and recogni-
tion challenging. The above issues could be handled by en-
hancing the depth estimation performance on foreground re-
gions. However, all these state-of-the-art methods treat fore-
ground depth and background depth equally, which leads to
sub-optimal performance on foreground objects.

In fact, foreground depth and background depth show dif-
ferent data distributions. We make qualitative and quantita-
tive comparisons in Figure 1, Figure 2 and Table 1. Fore-
ground pixels tend to gather into clusters, bring more and
bigger depth change and look like frustums in 3D space
rather than flat surfaces like road and buildings. Second,
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foreground pixels account for only a small part of the whole
scene. For instance, in the KITTI-Object dataset (Geiger et
al. 2013), 90.6% pixels belong to background, while only
9.4% pixels fall within foreground. Furthermore, not all
pixels are equal. As just described, foreground pixels play
a more crucial role in downstream applications, e.g., au-
tonomous driving and robotic grasping. For example, an es-
timation error on a car is much different from the same error
on a building. The inaccurate shape and location of the car
could be catastrophic for 3D object detectors.

The observations make one wonder how to boost the es-
timation accuracy of foreground while do no harm to back-
ground. First of all, it is neither a hard example mining prob-
lem, nor a self-learned local attention problem. Different
from the former one, here we want to further enhance the
performance on specific regions in the scene, which does
not have to be harder example. As we can see in Figure 3,
foreground is indeed not harder than background. Attention
mechanism is widely used to focus on more discriminative
local regions in semantic classification problems, e.g., se-
mantic segmentation and fine-grained classification. But this
is not the case for depth estimation. Given a close-up of a
car in a scene, one could classify the semantic categories,
but could not tell the depth. Another choice is to separately
train the foreground and background regions, since the data
distributions are different. However, we show that the fore-
ground and background are interdependent to each other for
inferring the depth and boosting the performance.

Instead, we formulate it as a multi-objective optimization
problem. The objective functions of foreground and back-
ground depth are separated. So do the depth decoders. Thus,
the foreground depth decoder could fit the foreground depth
as well as possible while do no harm to background.

To summarize, our contributions are as follows:

• We conduct pioneering discussion about difference and
interaction of foreground and background in monocular
depth estimation. We show that the different patterns of
foreground and background depth lead to sub-optimal re-
sults on foreground pixels.

• We propose ForeSeE, to learn and predict foreground
and background depth separately. Specifically, it con-
tains separate depth decoders for foreground and back-
ground regions, an objective sensitive loss funcion to op-
timize corresponding decoders, and a simple yet effective
foreground-background merging strategy.

• With the proposed ForeSeE, we are able to predict much
superior foreground depth, whereas background depth is
not affected. Furthermore, utilizing the predicted depth
maps, our model achieves 7.5 AP gains on 3D object de-
tection task, which effectively verifies our motivation.

2 Related Work

Monocular Depth Estimation. Monocular depth estima-
tion (MDE) is a long-lasting problem in computer vision
and robotics. Early works (Saxena, Sun, and Ng 2009; Sax-
ena, Chung, and Ng 2005) mainly leverage non-parametric
optimization to predict the depth from handcrafted fea-
tures (Hoiem, Efros, and Hebert 2007; Ladicky, Shi, and

Pollefeys 2014). Recent powerful deep convolutional neu-
ral networks (DCNN) boost the performance of MDE sig-
nificantly. Most methods formulate MDE as a pixel-wise
supervised learning problem. Eigen et al. (Eigen, Puhrsch,
and Fergus 2014) is the first to utilize the multi-scale
DCNN to regress the depth map from a single image. Then,
various innovative network architectures (Liu et al. 2016;
Li, Klein, and Yao 2017; Xu et al. 2019; Fu et al. 2018)
are proposed to leverage strong high-level features. Further-
more, several methods (Zhao et al. 2019; Qi et al. 2018b;
Wei et al. 2019) propose to explicitly enforce geometric con-
straints for the optimizing process. In this work, we focus on
boosting the depth prediction accuracy of foreground objects
with the proposed ForeSeE optimization strategy.
Not All Pixels are Equal. Some prior works noticed that it
is sub-optimal to treat all pixels equally in dense prediction
tasks. Sevilla et al. (Sevilla-Lara et al. 2016) tackle optic
flow estimation by defining different models of image mo-
tion for different regions. Li et al. (Li et al. 2017) use deep
layer cascade to first segment the easy pixels then the harder
ones. Sun et al. (Sun et al. 2019) select and weight synthetic
pixels which are similar with real ones for learning seman-
tic segmentation. Yuan et al. (Yuan et al. 2019) introduce an
instance-level adversarial loss for video frame interpolation
problem. Shen et al. (Shen et al. 2019) propose an instance-
aware image-to-image translation framework. However, dif-
ferent from the above works, we focus on depth estimation
problem and aim at improving the accuracy of 3D object de-
tection.
Monocular 3D Object Detection. The lack of depth in-
formation poses a substantial challenge for estimating 3D
bounding boxes from a single image. Many works seek
help from geometry priors and estimated depth information.
Deep3DBox (Mousavian et al. 2017) proposes to generate
3D proposals based on 2D-3D bounding box consistency
constraint. ROI-10D (Manhardt, Kehl, and Gaidon 2019) in-
troduces RoI lifting to extract fused feature maps from input
image and estimated depth map, before the 3D bounding box
regression. MonoGRNet (Qin, Wang, and Lu 2019a) esti-
mates the depth of the targeting 3D bounding box’s center to
aid the 3D localization. Recently, some works (Xu and Chen
2018; Wang et al. 2019; Weng and Kitani 2019) propose
to convert estimated depth map to lidar-like point cloud to
help localize 3D objects. Wang et al. (Wang et al. 2019) di-
rectly applies 3D object detection methods on the generated
pseudo-lidar, and claim 3D point cloud is a much superior
representation than 2D depth map for better utilizing depth
information. In these methods, a reliable depth map, espe-
cially the precise foreground depth, is the key to a success-
ful 3D object detection framework. We perform 3D object
detection using the pseudo-LiDAR generated by our depth
estimation model. The proposed method largely improves
the performance and outperforms state-of-the-art methods.

3 Observation and Analysis

3.1 Preliminaries

Dataset. KITTI dataset (Geiger et al. 2013) has witnessed
inspiring progress in the field of depth estimation. As most

12258



0%

5%

10%

15%

20%

25%

30%

35%

40%

8 16 24 32 40 48 56 64 72 80

Foreground

Background

depth value range

p
er

ce
n

ta
g

e

Figure 2: Comparison of depth value distribution between
foreground pixels and background pixels. Percentage of pix-
els with depth value within [x-8, x] meters is reported.

I II III
Foreground 96.77 1.99 1.24
Background 98.63 0.94 0.43

Table 1: Comparison of depth gradient distribution between
foreground and background pixels. The gradients are uni-
formly discretized into three bins: I, II and III, from small to
large. Percentage of pixels at each level is reported.

of scenes in KITTI-Raw data have limited foreground ob-
jects, we construct a new benchmark which is based on
KITTI-Object dataset. We collect the corresponding ground-
truth depth map for each image in KITTI-Object training set,
and term it as KITTI-Object-Depth (KOD) dataset. A total of
7, 481 image-depth pairs are divided into training and testing
subsets with 3, 712 and 3, 769 samples respectively (Chen
et al. 2015), which makes sure that images in the two subsets
belong to different video clips. 2D bounding boxes are used
to distinguish the foreground and background pixels. Pixels
fall within the foreground bounding boxes are designated as
foreground pixels, while the other pixels are assigned to be
background.
Baseline Method. We adopt the same DCNN-based base-
line method (Wei et al. 2019) which has already shown state-
of-the-art performance on several benchmarks. The main
structure falls into the typical encoder-decoder style. Given
an input image, the encoder extracts the dense features, then
the decoder fetches the features and predicts the quantized
depth range categories. Specifically, the depth values are dis-
cretized into 100 discrete bins in the log space. The quan-
tized labels are assigned to each of the pixels as their classi-
fication labels.

3.2 Analysis on Data Distribution

Few works (Jiao et al. 2018) have analysed the depth distri-
bution, not to mention the foreground and background depth
distributions. Here we investigate two kinds of data distri-
bution of foreground and background pixels in training sub-
set. Figure 2 shows the depth value distributions. As shown,
more than 75% foreground pixels have depth less than 16m,
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Figure 3: Interaction of foreground and background sam-
ples. The depth estimation results (SILog) on foreground
and background regions are reported (lower is better). The
weight of foreground objective is on x-axis.

while it is about 50% for background. The foreground depth
also shows a heavier long-tail distribution. Depth gradient
distributions are shown in Table 1. We use the Laplacian of
the depth images as the depth gradient, which calculates the
second order spacial derivatives. The Laplacian image high-
lights areas of rapid depth change. The outputs are scaled to
[0, 255] and uniformly discretized into three bins: I, II and
III, from small to large. In this way, all pixels are divided
into three levels according to their gradient values. The fore-
ground has much higher proportion than background at level
II and III. Besides the depth range and depth gradient, the
difference of shapes should also be noted. Generally, depth
provides two kinds of information: location and shape. The
foreground objects share similar shapes and look like frus-
tums in 3D space, as shown in Figure 1. Based on the above
analysis, we propose to consider the foreground and back-
ground separately when estimate their depth.

3.3 Separate Objectives

In dense prediction tasks, generally the loss function can be
formulated as:

L =
1

N

N∑

i

E(yi, ŷi), (1)

where N is the number of pixels, yi and ŷi are the prediction
and ground truth of ith pixel. E is the error function, e.g., the
widely used cross-entropy error function.

After the analysis in Section 3.2, we further investigate the
interaction of foreground and background by splitting the
optimization objective. The modified loss function is defined
as:

L = λ× 1

Nf

Nf∑

i

E(yi, ŷi)+(1−λ)× 1

Nb

Nb∑

i

E(yi, ŷi), (2)

where Nf is the number of foreground pixels, Nb is the num-
ber of background pixels and λ acts as the weight to balance
the two loss terms. Figure 3 shows our results with differ-
ent settings of λ. The results are generated by a CNN that
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Figure 4: Illustration of the overall pipeline. (a) Foreground-background separated depth estimation. (b) 3D object detection.

has a single depth prediction decoder but the separated ob-
jective function. When λ is set to 0, which means only the
background samples are used to supervise the training, the
result on foreground becomes very poor. Similarly, the per-
formance on background drops sharply when λ is set to 1.0.
It verifies that the foreground depth and background depth
are distributed differently. When we increase the foreground
weight λ from 0 to 0.1, the result on background improves,
which indicates that the foreground and background to some
extend could help each other. Further, it should be noted that
the optimal λ values for foreground and background are dif-
ferent. For instance, the model shows its best performance
on foreground when λ = 0.7, but meanwhile the result on
background is much poorer. It indicates that the optimiza-
tion objectives for foreground and background are not con-
sistent. To address these issues, in Section 4, the foreground-
background separated depth estimation method is proposed
to achieve the optimum points at the same time.

3.4 Analysis Summary

We highlight three observations:
• The foreground and background depth have different

depth value distributions, depth gradient distributions and
shape patterns;

• The foreground and background depth reinforce each
other due to their shared similarities;

• The optimization objectives of foreground and back-
ground depth estimation are mismatched.

4 ForeSeE

In this section we first introduce the network architecture
of our method, then present the proposed loss function, and
finally show how the mask used to distinguish foreground
and background could be dropped during the inference. The
whole pipeline is illustrated in Figure 4.

4.1 Separate Depth Decoders

We construct an additional decoder based on the baseline
method (Wei et al. 2019), thus there are two parallel de-
coders which have the same structure. One of the decoders

is for foreground depth prediction, while the other one aims
to estimate the background depth. Specifically, for an image
of size H × W × 3, each decoder outputs a tensor of size
H × W × C, where C is the number of depth range cate-
gories.

Foreground regions are cropped from the output of fore-
ground depth decoder. The background depth range predic-
tions are obtained in the same way. The global depth range
predictions are generated by a seamless merge of foreground
and background regions. Then the depth range predictions
are converted to the final depth map using the soft-weighted-
sum strategy (Li, Dai, and He 2018).

4.2 Foreground-background Sensitive Loss
Function

As observed in Section 3, although the foreground depth
and background depth show different patterns, they do share
some similarities and could reinforce each other under an ap-
propriate ratio. Thus, we further weight the foreground and
background samples. For either foreground or background
branch, the loss function is a weighted average of foreground
samples and background samples, but with different bias.
Here we define the loss function which supervises the fore-
ground branch as:

Lfg = λf × Efg + (1− λf )× Ebg, (3)

where Efg represents mean errors calculated on foreground
predictions; Ebg is the mean error of foreground predictions;
λf is the weight to balance the foreground and background
samples during the training of foreground branch. Larger λf

leads to more preference for foreground samples. Similarly,
the loss function of background branch is formulated as:

Lbg = λb × E′
bg + (1− λb)× E′

fg, (4)

where λb is the weight; E′
bg and E′

fg are the mean errors of
background predictions and foreground predictions on this
background branch.

4.3 Inference without Mask

Here we propose a mask-free merge method such that the
binary mask is no longer needed once the training is fin-
ished. A max-pooling operation is applied on the foreground
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Method FSL SD SO Foreground Background Global
absRel SILog absRel SILog absRel SILog

ForeSeE � � � 0.118 0.205 0.141 0.210 0.138 0.210
� � 0.120 0.208 0.141 0.209 0.139 0.209

� 0.120 0.205 0.147 0.217 0.144 0.216
Baseline 0.129 0.216 0.143 0.210 0.141 0.211

Table 2: Ablation study of depth estimation on the KOD dataset. FSL refers to foreground-background sensitive loss; SD refers
to separate decoders; SO means separate objectives.

and background outputs before the softmax operation, which
represent the confidence scores of being each range cate-
gory. For each range category of each pixel, the highest con-
fidence score between foreground and background output is
retained, to serve as the final prediction. Formally, for the
H×W×C shaped outputs P = p1,p2, ..., pH×W (pi ⊆ RC),
The final predictions are calculated as:

p′i = Max(pfi , p
b
i ), (5)

where pfi , p
b
i represent the ith output of foreground and

background branch, and Max(·) is an element-wise maxi-
mum operator which takes two vectors as input and outputs
a new vector. Then the H×W×C shaped output is fed to
softmax and soft-weighted-sum operations to produce the
final depth map. The results only drop slightly compared
with the mask-based merge method (from 0.117 to 0.118
absRel).

5 Experiments

5.1 Experiment Settings

Datasets. We carry out experiments on KITTI dataset,
which contains large-scale road scenes captured on driving
cars, and serves as a popular benchmark for many computer
vision problems related to self-driving cars. Specifically, we
construct the KITTI-Object-Depth (KOD) dataset for evalu-
ating the foreground depth estimation, as described in Sec-
tion 3.1. The KOD dataset will be public available for con-
venience of future researches. Besides, we also apply our
method on KITTI-Object dataset to perform monocular 3D
object detection.
Evaluation Metrics. For evaluation of depth estimation, we
follow common practice (Li et al. 2018; Wei et al. 2019) and
use the mean absolute relative error (absRel) and scale in-
variant logarithmic error (SILog) as the main metrics. We
also report mean relative squared error (sqRel), mean log10
error (log10) and accuracy under threshold (δi). As for 3D
object detection, we follow the prior works (Liu et al. 2019;
Qin, Wang, and Lu 2019b) and focus on the “car” class. We
report the results of 3D and bird’s-eye-view (BEV) object
detection on the validation set. The commonly used average
precision (AP) with the IoU thresholds at 0.7 is calculated.
The results on KITTI easy, moderate and hard difficulty lev-
els are reported.
Implementation Details. For depth estimation, we follow
the most of settings in baseline method (Wei et al. 2019).
The ImageNet pretrained ResNeXt-101 (Xie et al. 2017) is
used as the backbone model. We train the network for 20

epochs, with batch size 4 and base learning rate set to 0.001.
The Stochastic Gradient Descent (SGD) solver is adopted
to optimize the network on a single GPU. λf and λb in
foreground-background sensitive loss function are set to 0.2.
Given a predicted depth map, the point cloud can be re-
constructed based on the pinhole camera model. We trans-
form each pixel (ui, vi) with depth value di to a 3D point
(xi, yi, zi) in left camera coordinate as follows:

zi = di, (6)

xi =
di × (ui − cU )

fU
, (7)

yi =
di × (vi − cV )

fV
, (8)

where fU and fV are the focal length along the x and y co-
ordinate axis; cU and cV are the 2D coordinate of the optical
center. Following (Wang et al. 2019), we set the reflectance
to 1 for each point and remove the points higher than 1 m
above the LiDAR source. The resulting point cloud is termed
as pseudo-LiDAR. Afterwards, any existing LiDAR-based
3D object detection methods can be applied.

5.2 Depth Estimation

Quantitative Results. We show the ablative results in Ta-
ble 2. Our ForeSeE outperforms the baseline over all met-
rics evaluated on foreground, background and global levels.
Specifically, when evaluate on foreground level, our method
improves the baseline performance by up to 8.5% (from
0.129 to 0.118 absRel). It is in accordance with our inten-
tion that ForeSeE is specifically designed to enhance the
ability of estimating the foreground depth. We further anal-
yse the effect of each component. When equipped with the
separate objectives (SO) described in Section 3.3, the base-
line achieves better results on foreground while performs
worse when evaluate on background pixels. Directly using
the separate decoders (SD) could avoid the harm on back-
ground. Finally, the performance on foreground is further
improved by applying the foreground-background sensitive
loss (FSL).

To compare with other state-of-the-art methods, we
apply DenseDepth (Alhashim and Wonka 2018) to the
KOD benchmark, which reports the best performance on
KITTI (Geiger et al. 2013) and NYUv2 (Silberman et
al. 2012) datasets among the methods with public avail-
able training code. We obtain results of DenseDepth us-
ing the code at github1, published by the authors. Except

1https://github.com/ialhashim/DenseDepth
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Method absRel ↓ sqRel ↓ SILog ↓ log10 ↓ δ1 ↑ δ2 ↑ δ3 ↑
Foreground DenseDepth 0.135 0.214 0.204 0.057 0.830 0.951 0.984

ForeSeE 0.118 0.193 0.205 0.053 0.851 0.952 0.982

Global DenseDepth 0.138 0.208 0.209 0.062 0.782 0.946 0.987
ForeSeE 0.138 0.213 0.210 0.061 0.793 0.949 0.987

Table 3: Depth estimation performance comapred with DenseDepth (Alhashim and Wonka 2018).

the dataset used, all the settings and hyper-parameters are
not modified. The results are shown in Table 3. Compared
with DenseDepth, our ForeSeE shows significant advan-
tage on foreground level. For instance, ForeSeE outperforms
DenseDepth by absolute 2.7% absRel (from 0.135 to 0.118
absRel), which is a relative improvement of 12.6%.

GTInput Baseline Ours

Figure 5: Quantitative comparison of the baseline and our
ForeSeE on estimated depth maps.

Figure 6: Quantitative comparison of the baseline and
our ForeSeE on converted pseudo-LiDAR signals. Signals
in blue are converted from ground truth depth; Baseline
pseudo-LiDAR are in red; Our ForeSeE pseudo-LiDAR are
in yellow.

Qualitative Results. Besides the quantitative comparison,
we show some visualization results. The predicted depth

maps are visualized in Figure 5. As shown, our ForeSeE es-
timates more precise depth on foreground regions. The con-
tour of foreground objects is more clear and accurate. Fur-
ther, in Figure 6 we compare the estimated depth in the for-
mat of 3D point cloud. 3D point cloud is a more intuitive
and reasonable representation for visually comparing and
debugging depth maps. As shown in Figure 6, our method
shows less estimation errors and more accurate bird’s-eye-
view (BEV) shapes.

5.3 3D Object Detection

To further validate the effectiveness, we conduct experi-
ments on 3D object detection problem. We convert the es-
timated image-based depth map to LiDAR-like point cloud
(pseudo-LiDAR). Then the LiDAR-based algorithms can be
applied to recognizing and localizing 3D objects. Here we
adopt Frustum-PointNet (F-PointNet) (Qi et al. 2018a) and
AVOD (Ku et al. 2018), specifically the F-PointNet-v1 and
AVOD-FPN, which are top-performing 3D object detection
methods and both utilize the information from LiDAR and
RGB images.
Brief Introduction of Detection Methods. Frustum-
PointNet leverages 2D detector to generate 2D object region
proposals in a RGB image. Each 2D region corresponds to a
3D frustum in 3D space. PointNet-based networks are used
to estimate a 3D bounding box from the points within the
frustum. AVOD uses multimodal feature fusion RPN which
aggregates the front-view image features and BEV LiDAR
features to generate 3D object proposals. Based on the pro-
posals, the bounding box regression and category classifi-
cation are performed in the second subnetwork. We apply
the F-PointNet and AVOD on the pseudo-LiDAR generated
by our depth estimation model during the training and infer-
ence. Hyper-parameters are not modified. More details about
the 3D object detector can be referred to the original papers.
Comparisons with State-of-the-art Methods. It should be
noted that some works (Wang et al. 2019; Weng and Kitani
2019) use the DORN (Fu et al. 2018) pre-trained on KITTI-
raw dataset for depth estimation, which includes the images
in training and validation subsets of KITTI-Object. Wang et
al. (Wang et al. 2019) claim that their results serve as the up-
per bound. If we also pre-train our baseline depth estimation
model on KITTI-raw and use it to generate pseudo-LiDAR,
we achieve 20.1 AP which outperforms their reported 18.5
AP when both use the F-PointNet as detector and evaluate on
the moderate level of car class. But, we want to clearly set a
baseline and fairly compare to other state-of-the-art monoc-
ular 3D detection methods.

We compare our method with other methods in Table 4.
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(a) Input Image (b) Baseline-PL (c) ForeSeE-PL

Figure 7: Qualitative results of 3D object detection. The ground truth 3D bounding boxes are in red; the predictions are in green.

The methods are evaluated by the average precision (AP)
with IoU threshold at 0.7. All the methods are tested on
ground-truth 3D bounding boxes. The compared 3D ob-
ject detection methods include Mono3D (Chen et al. 2016),
MLF-MONO (Xu and Chen 2018), ROI-10D (Manhardt,
Kehl, and Gaidon 2019), MonoGRNet (Qin, Wang, and Lu
2019a), MonoPSR (Ku, Pon, and Waslander 2019), TLNet-
Mono (Qin, Wang, and Lu 2019b) and DFDSNet (Liu et al.
2019). Our depth estimation models are trained on KOD
training subset which does not contain validation subset
of KITTI-Object. Either with F-PointNet or AVOD as the
detection method, our ForeSeE-PL brings remarkable im-
provements on the basis of baseline-PL over all the met-
rics, e.g., from 19.0 to 23.4 APBEV with AVOD detector.
Note that the 3D detection average precision (AP3D) is the
most widely used metric, on which our method achieves 7.5
AP gains (from 7.5 to 15.0 AP) and outperforms all the
state-of-the-art methods. Another advantage of our method
is that it is not limited to specific 3D object detection meth-
ods. With stronger 3D object detector, we achieve larger im-
provements, e.g., 3.6 AP gains on F-PointNet and 7.5 AP
gains on AVOD when evaluate on easy level of AP3D.
Qualitative Results. The visualization of detection results
are shown in Figure 7. The 3D bounding boxes are pro-
jected into image space for better visualization. There are
two obvious advantages of using ForeSeE-PL: less missed
detection and more accurate localization. Inaccurate depth
predictions will result in shifted localization or rotated ori-
entation, as in Figure 7(b). Even worse, the objects can not
be detected if the depth estimation model treats foreground
objects as background region, thus causing more missed de-
tections. Our ForeSeE method largely alleviates the prob-
lems through predicting more accurate depth on foreground
regions.

6 Conclusion

In this paper, we first analyse the data distribution of fore-
ground and background depth and explicitly explore the in-

Method Easy Moderate Hard
Mono3D 5.2 / 2.5 5.2 / 2.3 4.1 / 2.3

MLF-MONO 22.0 / 10.5 13.6 / 5.7 11.6 / 5.4
ROI-10D 14.5 / 9.6 9.9 / 6.6 8.7 / 6.3

MonoGRNet - / 13.9 - / 10.2 - / 7.6
MonoPSR 20.6 / 12.8 18.7 / 11.5 14.5 / 8.6

TLNet-Mono 21.9 / 13.8 15.7 / 9.7 14.3 / 9.3
DFDSNet 9.5 / 6.0 8.0 / 5.5 7.7 / 4.8

F-PN (baseline-PL) 17.3 / 9.6 11.8 / 5.4 10.4 / 5.0
F-PN (Our ForeSeE-PL) 20.2 / 13.2 12.6 / 9.4 12.0 / 8.2

AVOD (baseline-PL) 19.0 / 7.5 15.3 / 6.1 13.0 / 5.4
AVOD (Our ForeSeE-PL) 23.4 / 15.0 17.4 / 12.5 15.9 / 12.0

Table 4: Monocular 3D object detection results on KITTI
benchmark. We report APBEV/AP3D (in %) of the car cate-
gory. F-PN refers to Frustum-PointNet. PL refers to pseudo-
LiDAR. Here ForeSeE-PL stands for using pseudo LiDAR
from ForeSeE.

teractions. Based on the observations, a simple and effective
depth estimation pipeline, namely ForeSeE, is proposed to
estimate foreground depth and background depth separately.
We introduce a foreground depth estimation benchmark and
set fair baselines to encourage the future studies. The exper-
iments on monocular depth estimation and 3D object detec-
tion problems demonstrate the effectiveness of ForeSeE. We
expect wide application of the proposed method in depth es-
timation and related downstream problems, e.g., 3D object
recognition and localization.
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