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Abstract
Images or videos always contain multiple objects or ac-
tions. Multi-label recognition has been witnessed to achieve
pretty performance attribute to the rapid development of deep
learning technologies. Recently, graph convolution network
(GCN) is leveraged to boost the performance of multi-label
recognition. However, what is the best way for label corre-
lation modeling and how feature learning can be improved
with label system awareness are still unclear. In this paper,
we propose a label graph superimposing framework to im-
prove the conventional GCN+CNN framework developed for
multi-label recognition in the following two aspects. Firstly,
we model the label correlations by superimposing label graph
built from statistical co-occurrence information into the graph
constructed from knowledge priors of labels, and then multi-
layer graph convolutions are applied on the final superim-
posed graph for label embedding abstraction. Secondly, we
propose to leverage embedding of the whole label system
for better representation learning. In detail, lateral connec-
tions between GCN and CNN are added at shallow, mid-
dle and deep layers to inject information of label system
into backbone CNN for label-awareness in the feature learn-
ing process. Extensive experiments are carried out on MS-
COCO and Charades datasets, showing that our proposed so-
lution can greatly improve the recognition performance and
achieves new state-of-the-art recognition performance.

Introduction
Multi-label is a natural property of images or videos, it is
usually the case that a image or video contains multiple ob-
jects or actions. In the computer vision community, multi-
label recognition is a fundamental and practical task, and has
attracted increasing research efforts. Given the great suc-
cess of single label image/video classification brought by
deep convolutional networks (He et al. 2015; Carreira and
Zisserman 2017; He et al. 2016a; Feichtenhofer et al. 2018;
Wu et al. 2019), multi-label recognition can achieve pretty
performance by naively treating each label as an indepen-
dent individual and applying multiple binary classification
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(a) Examples on MS-COCO
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(b) Examples on Charades

Figure 1: Examples of label relationship in multi-label
datasets. (a) illustrates the co-occurrence of “Sports Ball”
and “Tennis Racket” on the MS-COCO datasets, we can see
the frequency that “Tennis Racket” co-occurs with “Sports
Ball” is as high as 0.42. Similarly, (b) showcases an exam-
ple of “Sitting on Couch” and “Watching Television” from
the Charades dataset.

to predict whether a label presents or not. However, we ar-
gue that the following two aspects should be taken into con-
sideration for such a task.

First of all, labels co-occur in images or videos with pri-
ors. As illustrated in Figure 1, with great chance, “Sports
Ball” comes together with “Tennis Racket” and a man “Sit-
ting on Couch” is “Watching Television” simultaneously.
Then, a question is naturally raised, how to model the re-
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lation among labels to leverage such priors for better perfor-
mance? Secondly, given input X , the common practice for
predicting its labels can be formulated as a two-stage map-
ping y = F1 ◦ F0(X), where F0 : X �→ f denotes the CNN
feature extraction process and F1 : f �→ y is the mapping
from feature space to label space. Labels are only explicitly
involved in the last stage as supervision in the training phase.
Therefore, the further question is, for a specific multi-label
classification task, whether and how the mutual-related label
space can explicitly help the feature learning process F0?

To take into account the label correlations, some ap-
proaches have been proposed. For example, probabilistic
graph model was used in (Li et al. 2016; Li, Zhao, and
Guo 2014) and RNN was used in (Wang et al. 2016a) to
capture dependencies among labels. However, probabilis-
tic graph models may suffer from scalability issues given
their computational cost. RNN model relies on predefined
or learned label sequential order and fails to well capture
the global dependencies. Recently, graph convolutional net-
work (Kipf and Welling 2016), aka GCN, has witnessed
prevailing success in modeling relationship among vertices
of a graph. Such a tool was leveraged to model the rela-
tion of the label system for multi-label recognition in (Chen
et al. 2019). Meanwhile, the label graph was built simply
by utilizing the frequency of label co-occurrence. Another
direction is to implicitly model label correlations via local
image regions attention, as was done in (Wang et al. 2017;
Zhu et al. 2017a). In addition, all the aforementioned solu-
tions follow the conventional practice of two-stage mapping
and the whole structure of label system is ignored in learning
the feature space.

In this paper, we attempt to find possible answers for the
two questions. We propose a label graph superimposed deep
convolution network called KSSNet for this task. The super-
imposing means the following two folds in our framework:
(1) to model the priors of co-occurrence of labels follow-
ing the GCN paradigm, instead of using statistics of label
co-occurrence alone to build the relation graph of the label
system, we propose to superimpose knowledge based graph
into statistics based graph for constructing the final one. (2)
In order to learn better feature representations for a specific
multi-label recognition task anchored on its label structures,
we design a novel superimposed CNN and GCN network to
extract label structure aware descriptors. Specifically, we
first construct two adjacency matrices AS ∈ RN×N and
AK ∈ RN×N to denote correlation graphs of labels, which
is constructed by co-occurrence statistics and a knowledge
graph named ConceptNet (Speer, Chin, and Havasi 2017)
respectively. The initial embedding of all nodes (namely, la-
bels) is extracted from ConceptNet. The final adjacency ma-
trix is a superimposed version. Then we apply multi-layer
graph convolution on the final superimposed graph to model
the label correlation. Besides, different from conventional
graph augmented CNN solutions which utilize information
of label system at the final recognition stage, we add lat-
eral connections between CNN and GCN at shallow, middle
and deep layers to inject information of the label system into
backbone CNN for the purpose of labels awareness in fea-
ture learning. We have carried out extensive experiments

on MS-COCO dataset (Lin et al. 2014) for multi-label im-
age recognition and Charades (Sigurdsson et al. 2016) for
multi-label video classification. Results show that our solu-
tion obtains absolute mAP improvement of 6.4% and 12.0%
in MS-COCO and Charades with very limited computation
cost overhead, when compared to its plain CNN counter-
part. Our model achieves new state-of-the-art and outper-
forms current state-of-the-art solution by 1.3% and 2.4% in
mAP on MS-COCO and Charades, respectively.

Related Work
State-of-the-art image or video classification frameworks
(He et al. 2016a; Carreira and Zisserman 2017; Feichten-
hofer et al. 2018; He et al. 2019; Wu et al. 2019) can be
directly applied for multi-label classification by replacing
the cross-entropy loss with multi-binary classification loss.
The straightforward extension leaves label correlation unex-
plored thus degrading the recognition performance. We pro-
pose our solution to alleviate this problem and it is closely
related with the following jobs.

Many existing works on multi-label classification pro-
posed to capture label relationship for performance improve-
ment. The co-occurrence of labels can be well formulated
by probabilistic graph models, in the literature, there have
many methods based on such mathematical theory to model
the labels (Li et al. 2016; Li, Zhao, and Guo 2014). To
tackle the problem of computation cost burden of proba-
bilistic graph models, the neural network based solution is
becoming prevalence recently. In (Wang et al. 2016a), re-
current network was used to encode labels into embedding
vectors for label correlation modeling purpose. Context gat-
ing strategy was utilized in (Lin, Xiao, and Fan 2018) to inte-
grate the post processing of label re-ranking into the whole
network architecture. There are also works done by lever-
aging the attention mechanism in order for modeling label
relationship. In (Wang et al. 2017) and (Zhu et al. 2017a),
either image region-level spatial attention map or attentive
semantic-level label correlation modeling was used to boost
the final recognition performance. (Wang, Jia, and Breckon
2019) proposed to improve the performance by model en-
semble.

Graph has been proved to be more effective for label
structure modeling. Tree-structure label graph built with
maximum spanning tree algorithm in (Li, Zhao, and Guo
2014) and knowledge graph for describing label dependency
in (Lee et al. 2018) are two typical label graph solutions.
Recently, GCN was introduced in (Kipf and Welling 2016)
and it has been successfully utilized for non-grid structured
data modeling. Researchers have leveraged GCN for many
computer vision tasks and great performance was achieved.
For instance, it was leveraged in (Yan, Xiong, and Lin 2018;
Gao et al. 2018) to model the relationship of skeletons of hu-
mans bodies for human action recognition and knowledge-
aware GCN was applied for zero-shot video classification
in (Gao, Zhang, and Xu 2019). Our work mostly relates to
the one proposed in (Chen et al. 2019), which used GCN to
propagate information among labels and merges label infor-
mation with CNN features at the final classification stage.
Differently, our work builds GCN by superimposing the

12266



���� ���� ������ � ������ �

����

������ �

���������� �����	
��
��������

����

�����	���	���
�������
�
�����	���	��
�������
�

����� � �����

�

� ������ ����������������
�	���

�� ��

��

����� � �����

�

� �����������

���

�	�


�	�


�	�
�	�


�	�


�	�
 �	�


�	�


�	�
�	�


�	�
�	�


�	�


Figure 2: The overview of KSSNet with backbone of Inception-I3D. “LC” is our proposed lateral connection, ‘S’ and ‘L’
denote Sigmoid and LeakyReLU operations, respectively. “Inc.” is the Inception block in I3D (Carreira and Zisserman 2017).
KSSNet takes videos and initial label embeddings as input, and outputs the predicted labels of these videos. “GConv” is the
abbreviation of “Graph Convolution”.

graph built from statistical co-occurrence information into
the graph built with knowledge priors. The label informa-
tion is absorbed into the backbone network for better feature
learning.

Approach
In this paper, We propose a knowledge and label graph su-
perimposing framework for multi-label classification. We
provide a new label correlation modeling method of super-
imposing statistical label graph and knowledge prior ori-
ented label graph. Better feature learning network archi-
tecture by absorbing label structure information generated
by GCN at shallow, middle and deep layers of backbone
CNN is designed. We call our model as KSSNet (Knowl-
edge and Statistics Superimposing Network). Taking the
KSSNet with backbone of Inception-I3D (Carreira and Zis-
serman 2017) designed for multi-label video classification
as example, we show its block-diagram in Figure 2. When
it comes to multi-label image classification, the framework
can be easily constructed by superimposing GCN with state-
of-the-art 2D CNN such as ResNet (He et al. 2016a). In the
following subsections, we firstly introduce in detail how la-
bel graph are constructed and superimposed, and then we
show what is our proposed GCN and CNN superimposing.

Graph Construction
Our final graph is constructed by superimposing statistical
label graph into knowledge prior oriented graph. Graph
constructed with such statistical information as label co-
occurrence frequencies and conditional probabilities of dif-
ferent labels is termed as statistical graph in our paper. Sta-
tistical information is determined by the distribution of sam-
ples in training set. The statistical graph can be influenced
significantly by noise and disturbance. Meanwhile, knowl-
edge graph, such as ConceptNet (Speer, Chin, and Havasi
2017), is built with human knowledge by several methods,
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Figure 3: A subgraph with five nodes on MS-COCO. The
number on each edge denotes its weight. Yellow dashed
lines with red numbers nearby highlight the redundant edges
when taking the threshold of 0.2.

such as expert-created resources and games with a purpose.
It is more authentic for representing the relationship of la-
bels, especially for small scale datasets. However it has
three drawbacks: Firstly, the graph is so dense that it repre-
sents too much trivial relationship of nodes. When used into
deeper GCNs, it will result in more heavy negative effect
of over-smoothed label embeddings, compared with sparse
graphs. Secondly, it is datasets independent and neglects
the characteristics of specific tasks. Thirdly, as knowledge
graph can hardly contain all labels in a dataset, the edges of
these labels are lost. Our proposed method combines sta-
tistical information and human knowledge, which can over-
come their drawbacks to some extent. We formally present
its details as follows.

A graph is usually denoted as G = (V, E , A), where V , E ,
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A are the set of nodes, set of edges and adjacency matrix. A
is an N ×N matrix with (i, j) entry equaling to the weight
of edges between nodes Vi and Vj . N = |V| is the number of
vertices. E ∈ RN×F denotes the feature (label embeddings
in our case) matrix for all N nodes.

We denote the statistical graph as GS = (V, ES , AS),
knowledge graph as GK = (V, EK , AK), where AS and AK

are adjacency matrices obtained with statistical information
and knowledge priors respectively. AS is constructed by fol-
lowing (Chen et al. 2019). AK is obtained according to the
human created knowledge graph ConceptNet (Speer, Chin,
and Havasi 2017). Specifically,

[AK ]ij =

{
max{wr|r ∈ Sij}, if |Sij | > 0

0, if |Sij | = 0
(1)

where Sij is a set of relations (such as “used for” and “is a”)
between nodes Vi and Vj extracted from ConceptNet. wr is
the weight of relation r. |Sij | is the number of elements in
Sij .

Denoting A′
S and A′

K as the normalized versions of
AS and AK , respectively. The normalized AS is A′

S =

D
−1/2
S ASD

−1/2
S , where DS is diagonal and [DS ]ii =∑

j [AS ]ij . AS is normalized analogously. Weighted aver-
age of A′

S and A′
K is used to superimpose the prior knowl-

edge into statistical graph and the resulted new adjacency
matrix is normalized.

A = λA′
S + (1− λ)A′

K (2)

where λ ∈ [0, 1] is a weight coefficient.
Meanwhile, as the elements of A′

S and A′
K are non-

negative, A has more nonzero elements compared with AS

and AK . That is, the graph constructed with A has more re-
dundant edges than GS or GK , as is illustrated in Figure 3.
In order to suppress these edges, we use a threshold τ ∈ R
to filter the elements of A

[Aτ ]ij =

{
0, if Aij < τ

Aij , if Aij ≥ τ
(3)

As is known to us, when the number of GCN layers in-
creases, the performance of models drops in some tasks. The
reason is possibly the over-smoothing of deeper GCN layers
(Chen et al. 2019). Inspired by such fact, we further ad-
just the entries in the adjacency matrix of the superimposed
graph and obtain the final matrix AKS :

AKS = ηAτ + (1− η)IN (4)

where IN is an N × N identity matrix. η ∈ R is a weight
coefficient. With the adjacency matrix AKS , we construct
the set of edges as

EKS = {(Vi, Vj)|[AKS ]ij �= 0, and 0 ≤ i, j ≤ N} (5)

(Vi, Vj) denotes the edge (directed or undirected) of nodes
Vi and Vj . The graph we proposed is defined as GKS =
(V, EKS , AKS), which is called KS graph.

Superimposing of GCN and CNN
Unlike conventional convolutions, GCN is designed for non-
Euclidean topological structure. In GCN, the label em-
beddings of each node is a mixture of the embeddings
of its neighbors from the previous layer. We follow a
common practice as was done in (Kipf and Welling 2016;
Chen et al. 2019) to apply graph convolution. Every GCN
layer can be formulated as a non-linear function:

E(l+1) = σ(A′
KSE

(l)W (l)), (6)

where A′
KS is the normalized adjacency matrix. E(l) ∈

RN×C(l)

denotes the label embedding at the l-th layer for
all N nodes. Note that E(0) is the initial label embeddings
and it is extracted from semantic networks like ConceptNet
(Speer, Chin, and Havasi 2017). W (l) ∈ RC(l)×C(l+1)

is a
transformation matrix and is learnable in the training phase.
σ(·) denotes a non-linear activation operation.

Instead of only superimposing information of label rela-
tionship at the final recognition stage, we propose to inject
label information into backbone 2D/3D CNNs at different
stages by lateral connection (LC operation). Figure 4 shows
2D and 3D versions of our proposed LC operation. Take
3D version for example, we define an LC operation in deep
neural networks as:

y = g(RN×T×H×W (RTHW×C(x)⊗ σ(ET ))) + x (7)

Here x ∈ RC×T×H×W is CNN feature, C is the number of
channels. T , H and W denote the frames, height and width
of feature tensor. N is the number of labels. E ∈ RN×C in-
dicates the hidden label embeddings of GCN. g is a 1×1×1
convolution g : RN×T×H×W �→ RC×T×H×W , whose pa-
rameters are to be learnt for the downstream tasks. ‘⊗’
denotes matrix multiplication and (·)T is transpose opera-
tion. σ(·) denotes a non-linear activation operation. Both
RN×T×H×W (·) and RTHW×C(·) are defined as reshape
operations, which rearrange the input array as the shape
noted at their subscripts.

The motivation of LC is to push the CNN network to
learn label-system anchored feature representations for bet-
ter recognition. As stated in (7), it first calculates cross-
correlation of CNN features and label embeddings and out-
puts how each CNN feature point is correlated with a label
embedding. Such correlation tensor is then mapped to a hid-
den space by 1x1x1 convolution to encode the relationship
of CNN features and label embeddings. At last, the rela-
tionship tensor generated from 1 × 1 × 1 convolution are
added into the original CNN feature tensor. With the lateral
connection, the relationship of label system and CNN fea-
ture maps is modeled and the learned CNN feature is kind
of label-system anchored.

Our KSSNet superimposes labels embeddings into CNN
features not only in the classification layer but also in hid-
den layers. There are several advantages of this strategy. (1)
The hidden embeddings in GCN can help the feature learn-
ing process of CNN, making hidden CNN features aware of
label relationship. (2) As for the learning process of hid-
den embeddings, the extra gradients from LC operation can
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Table 1: Performance comparisons between baselines and KSSNet on MS-COCO. KSSNet is based on our proposed KS graph
and has four GCN layers.

Method mAP CP CR CF1 OP OR OF1
CNN-RNN (Wang et al. 2016a) 61.2 - - - - - -

SRN (Zhu et al. 2017a) 77.1 81.6 65.4 71.2 82.7 69.9 75.8
ResNet101 (He et al. 2016b) 77.3 80.2 66.7 72.8 83.9 70.8 76.8

Multi-Evidence (Ge, Yang, and Yu 2018) – 80.4 70.2 74.9 85.2 72.5 78.4
ML-GCN (Chen et al. 2019) 82.4 84.4 71.4 77.4 85.8 74.5 79.8

KSSNet 83.7 84.6 73.2 77.2 87.8 76.2 81.5
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Figure 4: The block diagram of LC operation. ‘R’, “(·)T ”,
‘×’ and ‘+’ denote matrix reshape, transpose, multiplica-
tion and sum operations respectively. x(l) and E(l) are CNN
feature and GCN feature at the lth GCN layer. The shape of
each tensor is marked in gray annotation.

be seen as a special regularization, which forces hidden em-
beddings more adapt to CNN features. It can overcome the
over-smoothing of deeper GCN to some extent.

Experiment
In this section, we conduct experiments to show that our pro-
posed solution can achieve pretty good performance in both
image and video multi-label recognition tasks. Then, we
carry out ablation studies to evaluate the effectiveness of the
proposed graph construction method in our KSSNet.

Datasets and Evaluation Metrics
MS-COCO MS-COCO (Lin et al. 2014) is a static image
dataset, which is widely used for many tasks, such as multi-
label image recognition, object localization and semantic
segmentation. It contains about 82K images for training,
41K for validation and 41K for test. All images are involved
with 80 object labels in the multi-label image recognition
task. On average, each image has 2.9 labels. We evaluate all
the methods on validation set, since the ground-truth labels
of the test set are not available.

Charades Charades (Sigurdsson et al. 2016) is a multi-
label video dataset containing around 9.8K videos, among

which about 8K for training and 1.8K for validation. The
average length of videos in Charades is about 30 seconds. It
has 157 action labels and 66.5K annotated activities, about
6.8 labels per video. Each action label is composed of a
noun (object) and a verb (action). In total, there are 38 dif-
ferent nouns and 33 different verbs. We also evaluate differ-
ent methos using its validation set.

Evaluation Metrics In order for evaluating our model on
MS-COCO comprehensively and for convenience of com-
parison with other solutions, we report the average per-class
precision (CP), recall (CR), F1 (CF1), the average overall
precision (OP), overall recall (OR), overall F1 (OF1) and
mean average precision (mAP), as is done in (Chen et al.
2019). As for the Charades, we evaluate all models with
mAP (Sigurdsson et al. 2016) to show their effectiveness.
Besides, we also report the value of FLOPs that each model
consumes to depict model complexity.

Implementation Details
Experiment on MS-COCO For image recognition, we
choose state-of-the-art ResNet101 (He et al. 2016b) as the
backbone of our KSSNet, which is pre-trained on ImageNet.
The GCN of KSSNet is built from four successive graph
convolution layers and the number of channels of their out-
puts is 256, 512, 1024 and 2048, respectively. In order to
deal with the “dead ReLU” problem, we use LeakyReLU as
activation operation for graph convolution layers, with neg-
ative slope of 0.2. Three 2D version LC operations between
GCN and the backbone ResNet101 are used and the label
embeddings of four graph convolution layers are injected to
res2, res3, res4 and res5 of ResNet101. The activation func-
tion in the LC operation is set to be Tanh.

We adopt 300-dimentional GloVe text model (Penning-
ton, Socher, and Manning 2014) to generate the initial la-
bel embeddings of labels. As for the labels whose names
contain multiple words and have no corresponding keys in
GloVe, we obtain the label representation by averaging em-
beddings of all words. In the process of constructing statis-
tical matrix GS , we use the strategy proposed in (Chen et al.
2019). We set λ in (2) to be 0.4, τ in (3) to be 0.02 and η in
(4) to be 0.4. During training, the same data preprocessing
procedure as (Chen et al. 2019) is adopted. Adam is used
as the optimizer with a momentum of 0.9, weight decay of
10−4 and batch size of 80. The initial learning rate of Adam
is 0.01. All models are trained for 100 epochs in total.

12269



Table 2: Quantitative results of baselines and KSSNet on Charades validation set. The KSSNet bellow has 4 GCN layers and
its adjacency matrix is from our proposed KS graph.

Method Backbone Modality Pretrain mAP GFLOPs
Two-stream (Wu et al. 2018) VGG16 RGB+Flow ImageNet,UCF101 14.3 –

CoViAR (Wu et al. 2018) – Compressed (Wu et al. 2018) ILSVRC2012-CLS 21.9 –
CoViAR (Wu et al. 2018) – Compressed+Flow ILSVRC2012-CLS 24.1 –

Asyn-TF (Sigurdsson et al. 2017) VGG16 RGB+Flow ImageNet 22.4 –
MultiScale (TR) (Zhou et al. 2018) Inception-I3D RGB ImageNet 25.2 –
I3D (Carreira and Zisserman 2017) Inception RGB Kinetics-400 32.9 108
ResNet-101(NL) (Wang et al. 2018) ResNet101-I3D RGB Kinetics-400 37.5 544
STRG (NL) (Wang and Gupta 2018) ResNet101-I3D RGB Kinetics-400 39.7 630
SlowFast (Feichtenhofer et al. 2018) ResNet101 RGB Kinetics-400 42.1 213

SlowFast(NL) (Feichtenhofer et al. 2018) ResNet101 RGB Kinetics-400 42.5 234
LFB(NL) (Wu et al. 2019) ResNet101-I3D RGB Kinetics-400 42.5 –

KSSNet Inception-I3D RGB ImageNet 44.9 127

Experiment on Charades Inception-I3D of KSSNet is
initialized following the inflating mechanism proposed in
I3D (Carreira and Zisserman 2017) with BN-Inception pre-
trained on ImageNet. We fine-tune our models using 64-
frame input clips. These clips are sampled following the
strategy of (Wang et al. 2016b), where each clip consists of
64 snippets and each snippet contain only one frame. The
spatial size is 224 × 224, randomly cropped from a scaled
video whose spatial size is 256 × 256. λ, η and τ are set
to 0.6, 0.4 and 0.03, respectively. We train all models with
mini-batch size of 16 clips. Adam is used as the optimizer,
starting with a momentum of 0.9 and weight decay of 10−4.
The weight decays of all bias are set to zero. Dropout (Hin-
ton et al. 2012) with a ratio of 0.5 is added after the average
pooled CNN features. The initial learning rate of GCN pa-
rameters is set to be 0.001, while others are set to be 10−4.
We use the strategy proposed in (He et al. 2015) to initial-
ize the GCN and initial label embeddings are extracted with
ConceptNet (Speer, Chin, and Havasi 2017). During infer-
ence, we evenly extract 64 frames from the original full-
length video.

Comparison with Baselines
In this part, we present comparisons with several state-of-
the-arts on MS-COCO and Charades, respectively to show
the effectiveness of our proposed solution.

Results on MS-COCO We compare our KSSNet with
the state-of-the-art methods, including CNN-RNN (Wang et
al. 2016a), SRN (Zhu et al. 2017b), ResNet101 (He et al.
2016b), Multi-Evidence (Ge, Yang, and Yu 2018) and ML-
GCN (Chen et al. 2019). Table 1 records the quantitative re-
sults of all models on MS-COCO validation set. ML-GCN is
a GCN+CNN framework based on statistical label graph and
it is the current state-of-the-art. It can be observed that our
KSSNet obtains the best performance at almost all evalua-
tion matrices. Specially, compared with ML-GCN, its mAP
is 1.3% higher, the improvement of overall precision is im-
proved from 85.8% to 87.8%, the gain of overall recall is
1.7% and new state-of-the-art overall F1 score of 81.5% is
achieved. The result demonstrates the effectiveness of our
KSSNet framework. The comparison of KSSNet and its
backbone ResNet101 shows that the absolute improvement

in mAP is up to 6.4% and evidences that the label embed-
dings of GCN can explicitly take advantage of the label re-
lationship, which is hard to be learned by plain CNN or even
ignored by many frameworks.

Results on Charades Table 2 shows the comparison with
state-of-the-art models for our proposed KSSNet on Cha-
rades. Compared with backbone I3D model, KSSNet pro-
vides 12.0% higher mAP at the cost of very little computa-
tion overhead (from 108 GFLOPs to 127 GFLOPs). We can
see that the gain is even larger than what achieved on MS-
COCO (12.0% v.s. 6.4%). The origin beneath is possibly
the characteristics of Charades dataset. On the one hand,
each video has 6.8 labels on average, which is even more
than MS-COCO. The correlation among different labels has
significant influence on multi-label video recognition task.
On the other hand, the dataset is not sufficiently large, so
the impact of extra label correlation introduced by GCN is
more obvious. It can be concluded from such observation
that our proposed GCN and CNN superimposing framework
can significantly improve baseline result, especially when
the training data is not so sufficient. We can also see that
although no pretraining on extra large scale video dataset,
KSSNet (KS graph) achieves the best performance, which
is 2.4% higher than the current state-of-the-art method LFB
and SlowFast(NL) which are pretrained on Kinetics-400. It
should be noted that the GFLOPs of our KSSNet is much
smaller than SlowFast(NL), which means KSSNet has re-
markable potential in fast multi-label video classification.

Ablation Studies
In this section, we perform ablation studies to evaluate the
effectiveness of our KS graph and to analyze the influence
of GCN depth in KSSNet framework.

Label graphs of KSSNet In order to evaluate the influ-
ence of different graph, we implement three versions of
KSSNet with statistical graph, knowledge graph and our
proposed KS graph. All of them have the same framework
with four GCN layers. Table 3 summarizes the results of
KSSNet (statistical graph), KSSNet (knowledge graph) and
KSSNet (KS graph). The experiment on MS-COCO shows
that knowledge graph performs worse than statistical graph
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Table 3: Performance comparisons of different label graphs on MS-COCO and Charades. “KSSNet (statistical graph)”, “KSS-
Net (knowledge graph)” and “KSSNet (KS graph)” are three versions of our proposed KSSNet which have the same framework
and different graphs on each dataset. All our variants have four GCN layers.

Methods MS-COCO Charades
Backbone mAP CP CR CF1 OP OR OF1 Backbone mAP

KSSNet (statistical graph) ResNet101 83.1 84.2 73.1 77.6 87.2 76.4 81.2 Inception-I3D 40.7
KSSNet (knowledge graph) ResNet101 81.0 82.8 69.5 75.6 84.5 73.4 78.6 Inception-I3D 41.1

KSSNet (KS graph) ResNet101 83.7 84.6 73.2 77.2 87.8 76.2 81.5 Inception-I3D 44.9

Table 4: Performance of different GCN depths of KSSNet. On each experiment, all versions of KSSNet use KSS graph as
adjacency matrix.

Methods MS-COCO Charades
Backbone mAP #Params Backbone mAP GFLOPs #Params

KSSNet (2 layers) ResNet101 82.9 172.1MB Inception-I3D 41.9 110 47.6MB
KSSNet (3 layers) ResNet101 83.5 173.2MB Inception-I3D 43.8 115 49.1MB
KSSNet (4 layers) ResNet101 83.7 173.8MB Inception-I3D 44.9 127 49.8MB

and KS graph, which is caused by the relationship missing
of uncovered labels in knowledge graph and by the over-
smoothing impact introduced by the presence of many triv-
ial edges. However, the experiment on Charades exhibits
a contrary result, KSSNet (knowledge graph) outperforms
KSSNet (statistical graph) by a mAP of 0.4. The cause can
attribute to the characteristics of Charades. In Charades, la-
bels are more complex and training samples are not so suffi-
cient. Graph constructed from co-occurrence information is
not so reliable while knowledge priors are always valid, so
the contradiction between complex label relationship mod-
eling and the lack of samples in Charades makes knowl-
edge graph more effective than statistical graph. Both ex-
periments show that our KS graph performs the best, which
validates the effectiveness of superimposing statistical graph
and knowledge graph.

Influence of GCN Depth in KSSNet As we know, con-
ventional GCN suffers from over-smoothing. In this part,
we conduct multi-label image and video recognition exper-
iments to demonstrate that our KSSNet framework can deal
with this problem effectively.

The backbone of KSSNet is ResNet101 and Inception-I3d
for MS-COCO and Charades, respectively. In this experi-
ment, we modify the GCN pathway of KSSNet to be with
three and two graph convolution layers. The modification
can be simply done in two steps: 1) delete the first one or
two graph convolution layer(s) and the corresponding LC
operation(s) from the GCN pathway; 2) then the first graph
convolution layer of the rest ones is adapted to take the ini-
tial label embeddings E(0) as input by adjusting its number
of input channel C to the channel number of E(0).

Experimental results are shown in Table 4. It is obvious,
with our KSSNet, more GCN layers lead to better classifi-
cation results at the cost of small increase of computational
cost and model size. KSSNet (3 layers) achieves better per-
formance than KSSNet (2 layers) by absolute mAP improve-
ments of 0.6% and 1.9% in MS-COCO and Charades. KSS-
Net (4 layers) outperforms KSSNet (3 layers) by 0.2% and

1.1% in mAP. As is reported in ML-GCN (Chen et al. 2019),
when GCN has no less than 2 layers, performance of conven-
tional GCN+CNN solution degrades as long as the number
of graph convolution layers gets larger. Our model performs
on the contrary. This is because that (1) more GCN layers
bring more LC operations which guide CNN to learn better
label structure aware features at shallow, middle and higher
CNN layers. (2) The extra gradients from LC operation can
regularize the learning of label embeddings in GCN. (3) We
have proposed such strategies as redundant removal to tackle
the over-smoothing issue of GCN.

Impact of Super-Parameters This experiment is con-
ducted on Charades. When λ varies from 0 to 1 by step
of 0.2 and keep other parameters as described above, mAP
is 41.05, 41.7, 43.44, 44.93, 44.83 and 41.57. When we fix
λ as 0.6, τ varies from 0.01 to 0.04 by step of 0.01, the mAP
is 44.6, 44.62, 44.93 and 44.77.

Conclusion
Capturing label relationship takes a crucial position on
multi-label recognition. In order to better model this in-
formation, we propose to construct the KS graph for label
correlation modeling by superimposing knowledge graph
into statistical graph. Then the LC operation is presented
for injecting GCN embeddings into CNN features, result-
ing in a novel neural network KSSNet. LC operation acts
as label-feature correlation modeling and helps the model
learn label-anchored feature representations. The KSSNet is
proven to be capable of learning better feature representa-
tions for a specific multi-label recognition task anchored on
its label relationship. Experiments on MS-COCO and Cha-
rades have demonstrated the effectiveness of our proposed
KS graph and KSSNet for both multi-label image and video
recognition tasks.
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