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Abstract

The key of Weakly Supervised Fine-grained Image Classi-
fication (WFGIC) is how to pick out the discriminative re-
gions and learn the discriminative features from them. How-
ever, most recent WFGIC methods pick out the discrimina-
tive regions independently and utilize their features directly,
while neglecting the facts that regions’ features are mutually
semantic correlated and region groups can be more discrim-
inative. To address these issues, we propose an end-to-end
Graph-propagation based Correlation Learning (GCL) model
to fully mine and exploit the discriminative potentials of re-
gion correlations for WFGIC. Specifically, in discriminative
region localization phase, a Criss-cross Graph Propagation
(CGP) sub-network is proposed to learn region correlations,
which establishes correlation between regions and then en-
hances each region by weighted aggregating other regions
in a criss-cross way. By this means each region’s representa-
tion encodes the global image-level context and local spatial
context simultaneously, thus the network is guided to implic-
itly discover the more powerful discriminative region groups
for WFGIC. In discriminative feature representation phase,
the Correlation Feature Strengthening (CFS) sub-network is
proposed to explore the internal semantic correlation among
discriminative patches’ feature vectors, to improve their dis-
criminative power by iteratively enhancing informative ele-
ments while suppressing the useless ones. Extensive exper-
iments demonstrate the effectiveness of proposed CGP and
CFS sub-networks, and show that the GCL model achieves
better performance both in accuracy and efficiency.

Introduction

As an emerging research topic, Weakly Supervised Fine-
grained Image Classification (WFGIC) focuses on discrim-
inative subtle variances for distinguishing objects of subor-
dinate categories with only image-level labels. Due to small
variances between images in same subcategory and sharing
the global geometry and appearances of sub-categories, dis-
tinguishing fine-grained images is still a challenging task.

Learning to localize discriminative parts from fine-grain
images plays the key role in WFGIC. More recent works
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Figure 1: The motivation of graph propagation based corre-
lation learning. (a) is the original image. (b)(d) are the dis-
criminative score maps and (c) (e) are localization results
without and with criss-cross graph propagation (CGP) learn-
ing, respectively. (f) and (g) are the feature vectors without
and with correlation feature strengthening (CFS) learning.

can be divided into two groups. The first group is lo-
calizing discriminative parts based on heuristic schemes.
(He and Peng; He, Peng, and Zhao; Peng, He, and
Zhao; Zhang et al.; He and Peng). The limitation of
heuristic schemes is that they hardly guarantee the selected
regions are discriminative enough. The second group is
end-to-end localization-classification approaches by learn-
ing mechanism (Fu, Zheng, and Mei; Wang, Morariu, and
Davis; Zheng et al.; Yang et al.). However, all the previ-
ous works try to localize discriminative regions/patches in-
dependently and neglect local spatial context of regions and
the correlation between regions.

We argue that considering local spatial context and region
correlations is rather helpful in distinguishing fine-grained
images. Exploiting local spatial context can improve the dis-
criminative ability of regions and mining the correlation be-
tween regions can be more discriminative than individual
region. This motivates us to incorporate the local spatial
context of regions and correlation between regions into the
discriminative patches selecting. To this end, we propose a
Criss-cross Graph Propagation (CGP) sub-network to learn
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Figure 2: The framework of the Graph-propagation based Correlation Learning (GCL) model. We generate the discriminative
adjacent matrix (AM) through the Criss-Cross Graph Propagation (CGP) sub-network and the discriminative score map (Score
Map) through the scoring network (Sample). Then the GCL selects the more discriminative patches from the default patches
(DP) according to the discriminative score map. Meanwhile, we crop and resize the patches to 224 × 224 from the original
image, and generate the discriminative features through the graph-propagation for Correlation Feature Strengthening (CFS)
sub-network. Finally, we concatenate the multiple features to get the final feature representation for WFGIC.

the correlations among regions. Specifically, CGP iteratively
calculates correlations between regions in a criss-cross way
and then enhances each region by correlation weighted ag-
gregating other regions. By this means, each region’s feature
both encodes the global image-level context, i. e. all corre-
lations between the aggregating region and other regions in
the whole image, and local spatial context, i. e. the closer the
region is to the aggregating region, the higher the aggrega-
tion frequency is during the criss-cross graph propagation.
Through learning the correlation between regions in CGP,
the network is guided to implicitly discover the discrimi-
native region groups which are more powerful for WFGIC.
Fig. l shows our motivations, where we can see that the score
map (Fig. l (b)) highlights the the head regions when consid-
ering each region independently, while the score map (Fig. l
(d)) strengthens the most discriminative regions after multi-
ple iterations of criss-cross propagation, which helps the ac-
curate locating of the discriminative region group (the head
and tail regions).

Discriminative feature representation play another key
role for WFGIC. Recently, some end-to-end networks (Lin,
Roy Chowdhury, and Maji; Gao et al.; Kong and Fowlkes
Cai, Zuo, and Zhang; Cui et al.) strengthen the discrimina-
tive ability of feature representation by encoding convolu-
tional feature vectors into high-order information. The ef-
fectiveness of these methods is due to their invariance abil-
ity to object translation and pose variation, which benefits
from the order-less aggregation manner of features. The
limitation of these feature encoding methods is that they
neglect the importance of local discriminative features for
WFGIC. Therefore, some methods (Zheng et al.; He, Peng,
and Zhao) incorporate the local discriminative features to
improve the feature discriminative ability through concate-

nating selected region feature vectors. However, it is worth
noting that all the previous works ignore the internal seman-
tic correlation among discriminative region feature vectors.
Besides, there are some noisy context, such as background
regions in Fig. 1(c)(e) within the selected discriminative re-
gions. Such background or less discriminative information
is likely to be harmful for WFGIC since all subcategories
share similar background (e.g. birds usually inhabit on the
tree or fly in the sky). Based on above intuitive yet important
observations and analysis, we propose a Correlation Feature
Strengthening (CFS) sub-network to explore the internal se-
mantic correlation between region feature vectors to obtain
better discriminative ability. We achieve this by constructing
a graph with the selected region feature vectors, and then
jointly learning the interdependencies among feature vector
nodes to guide the discriminative information propagation
in CFS. Fig. l (f) and (g) are the feature vectors without and
with CFS learning.

To summarize, the contributions are as follows:

• To the best of our knowledge, we are the first to ex-
plore and exploit region correlations based on graph-
propagation to implicitly discover the discriminative re-
gion groups and improve their feature discriminative abil-
ity for WFGIC.

• We propose an end-to-end Graph-propagation based Cor-
relation Learning (GCL) model which incorporates the
criss-cross graph propagation (CGP) sub-network and
correlation feature strengthening (CFS) sub-network into
a unified framework to learn discriminative features effi–
ciently and jointly.

• We evaluate the proposed model on Caltech-UCSD Birds-
200-2011 (CUB-200-2011) (Branson et al.) and Stanford
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Cars (Krause et al.). Extensive experiments indicate our
method achieves the best performance both in classifica-
tion accuracy (e.g., 88.3% vs 87.0% (Chen et al.) on CUB-
200-2011) and efficiency ( e.g., 56 FPS vs 30 FPS (Lin,
Roy Chowdhury, and Maji) on CUB-200-2011).

Proposed Method

Overview

We propose an end-to-end Graph-propagation based Cor-
relation Learning (GCL) model to fully explore and ex-
ploit the discriminative potential ability of correlation for
WFGIC. It consists of two graph propagation sub-networks,
as shown in Fig. 2. The Criss-cross Graph Propagation
(CGP) sub-network enhances the features of each position
by a weighted sum of the features at its horizontal and ver-
tical (i.e. criss-cross) positions to discover discriminative
regions. The Correlation Feature Strengthening (CFS) sub-
network explores the interdependencies among feature vec-
tors to emphasis discriminative elements and suppress less
helpful ones.

Criss-Cross Graph Propagation

In order to take both global image-level context and lo-
cal spatial context into account during the discriminative
ability learning of regions, we propose a new approach to
establish the correlative relationship between regions. One
graph propagation process of the proposed CGP module in-
cludes the following two stages: the first stage is that CGP
learns correlation weight coefficients between each two re-
gions (i.e. adjacent matrix computing). In the second stage,
the model combines the information of its criss-cross neigh-
bor regions through a weighted sum operation for seeking
the real discriminative regions (i.e. graph updating). Specif-
ically, the global image-level context is integrated into CGP
via calculating correlations between each two regions in the
whole image, and the local spatial context information is
encoded through the iterative criss-cross aggregating oper-
ations, as shown in Fig. 3.

Here, we give a detailed formulation for one graph
propagation process. Given an input feature map MO ∈
R

C×H×W , where W , H represents the width and height of
the feature map and C is the number of channels, we feed it
into the CGP module F :

MS = F(MO), (1)

where F is composed of node representation, adjacent ma-
trix computing and graph updating. MS ∈ R

C×H×W is the
output feature maps.
Node representation. The node representation generation
is achieved by a simple convolutional operation f :

MG = f(WT ·MO + bT ), (2)

where WT ∈ R
C×1×1×C and bT are the learned weight pa-

rameters and bias vector of a convolution layer, respectively.
MG ∈ R

C×H×W denotes the node feature map. Specifi-
cally, we regard a 1 × 1 convolution filter as a small region
detector. Each VT ∈ R

C×1×1 vector across channels at fixed

Figure 3: The illustration of the frequency of each node in
M3

G that are integrated into the center node via three times
graph propagation.

spatial location of MG represents a small region at a corre-
sponding location of image. We use the generated small re-
gion as a node representation. Note that WT is randomly ini-
tialized and the initial three node feature maps are obtained
by three different f calculations: M1

G,M
2
G,M

3
G.

Adjacent matrix computing. After obtaining the W × H
nodes with C-dimension vectors in feature map M1

G,M
2
G,

we construct a correlation graph to calculate the semantic
correlations between nodes. Each element in the adjacent
matrix of correlation graph indicates the correlation intensity
between nodes. Concretely, the adjacent matrix is obtained
through performing node vector inner product between two
feature maps M1

G ∈ R
C×H×W and M2

G ∈ R
C×H×W .

Let’s take a single correlation of two positions in adjacent
matrix as an example. The correlation of two positions at p1
in M1

G and p2 in M2
G is defined as below:
c(p1, p2) = V p1

1 · V p2

2 , (3)
where V p1

1 and V p2

2 mean node representation vectors of p1
and p2 respectively. Note that p1 and p2 must meet a specific
spatial constraint that p2 can only be on the same row or col-
umn (i.e. criss-cross positions) of p1. As a result, we obtain
W +H − 1 correlation values for each node in M1

G. To be
specific, we organize the relative displacements in channels
and obtain an output correlation matrix MC ∈ R

K×H×W ,
where K = W +H − 1. Then MC is passed through a soft-
max layer to generate the adjacent matrix R ∈ R

K×H×W :

Rijk = σ(M ijk
C ) =

eM
ijk
C

∑K
k=1 e

Mijk
C

, (4)

where Rijk is the correlation weight coefficient of the ith

row , the jth column and the kth channel.
In the process of forward pass, the more discriminative

the regions are, the greater their correlations are. In the back-
ward pass, we implement the derivatives with respect to each
blob of node vectors. When the probability value of classi-
fication is low, the penalty will be back-propagated to lower
the correlation weight of the two nodes, and the node vec-
tors calculated through the node representation generation
operation will be updated at the same time.
Graph updating. We feed M3

G ∈ R
C×H×W which is gen-

erated by the node representation generation phase, and the
adjacent matrix R into the updating operation:

M ij
U =

W+H−1∑
k=1

(V wh
3 ·Rijk), (5)
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Table 1: The stride, patch scale size, scale step and aspect
ratios of the three different layers. M1

S and M2
S are fea-

ture maps after down-sampling MS from the output of CGP.
Note that the stride is the original image scaling ratio. Patch
width & height = scale × scale step × aspect ratio.

Feature Map Stride Scale Scale Step Aspect ratio
MS 32 32 2

1
3 , 2

2
3

2
3 , 1,

3
2

M1
S 64 64 2

1
3 , 2

2
3

2
3 , 1,

3
2

M2
S 128 128 1, 2

1
3 , 2

2
3

2
3 , 1,

3
2

wher e V wh
3 is the node in the wth row and the hth column of

M3
G, (w, h) is in set [(i, 1), ..., (i,H), (1, j), ..., (W, j)]. The

node M ij
U can be updated by combining nodes at its hori-

zontal and vertical direction with corresponding correlation
weight coefficient Rijk, as shown in Fig. 3(a).

Similar as ResNet (He et al.), we adopt the residual learn-
ing:

MS = α ·MU +MO, (6)
where α is a self-adaptive weight parameter and it gradu-
ally learns to assign more weight to the discriminative cor-
relation features. It ranges from [0, 1], and is initialized ap-
proximating 0. In this way, MS aggregates the correlation
features and the original input features to pick out more dis-
criminative patches. Then, we feed MS as the new input
into next iteration of CGP. As shown in Fig. 3, after multi-
ple graph propagations, each node can aggregate all regions
with different frequencies, which indirectly learns the global
correlations, and the closer the region is to the aggregating
region, the higher the aggregation frequency is during the
graph propagation, which indicates the local spatial context
information.

Discriminative Patch Samping

In this work, we generate default patches from feature maps
of three different scales, inspired by Feature Pyramid Net-
work in object detection (Liu et al. 2016). Tab. 1 shows the
design of the default patches of the scale size, scale step and
aspect ratio. The design can make network responsible to
different size of discriminative regions.

After obtaining the residual feature map MS , which ag-
gregates the correlation features and the original input fea-
tures, we feed it into a discriminative response layer. Con-
cretely, we introduce a 1 × 1 × N convolution layer and a
sigmoid function σ to learn discriminative probability maps
S ∈ R

N×H×W , which indicate the impact of discriminative
regions on the final classification. N is the number of the
default patches at a given location in the feature maps.

Afterwards, each default patch pijk will be assigned the
discriminative probability value accordingly. The formulaic
representation is as follows:

pijk = [tx, ty, tw, th, sijk], (7)

where (tx, ty, tw, th) is the default coordinates of each patch
and sijk denotes the discriminative probability value of the
ith row, the jth column and the kth channel. Finally, the
network pick the top-M patches according to the probability
value, where M is a hyper-parameter.

Correlation Feature Strengthening

Most current works ignore the internal semantic correla-
tion among discriminative region feature vectors. Besides,
there is some less discriminative or noisy context within
the selected discriminative regions. We propose a CFS sub-
network to explore the internal semantic correlation between
region feature vectors to obtain better discriminative ability.
The details of CFS are as follows:
Node representation and Adjacent matrix computing.To
construct the graph for mining correlation among selected
patches, we extract M nodes with D-dimension feature vec-
tors from M selected patches as the input of Graph Convo-
lution Network (GCN) (Kipf and Welling). After detecting
the M nodes, the adjacent matrix of correlation coefficient
is computed which indicates correlation intensity between
nodes. Therefore, each element of the adjacent matrix can
be calculated as below:

Rij = cij · < ni, nj >, (8)

where Rij denotes the correlation coefficient between each
two nodes (ni, nj), and cij is correlation weight coefficent
in weighted matrix C ∈ R

M×M , and cij can be learned to
adjust correlation coefficient Rij through back propagation.
Then we perform normalization on each row of adjacent ma-
trix to ensure that the sum of all the edges connected to one
node equals to 1. The normalization of the adjacent matrix
A ∈ R

M×M is realized by the softmax function shown as
follows:

Aij =
expR(ni, nj)∑N
j=1 expR(ni, nj)

. (9)

As a result, the constructed correlation graph measures the
relationship intensity between the selected patches.
Graph updating. After we obtain the adjacent matrix, we
both take feature representations N ∈ R

M×D with M nodes
and the corresponding adjacent matrix A ∈ R

M×M as in-
puts, and updates the node features as N ′ ∈ R

M×D′
. For-

mally, one layer process of GCN can be represented as:

N ′ = f(N,A) = h(ANW ), (10)

where W ∈ R
D×D′

is the learned weight parameters, and
h is a non-linear function (we use Rectified Linear Unit
(ReLU) in the experiments). After multiple propagations,
the discriminative information in selected patches can be
wider interacted to obtain better discriminative ability.

Loss Function

We propose an end-to-end model which incorporates the
CGP and CFS into a unified framework. The CGP and CFS
are trained together under the supervision of multi-task loss
L, which consists of a basic fine-grained classification loss
Lcls, a guided loss Lgud, a rank loss Lrank and a feature
strengthening loss Lfea. It can be shown as the following:

L = Lcls + λ1 · Lgud + λ2 · Lrank + λ3 · Lfea, (11)

where λ1, λ2, λ3 are balance hyper-parameter among these
losses. We set the parameters λ1 = λ2 = λ3 = 1 after many
experiment vertifications.
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Table 2: The ablative recognition results of different variants
of our method. We test the models on CUB-200-2011.

Method Accuracy
BL (Li et al.) 84.5%

BL + DP + Score 86.2%
BL + DP + Score + CGP-SF 87.2%

BL + DP + Score + CGP 87.7%
BL + DP + Score + CGP+ CFS 88.3%

Let’s use X to represent the original image and denote the
selected discriminative patches with and without CFS mod-
ule as P = {P1, P2, ..., PN} and P

′
=

{
P

′
1, P

′
2, ..., P

′
N

}

respectively. C is the confidence function which reflects the
probability of classification into the correct category, and
S = {S1, S2, ..., SN} means the discriminative probability
scores. Then the guided loss, rank loss and feature strength-
ening loss are defined as follows:

Lgud(X,P ) =

N∑
i

(max{0, logC(X)− logC(Pi)}), (12)

Lrank(S, P ) =
∑

C(Pi)<C(Pj)

(max{0, (Si − Sj)}), (13)

Lfea(P
′
, P ) =

N∑
i

(max{0, logC(P ′
i )− logC(Pi)}), (14)

Here, the guided loss guides the network to pick out the
most discriminative regions and the rank loss strives for
consistency of the discriminative scores and the final clas-
sification probability values of selected patches. These two
loss functions directly adjust the parameters of CGP and in-
directly influence CFS. The feature strengthening loss can
guarantee that the prediction probability of selected region
features with CFS is greater than features without CFS, and
the network can adjust the correlation weight maxtix C and
the GCN weight parameters W to influence the information
propagation between selected patches.

Experiments

Datasets

The empirical evaluation is performed on three widely
used and competitive benchmark datasets for fine-grained
image classification: Caltech-UCSD Bird-200-2011(CUB-
200-2011) (Branson et al.), Stanford Cars (Cars) (Krause et
al.) and FGVC Aircraft (Airs) (Maji et al.).The CUB-200-
2011 dataset covers 200 species of birds and contains 11788
images that are divided into a training set of 5994 images
and a test set of 5794 images. The Cars dataset has 16,185
images from 196 classes officially split into 8,144 training
and 8,041 test images. The Airs dataset contains 10,000 im-
ages over 100 classes, and train and test sets split ratio are
around 2 : 1.

Implementation Details

All the images are resized to 448 × 448 in our experiment
settings. Fully convolutional network ResNet-50 and Batch
Normalization are chosen as feature extractor and regular-
izer respectively. We set weight decay as 1e−4 and Momen-
tum SGD with initial learning rate 0.001 and multiplied by
0.1 after 60 epochs. In addition, we adopt the non maximum
suppression (The threshold is set to 0.25.) on patches based
on their discriminative scores to reduce patch redundancy.

Ablation Experiments

As shown in Tab. 2, we conduct some ablation experiments
to illustrate the effectiveness of proposed modules, includ-
ing the Criss-cross Graph Propagation (CGP) and the Corre-
lation Feature Strengthening (CFS).

Without any object or partial annotations for fine-grained
classification, we extract features from the whole image
through ResNet-50 and set it as the baseline(BL). Then we
introduce default patches (DP) as local features to improve
classification accuracy. When we recommend the score
mechanism (Score), it can not only preserve the highly dis-
criminative patches but also reduce the number of patches to
single digit, then the top-1 classification accuracy on CUB-
200-2011 dataset improves by 1.7%. Further, we take ac-
count into the discriminative ability of region group through
CGP module, and the ablation experimental results show
that if each region aggregates all other regions with same
frequencies (CGP-SF), the accuracy is 87.2%, while the
criss-cross propagation can achieve better performance, i.
e. 87.7%, on CUB. Finally, we introduce the CFS module
to explore and exploit internal correlation between selected
patches and achieve the state-of-the-art result of 88.3%. Ab-
lation experiments have validated that the proposed network
can indeed learn the discriminative region group, enhance
the discriminative feature values, effectively improving the
accuracy.

Quantitative Comparisons

Accuracy comparison. Because the proposed model only
use image-level annotations instead of any object or part
annotations, our comparisons mainly focus on the weakly
supervised methods. We show the performance of differ-
ent methods on CUB-200-2011 dataset, Stanford Cars-196
dataset and FGVC Aircraft dataset respectively. From top to
bottom in Tab. 3, we separate the methods into six groups,
which are (1) Supervised multi-stage methods, which nor-
mally rely on the object and even part annotations to achieve
comparable result. (2) Weakly supervised multi-stage frame-
works, which gradually beat the strong supervised meth-
ods through picking out discriminative regions. (3) Weakly
supervised end-to-end feature encoding, which have good
performance via encoding the CNN feature vectors into
high-order information, while they result in high compu-
tational cost. (4) End-to-end localization-classification sub-
networks, which work well on various datasets, but they
neglect the correlation between discriminative regions. (5)
Other methods also achieve good performance due to us-
ing the extra information (e.g. the semantic embedding). (6)

12293



Table 3: Comparison of different methods on CUB-200-2011(CUB), Cars 196 (Cars) and Aircraft (Airs).
Method Box Anno. Part Anno. CUB Acc. Cars Acc. Airs Acc.

PN-DCN (Branson et al.) BBox Parts 85.4% - -
M-CNN (Wei, Xie, and Wu) n/a Parts 84.2% - -

PG (Krause et al.) BBox n/a 82.8% 92.8% -
SCDA (Wei et al.) n/a n/a 80.1% 85.1% 79.5%

AutoBD (Yao et al.) n/a n/a 81.6% 88.9% -
OPAM (Peng, He, and Zhao) n/a n/a 85.8% 92.2% -

Bilinear (Lin, Roy Chowdhury, and Maji) n/a n/a 84.0% 91.3% 84.1%
lB-CNN (Kong and Fowlkes) n/a n/a 84.2% 90.9% 87.3%

Kernel-Activation (Cai, Zuo, and Zhang) n/a n/a 85.3% 91.7% 88.3%
Kernel-Pooling (Cui et al.) n/a n/a 86.2% 92.4% 85.7%

WSDL (He, Peng, and Zhao) n/a n/a 83.5% - -
RA-CNN (Fu, Zheng, and Mei) n/a n/a 85.3% 92.5% 88.2%

MA-CNN (Zheng et al.) n/a n/a 86.5% 92.8% 89.9%
MAMC (Sun et al.) n/a n/a 86.5% 93.0% -

DFL-CNN (Wang, Morariu, and Davis) n/a n/a 87.4% 93.1% 91.7%
DCL (Chen et al.)) n/a n/a 87.8% 94.5% 93.0%
DT-RAM (Li et al.) n/a n/a 86.0% 93.1% -

StackDRL (He, Peng, and Zhao) n/a n/a 86.6% - -
KERL (Chen et al.) n/a n/a 87.0% - -

Our GCL n/a n/a 88.3% 94.0% 93.2%

Table 4: Comparison of the efficiency and effectiveness with
other methods on CUB-200-2011. K means the number of
selected discriminative regions for each image.

Method Annotation Accuracy Speed(FPS)
M-CNN(K=2) Parts 84.20% 12.90
MAMC(K=0) n/a 86.50% 9.79
WSDL(K=1) n/a 83.45% 10.07
Bilinear(K=0) n/a 84.00% 30.00

Our GCL(K=2) n/a 87.80% 56.00
Our GCL(K=4) n/a 88.30% 55.00

Our end-to-end GCL approach achieves new state-of-the-art
without any extra annotations and enjoys consistent perfor-
mance on various datasets.

Our approach outperforms these strong supervised meth-
ods in the first group, which indicates that the proposed
method can really find the discriminative patches without
any fine-grained annotations. Our proposed method consid-
ers the correlations among regions to select the discrimi-
native region group, and then outperforms other methods
through selected discriminative patches in group 4. Mean-
while, we finely mine the internal semantic correlations be-
tween selected discriminative patches to emphasize the in-
formative features and suppress the less helpful ones. There-
fore, our work outperforms other methods via strengthening
feature representations in group 3, and achieves new state-
of-the-art accuracy of 88.3% on CUB, 94.0% on Cars and
93.5% on Aircraft.

Compared with MA-CNN, which consider the correla-
tion between patches implicitly through the channel group-
ing loss where the spacial constraint is applied over part at-
tention maps in a back-propagation way, our work proposes

Table 5: Comparisons with different depths of CGP and CFS
in our model. D is the depth.

Method (D = 2)Acc. (D = 3)Acc. (D = 4)Acc.
CGP 87.4% 87.8% 87.5%
CFS 88.3% 88.3% 88.1%

to find the most discriminative region group through iter-
ative criss-cross graph propagation, and spacial context is
incorporated into the network in a front-propagation way.
The experimental results in Tab. 3 show that the GCL model
achieves better performance than MA-CNN on CUB, CAR
and AIRCRAFT.

The results in Tab. 2 show that our model outperforms
most of the compared models except for a bit lower than
DCL on CAR dataset. We think the reason is that images
of CAR dataset have much simpler and clearer backgrounds
than those of CUB and AIRCRAFT. Concretely, the pro-
posed GCL model focuses on strengthening the responses
of discriminative region group, which leads to better locat-
ing of discriminative patches in images with complex back-
grounds. However, locating discriminative patches in im-
ages with simple backgrounds is relatively easier and thus
might not obviously benefit from the strengthening of re-
sponse of discriminative region group. On the other hand,
DCL model’s shuffle operation in region confusion mecha-
nism could introduce several noisy visual patterns and thus
the complexity of the image’s background is one of the key
factors that influence the locating accuracy of the discrimi-
native patches for DCL. As a result, DCL shows better per-
formance on CAR dataset for its simpler background while
our GCL model outperforms on CUB and AIRCRAFT for
their complex backgrounds.
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Figure 4: Visualization results of without and with correla-
tion between regions. (a) shows the original images. (b)(c)
are the certain corresponding channel feature map, without
and with correlation, respectively.

Figure 5: Visualization results correlation weight coefficient
maps. The first row indicates the original images. The sec-
ond, the third and the forth rows indicate the correlation
weight coefficient maps via the first, the second and the third
graph-propagation, respectively.

Speed analysis. We measure the speed with batch size 8 us-
ing a graphics card of Titan X. Tab. 4 shows the comparison
with other methods. Note that the references of other meth-
ods are shown in Tab. 3. WSDL (He, Peng, and Zhao) used
the framework of the faster RCNN (Ren et al.), which re-
served about 300 candidate patches. In this work, we utilize
the score mechanism with rank loss to reduce the number of
patches to single figure, to achieve real-time efficiency. We
outperform other methods both in speed and accuracy when
we select 2 discriminative patches according to the discrim-
inative score maps. Futher, when we increase the number
of discriminative patches to 4, the proposed model not only
achieves the state-of-the-art classification precision, but also
stays real time at 55 fps.

Qualitative Analysis

To verify the effectiveness of CGP, we do the ablation ex-
periments and visualize MO (Fig. 4 (b)) and MU (Fig. 4
(c)). The visualization results show that MO highlights the
multiple continuous regions, while MU strengthens the most
discriminative regions after multiple iterations of criss-cross
propagation, which helps the accurate locating of the dis-
criminative region group.

Figure 6: Visualization results of without and with correla-
tion between regions. (a) shows the original images. (b)(c)
are the discriminative score maps and (d)(e) are the localiza-
tion results, without and with correlation, respectively.

As shown in Fig.5, we visualize the correlation weight co-
efficient maps generated by CGP module for better illustrat-
ing the influence of correlation between regions. The cor-
relation coefficient maps denote the correlation between a
certain region and another region in the criss-cross positions
of region. It can be observed that the correlation coefficient
maps tend to focus on a few fixed regions (highlighted re-
gions in Fig.5) and integrate more discriminative regions
gradually via CGP by joint learning. The region closer to
the aggregation is calculated with higher frequency.

What’s more, we visualize the discriminative score maps
with and without the CGP to illustrate the effectiveness of
the CGP module, as shown in Fig.6. We can see from the
discriminative score maps without the CGP in the second
column, which only only focuses on a local region and the
selected patches in the fourth column are in the close re-
gions. However, from the discriminative score maps without
the CGP in the second column and the selected patches in
the fifth column, it proves that our CGP sub-network indeed
pays attention to multiple effective regions, making the re-
gion aggregating features more discriminative.

The deeper, the better?

We show the classification results with different depth of
the two graph propagation sub-networks in Tab. 5. Specif-
ically, for CFS module, the input and output dimension are
both 2048, and all intermediate node dimension is 1024. For
CGP module, the input, intermediate and output node di-
mension are always 2048. As shown in Tab. 5, when the
number of graph layers increases to 4, the classification per-
formance drops on both sub-networks.The possible reason
of the performance drop is that after using more graph lay-
ers, the propagation between nodes will be overwhelmed.

Conclusion

In this paper, we proposed a novel end-to-end Graph-
Propagation based Correlation Learning model to fully mine
and exploit the discriminative potentials of correlations for
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WFGIC. In particular, we design a CGP module to learn
global and spatial correlations in the criss-cross graph prop-
agation, which helps discovering the discriminative region
group. Meanwhile, we also construct a CFS graph network
with feature vector correlationt jointly enhance the features
extracted from selected patches. The experimental results
on the widely used CUB-200-2011 and Cars-196 datasets
shown that our proposed model is effective and achieves
state-of-the-art.
Acknowledgments: This work was supported in part by the
National Natural Science Foundation of China (NSFC) un-
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