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Abstract

Style transfer has been an important topic both in computer
vision and graphics. Since the seminal work of Gatys et al.
first demonstrates the power of stylization through optimiza-
tion in the deep feature space, quite a few approaches have
achieved real-time arbitrary style transfer with straightfor-
ward statistic matching techniques. In this work, our key ob-
servation is that only considering features in the input style
image for the global deep feature statistic matching or local
patch swap may not always ensure a satisfactory style trans-
fer; see e.g., Figure 1. Instead, we propose a novel transfer
framework, EFANet, that aims to jointly analyze and better
align exchangeable features extracted from the content and
style image pair. In this way, the style feature from the style
image seeks for the best compatibility with the content infor-
mation in the content image, leading to more structured styl-
ization results. In addition, a new whitening loss is developed
for purifying the computed content features and better fusion
with styles in feature space. Qualitative and quantitative ex-
periments demonstrate the advantages of our approach.

Introduction

A style transfer method takes a pair of images as input and
synthesize an output image that preserves the content of the
first image while mimicking the style of the second image.
The study on this topic has drawn much attention in re-
cent years due to its scientific and artistic values. Recently,
the seminal work (Gatys, Ecker, and Bethge 2016) found
that multi-level feature statistics extracted from a pre-trained
CNN model can be used to separate content and style infor-
mation, making it possible to combine content and style of
arbitrary images. This method, however, depends on a slow
iterative optimization, which limits its range of application.

Since then, many attempts have been made to acceler-
ate the above approach through replacing the optimization
process with a feed-forward neural networks (Dumoulin,
Shlens, and Kudlur 2016; Johnson, Alahi, and Fei-Fei 2016;
Li et al. 2017a; Ulyanov et al. 2016; Zhang and Dana 2017).
While these methods can effectively speed up the stylization
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process, they are generally constrained to a predefined set of
styles and cannot adapt to an arbitrary style specified by a
single exemplar image.

Notable efforts (Chen and Schmidt 2016; Huang and Be-
longie 2017; Li et al. 2017b; Shen, Yan, and Zeng 2017;
Sheng et al. 2018) have been devoted to solving this flexibil-
ity v.s. speed dilemma. A successful direction is to apply sta-
tistical transformation, which aligns feature statistics of the
input content image to that of the style image (Huang and
Belongie 2017; Li et al. 2017b; Sheng et al. 2018). How-
ever, as shown in Figure 1, the style images can be dra-
matically different from each other and from the content
image, both in terms of semantic structures and style fea-
tures. Performing style transfer through statistically match-
ing different content images to the same set of features ex-
tracted from the style image often introduces unexpected
or distorted patterns (Huang and Belongie 2017; Li et al.
2017b). Several methods (Sheng et al. 2018; Yao et al. 2019;
Park and Lee 2019) conquer these disadvantages through
patch swap with a multi-scale feature fusion, but may con-
tain spatially distorting semantic structures when the local
patterns from input images differ a lot.

To address the aforementioned problems, in this paper,
we jointly consider both content and style images and ex-
tract a common style feature which is customized for this
pair of images only. By maximizing the common informa-
tion, our goal is to align the style features of both content and
style images as much as possible. This follows the intuition
that when the target style feature is compatible with the con-
tent image, a good style transfer can be probably guaranteed.
Since the style feature of an image is computed from its own
content information, which means they are compatible with
each other within the same image, we argue that aligning the
style features of the two input images could help to improve
the final stylization; see the comparison of our method with
& without common feature in Figure 1.

Intuitively, the common style feature we extracted bridges
the gap between the input content and style images, mak-
ing our method outperform existing methods in many chal-
lenging scenarios. We call the aligned style features upon
the common feature as exchangeable style features. Ex-
periments demonstrate that performing style transfer based

12305



������� �	
��

���� ����� ���� ��� ��  !"#

Figure 1: The existing method (AdaIN) ignores differences
in style images while our approach jointly analyzes each
content-style image pair and computes exchangeable style
features. As a result, AdaIN and the baseline model without
common features (4th column) only work well with a sim-
ple style (1st and 2nd row). When the target styles become
more complex and the content-style images have different
patterns/color distributions, AdaIN and the baseline model
fail to capture the salient style patterns and suffer from in-
sufficiently stylized results (color distribution and textures
in 3rd & 4th row). In comparison, our model better adapts to
pattern/color variation in the content image and map com-
patible patterns/colors in the style images accordingly.

on our exchangeable style features yields more structured
results with better visual style patterns than existing ap-
proaches; see e.g., Figures 1 and 5.

To compute exchangeable style features from feature
statistics of input images, a novel Feature Exchange Block is
designed, which is inspired by the works on private-shared
component analysis (Bousmalis et al. 2016; Cao et al. 2018).
In addition, we propose a new whitening loss to facilitate the
combination between content and style features by removing
style patterns existed in content images. To summarize, the
contributions of our work include:

• The importance of aligning style features for style transfer
between two images is clearly demonstrated.

• A novel Feature Exchange Block as well as a constraint
loss function are designed for the pair-wise analysis of
learning common information in-between style features.

• A simple yet effective whitening loss is developed to en-
courage the fusion between content and style information
by filtering style patterns in content images.

• The overall end-to-end style transfer framework can per-
form arbitrary style transfer in real-time and synthesize
high-quality results with favored styles.

Related Work

Fast Abitrary Style Transfer Intuitively, style transfer
aims at changing the style of an image while preserving
its content. Recently, impressive style transfer is realized
by Gatys et al. 2016 based on deep neural networks. Since
then, many methods are proposed to train a single model that
can transfer arbitrary styles. Here we only review the related
works on arbitrary style transfer and refer the readers to (Jing
et al. 2017) for a comprehensive survey.

Chen et al. 2016 realize the first fast neural method by
matching and swapping local patches between the interme-
diate features of content and style images, which is thus
called Style-Swap. Then Huang et al. 2017 propose an adap-
tive instance normalization (AdaIN) to explicitly match the
mean and variance of each feature channel of the content
image to those of the style image. Li et al. 2017b further
apply whitening and coloring transform (WCT) to align the
correlations between the extracted deep features. Sheng et
al. 2018 develop Avatar-Net to combine local and holistic
style pattern transformation, achieving better stylization re-
gardless of the domain gap. Very recently, AAMS (Yao et
al. 2019) tries to transfer the multi-stroke patterns by intro-
ducing self-attention mechanism. Meanwhile, SANet (Park
and Lee 2019) promotes Avatar-Net by learning a similarity
matrix and flexibly matching the semantically nearest style
features onto the content features. And Li et al. 2019 speeds
up WCT with a linear propagation module. To improve the
generalization ability, Song et al. 2019 evaluate errors in the
synthesized results and correct them accordingly in an itera-
tive manner. The above methods, however, all achieve styl-
ization by a straightforward statistic matching or local patch
matching and ignore the gaps between input features, which
may not be able to adapt to the unlimited variety.

In this paper, we still follow the holistic alignment with
respect to feature correlations. The key difference is that be-
fore applying style features, we jointly analyze the similar-
ities between the style features of content and style images.
Thus these style features can be aligned accordingly, which
enables the style features to match the content images more
flexibly and improves the final compatibility level between
target content and style features significantly.

Feature Disentanglement Learning disentangled repre-
sentation aims at separating the learned internal represen-
tation into factors of data variations (Whitney 2016). It
improves the re-usability and interpretation of the model,
which is useful for e.g., domain adaptation (Bousmalis et
al. 2016; Cao et al. 2018). Recently, several concurrent
works (Lee et al. 2018; Huang et al. 2018; Gonzalez-Garcia,
van de Weijer, and Bengio 2018; Ma et al. 2018) have
been proposed for multi-modal image-to-image translation.
They map the input images into one common feature space
for content representation and two unique feature spaces
for styles. Yi et al. 2018 design BranchGAN to achieve
scale-disentanglement in image generation. Wu et al. 2019
advance 3D shape generation by disentangling geometry
and structure info. For style transfer, some efforts (Zhang,
Zhang, and Cai 2018; Zhang et al. 2018) are also made to
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Figure 2: Images decoded from whitened features. The re-
sults on the right are rescaled for better visualization. The
whitened features still keep spatial structures but various
style patterns are removed.

separate a representation of one image into the content and
style. Different from the mentioned methods, we perform
feature disentanglement only on style features of the input
image pair. A common component is extracted, and is used
to compute the exchangeable style features for style transfer.

Developed Framework

Following (Gatys, Ecker, and Bethge 2016), we consider the
deep feature extracted by the network pretrained on large
dataset as the content representation for an image, and the
feature correlation at a given layer as the style information.
By fusing the content feature with a new target style feature,
we can synthesize a stylized image.

The overall goal of our framework is to align the style fea-
tures between the style and content image pair, such that the
style feature from one image can better match the content of
the other image, resulting in a better stylization. To achieve
that, a key module of Feature Exchange block is proposed to
jointly analyze the style features of the two input images. A
common feature is disentangled to encode the shared com-
ponents between the style features. Then guided by the com-
mon feature, the target style features are aligned to be more
similar to each other and thus be more compatible with each
other’s contents.

Exchangeable Feature for Style Transfer

As illustrated in Figure 3(a), our framework mainly con-
sists of three parts: one encoder, several EFANet modules
(Ω(·)) and one decoder for generating the final images. We
denote f i

c and f i
s, i ∈ {1, ..., L}, L = 4 as the feature maps

outputted by the relu i layer of the pre-trained VGG en-
coder, which correspond to content and style images (Ic and
Is) respectively. We equip multi-scale style adaption strat-
egy to boost the stylization. Specifically, in the bottleneck
of encoder-decoder architecture, starting from fL

c and fL
s ,

different EFANet modules are applied to progressively fuse
the styles from input images into the corresponding decoded
features in a coarse-to-fine manner as f i

cs = Ω(f̂ i
cs, f

i
s). The

f i
cs indicates a decoded stylized feature and f̂ i

cs = u(f i+1
cs ),

where u(·) is an upsampling operator and the superscript i
denotes the i-th scale. Note that, initially we set f̂L

cs = fL
c

and apply the superscript j to indicate the j-th style vector
of a Gram matrix in the following paragraphs.

In Figure 3(b), given fs and f̂cs as inputs, we first com-
pute two Gram matrices across the feature channels as the

raw style representations and denote them as Gs and Gcs ∈
RC×C . The C indicates the channel number for fs and
f̂cs. In order to preserve more style details in output results
and reduce computation burden, we process only a part of
style information at a time and represent Gs and Gcs as
two lists of style vectors, e.g. Gs = {g1s , g2s , ..., gCs } and
Gcs = {g1cs, g2cs, ..., gCcs}. Each style vector, gjs and gjcs,
compactly encodes the mutual relationships between the j-
th channel and the whole feature map. Then each corre-
sponding style vector pair (gjs , gjcs) is processed using one
Feature Exchange block. Accordingly a common feature
gjcom and two unique feature vectors for decoded informa-
tion (as content) and style, gjcu and gjsu, can be disentangled.

Guided by gjcom, the style features are aligned in the fol-
lowing manner: we first concatenate gjcom with the raw style
vectors gjs and gjcs respectively. Then they are sent into fully
connected layers individually, yielding the aligned style vec-
tors g̃js and g̃jcs. We call them as exchangeable style features
since each of them can be used easily to adapt its style to
the target image. Then we stack the style vectors {g̃js} and
{g̃jcs} into two matrices, G̃s and G̃cs, for later fusion as:

G̃s = [g̃1s , g̃
2
s , ..., g̃

C
s ], G̃cs = [g̃1cs, g̃

2
cs, ..., g̃

C
cs].

Inspired by the whitening operation of WCT (Li et al.
2017b), we also assume that better stylization results can
be achieved when the channels of target content features are
highly uncorralated before content-style fusion. Specifically,
in our case the whitening operation can be regarded as a filter
function, which removes style info from the content feature
according to its own style vector. Hence after feature align-
ment, to better transfer a new style to an image, we first use
the exchangeable style feature to purify its own content fea-
ture through a fusion as:

f̃cs = Ψwhi(f̂cs, G̃cs) = f̂cs ·Wwhi · G̃cs,

where Ψwhi(·) and Wwhi indicates the fusion operation
and a learnable matrix respectively (Zhang, Zhang, and Cai
2018; Zhang and Dana 2017). We also develop a whitening
loss to encourage the removal of correlations between dif-
ferent channels; see Figure 2 as a validating example. The
details of whitening loss are discussed in the Loss Function
section below.

Finally, we exchange the aligned style vectors and fuse
them with the purified content features as:

fcs = Ψfusion(f̃cs, G̃s) = f̃cs ·Wfusion · G̃s.

Then the fcs will be propagated to receive style information
at finer scales or decoded to output stylized images. The de-
coder is trained to learn the inversion from the fused feature
map to image space, and hereby, style transfer is eventually
achieved for both input images. Note that the resulting Is→c

denotes the stylization image that transfers style in Is to Ic,

Feature Exchange Block

According to Bousmalis et al. (2016), explicitly modeling
the unique information would help improve the extraction of
the shared component. To adapt this idea for our exchange-
able style features, a Feature Exchange block is proposed to
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Figure 3: (a) Architecture overview. The input image pair Ic and Is, goes through the pre-trained VGG encoder to extract
feature maps {f i

c} and {f i
s}, i ∈ {1, ..., L}, L = 4. Then, starting from fL

c and fL
s , different EFANet modules are applied to

progressively fuse styles into corresponding decoded features for final stylized images. (b) The architecture of EFANet module.
Given f̂cs and fs as inputs, we compute two Gram matrices as the raw styles and then represent them as two lists of feature
vectors {gjcs} and {gjs}. Each corresponding style vector pair (gjcs and gjs) is fed into the newly proposed Feature Exchange
Block and a common feature vector gjcom is extracted via the joint analysis. We concatenate gjcom with gjcs and gjs respectively
to learn two exchangeable style feature g̃jcs and g̃js . g̃jcs is used for the content feature purification, which will be further fused
with g̃js , outputting fcs. Finally fcs will be either propagated for finer-scale information or decoded into stylized images Is→c.
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Figure 4: Architecture of a Feature Exchange Block. Here ⊕
denotes element-wise addition. Each block has three inputs,
one common feature gjcom and two unique features for con-
tent gjcu and style gjsu images, respectively. Note that for the
first block, gjcu and gjsu are initialized with gjcs and gjs respec-
tively, and gjcom are initialized with their combination. Then
the block allows common feature to interact with unique fea-
tures and outputs refined results g′jcom, g′jcu, and g′jsu.

jointly analyze the style features of both input images and
model their inter-relationships, based on which we explic-
itly update the common feature and two unique features for
the disentanglement. Figure 4 illustrates the detailed archi-
tecture, where the unique features, gjcu and gjsu, are first ini-
tialized with gjcs and gjs respectively and the gjcom with their
combination. Then they are updated by the learned resid-
ual features. Using residual learning is to facilitate gradi-
ent propagation during training and convey messages so that
each input feature can be directly updated. This property al-
lows us to chain any number of Feature Exchange blocks in
a model, without breaking its initial behavior.

As shown in Figure 4, there are two shared fully-
connected layers inside each block. To be specific, the dis-

entangled features are updated as:

g′jcom = Θcom([gjcu, g
j
com]) + Θcom([gjsu, g

j
com]) + gjcom,

g′jcu = Θuni([g
j
cu, g

j
com]) + gjcu,

where Θcom(·) and Θuni(·) denote the fully-connected lay-
ers to output residuals for the common features and unique
features respectively. [·, ·] indicates a concatenation opera-
tion. We can update gjsu in a similar way.

By doing so, the feature exchange blocks enable gjcom and
gjcu (or gjsu) to interact with each other by modelling their
dependencies and thus to be refined to the optimal.

To make sure the feature exchange block conduct proper
disentanglement, a constraint on the disentangled feature is
added following Bousmalis et al. (2016). First, gjcom should
be orthogonal to both gjcu and gjsu as much as possible.
Meanwhile, it should let us be able to reconstruct gjs and
gjcs based on the finally disentangled features. Therefore, a
feature exchange loss can be defined as:

Lj
ex = gjcom · gjcu + gjcom · gjsu + ‖gjcs − ḡjcs‖1 + ‖gjs − ḡjs‖1,

where ḡjcs is the reconstructed style vector by feeding the
sum of gjcom and gjcu into a fully connected layer. ḡjs is the
reconstruction from gjcom and gjsu. Note that this fully con-
nected layer for reconstruction is only valid in training stage,
and Lj

ex is only computed with the final output of the fea-
ture exchange block. And we use only one feature exchange
block in each EFANet module.

Finally, to maximize the common information, we also
penalize the amount of unique features. Thus the final loss
function for the common feature extraction is:

Lcom =
C∑

j=1

Lj
ex + λuni(‖gjcu‖2 + ‖gjsu‖2),
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where ‖ · ‖ denotes L2 norm of a vector, and λuni is set to
0.0001 in all our experiments.

Loss Function for Training

As illustrated in Figure 3, three different types of losses
are computed for each input image pair. The first one is
perceptual loss (Johnson, Alahi, and Fei-Fei 2016), which
is used to evaluate the stylized results. Following previous
work (Huang and Belongie 2017; Sheng et al. 2018), we
employ a VGG model (Simonyan and Zisserman 2014) pre-
trained on ImageNet (Deng et al. 2009) to compute the per-
ceptual content loss:

Lc
p = ‖E(Ic)− E(Is→c)‖2 ,

and style loss:

Ls
p =

L∑

i=1

∥∥Gi(Is)−Gi(Is→c)
∥∥
2
,

where E(·) denotes the VGG-based encoder and Gi(·) rep-
resents a Gram matrix for features extracted at i-th scale in
the encoder module. As mentioned before, we set L = 4.

The second one is the whitening loss, which is used to re-
move style information in target content images at training
stages. According to Li et al. (2017b), after whitening oper-
ation, f̃cs · (f̃cs)T should equal the identity matrix. Thus we
define the whitening loss as:

Lwhi = ‖f̃cs · (f̃cs)T − I‖2
where I denotes the identity matrix. By doing so, we can
encourage feature map f̃cs to be as uncorrelated as possible.

The third one is the common feature loss, Lcom, defined
previously for a better feature disentanglement.

Note that, for both Lwhi and Lcom, we sum up the losses
over all scales, e.g. Lwhi =

∑L
i=1 L

i
whi and Lcom =∑L

i=1 L
i
com. The superscript i here indicates losses com-

puted at i-th scale, where i ∈ {1, .., L}. To summarize, the
full objective function of our proposed network is:

Ltotal = λpcLc
p + λpsLs

p + λwhiLwhi + λcomLcom,

where the four weighting parameters are respectively set as
1, 7, 0.1 and 5 through out the experiments.

Implementation Details

We implement our model with Tensorflow (Abadi et al.
2016). In general, our framework consists of an encoder,
several EFANet modules and a decoder. Similar to prior
work (Huang and Belongie 2017; Sheng et al. 2018), we use
the VGG-19 model (Simonyan and Zisserman 2014) (up to
relu4 1) pre-trained on ImageNet (Deng et al. 2009) to ini-
tialize the fixed encoder. For the decoder, after the fusion of
style and content features, two residual blocks are used, fol-
lowed by upsampling operations. Nearest-neighbor upscal-
ing plus convolution strategy is used to reduce artifacts in
the upsampling stage (Odena, Dumoulin, and Olah 2016).
We choose Adam optimizer (Kingma and Ba 2014) with a
batch size of 4 and a learning rate of 0.0001, and set the
decay rates by default for 150000 iterations.

Place365 database (Zhou et al. 2014) and WiKiArt
dataset (Nichol 2016) are used for content and style im-
ages respectively, following (Sanakoyeu et al. 2018). During
training, we resize the smaller dimension of each image to
512 pixels with the original image ratio. Then we train our
model with randomly sampled patches of size 256 × 256.
Note that in the testing stage, both the content and style im-
ages can be of any size.

Experimental Results

Comparison with Existing Methods We compare our ap-
proach with six state-of-the-art methods for arbitrary style
transfer: AdaIn (Huang and Belongie 2017), WCT (Li et al.
2017b), Avatar-Net (Sheng et al. 2018), AAMS (Yao et al.
2019), SANet (Park and Lee 2019) and Li et al. (Li et al.
2019). For the compared methods, publicly available codes
with default configurations are used for a fair comparison.

Results of qualitative comparisons are shown in Figure 5.
For the holistic statistic matching pipelines, AdaIN (Huang
and Belongie 2017) can achieve arbitrary style transfer in
real-time. However, it does not respect semantic informa-
tion and sometimes generates less stylized results with color
distribution different from the style image (see row 1 & 3).
WCT (Li et al. 2017b) improves the stylization a lot but of-
ten introduces distorted patterns. As shown in rows 3 & 4, it
sometimes produces messy and less-structured images. Li et
al. 2019 proposes a linear propagation module and achieves
the fastest transfer among all the compared methods. But
it often gets stuck into the instylization issuses and can not
adapt the compatible style patterns or color variations to re-
sults (row 1 & 3).

Then Avatar-Net (Sheng et al. 2018) improves over the
holistic matching methods by adapting more style details to
results with a feature decorating module, but it also blurs
the semantic structures (rows 3) and sometimes distorts the
salient style patterns (see rows 1 & 5). While AAMS (Yao
et al. 2019) stylizes images with multi-stroke style patterns,
similar to Avatar-Net, it still suffers from the structure distor-
tion issues (row 3) and introduces unseen dot-wise artifacts
(row 2 & 5). It also fails to capture the patterns presented in
style image (row 5). In order to match the semantically near-
est style features onto the content features, SANet (Park and
Lee 2019) shares the similar spirits with Avatar-Net but em-
ploys a style attention module in a more flexible way. Thus
it might still blur the content structures (row 3) and directly
copy some semantic patterns in content images to stylization
results (e.g. the eyes in row 1, 2 & 3). Due to the local patch
matching, SANet also distorts the presented style patterns
and fails to reserve the texture consistency (row 5).

In contrast, our approach achieves more favorable perfor-
mance. The alignment on style features allows our model
to better match the regions in content images with patterns
in style images. The target style textures can be adaptively
transferred to the content images, manifesting superior tex-
ture detail (last row) and richer color variation (2nd row).
Compared to most methods, our approach can also gener-
ate more structured results while the style pattern, like brush
strokes, is preserved well (3rd row).
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Style Content AvatarNetWCTAdaIN OursLi et al.SANetAAMS

Figure 5: Comparison with results from different methods. Note that the proposed model generates images with better visual
quality while the results of other baselines have various artifacts; see text for detailed discussions.

Table 1: Quantitative comparison over different models on perceptual (content & style) loss, preference score of user study and
running time. Note that all the results are averaged over 100 test images except the preference score. The Ours∗ denotes a
model equiped with single-scale strategy.

Loss AdaIN WCT Avatar-Net AAMS SANet Li et al. Ours w/o CF Ours∗ Ours
Content (Lc) 14.4226 19.5318 16.8482 17.1321 23.3074 18.7288 16.3763 16.8600 16.5927

Style (Ls) 40.5989 27.1998 31.1532 34.7786 29.7760 37.3573 22.6713 24.9123 14.8582
Preference/% 0.110 0.155 0.150 0.137 0.140 0.108 - - 0.200

Time/sec 0.0192 0.4268 0.9258 1.1938 0.0983 0.0071 0.0227 0.0208 0.0234

Assessing style transfer results could be subjective. We
thus conduct two quantitative comparisons, which are re-
ported in first 2 rows of Table 1. We first compares different
methods in terms of perceptual loss. This evaluation metrics
contain both content and style terms which have been used in
previous approaches (Huang and Belongie 2017). It is worth
noting that our approach does not minimize perceptual loss
directly since it is only one of the three types of losses we
use. Nevertheless, our model achieves the lowest perceptual
loss among all feed-forward models, with style loss being
the lowest and content loss only slightly higher than AdaIN.
This indicates our approach favors fully stylized results over
results with high content fidelity.

We then conduct a user study to evaluate the visual pref-
erence of the six methods. 30 content images and 30 style
images are randomly selected from the test set and 900 styl-
ization results are generated for each method. Then results
of the same stylization are randomly chosen for a partici-
pant who is asked to vote for the method that achieves the

best stylization. Each participant is asked to do 20 rounds
of comparison. The stylized results from different methods
are exhibited in a random order. Thus we collect 600 votes
from 30 subjects. The average preference scores of different
methods are reported in Column 4 of Table 1, which shows
our method obtains the highest score.

Table 1 also lists the running time of our approach and
various state-of-the-art baselines. All results are obtained
with a 12G Titan V GPU and averaged over 100 256 × 256
test images. Generally speaking, existing patch based net-
work approaches are known to be slower than the holis-
tic matching methods. Among all the approaches, Li et al.
achieves the fastest stylization with a linear propagation
module. Our full model equiped with multi-scale strategy
slightly increases the computation burden but are still com-
parable to AdaIN, thus achieving style transfer in real-time.
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Figure 6: Balance between content and style. At testing stage, the degree of stylization can be controlled using parameter α.

Figure 7: Application for spatial control. Left: content im-
age. Middle: style images with masks to indicate target re-
gions. Right: synthesized result.

Content StyleSingle-Scale Multi-Scale

Figure 8: Ablation study on multi-scale strategy. By fusing
the content and style in multi-scales, we can enrich the local
and global style patterns for stylized images.

Ablation Study Here we respectively evaluate the impacts
of common feature learning, the proposed whitening loss on
content feature, and the multi-scale framework.

Common feature disentanglement during joint analysis
plays a key role in our approach. Its importance can be
evaluated by removing the Feature Exchange block and dis-
abling the feature exchange loss, which prevents the network
to learn exchangeable features. As shown in Figure 1, for
the ablated model without common features, the color dis-
tribution and texture patterns in the result image no longer
mimic the target style image. Visually, our full model yields
a much more favorable result. We also compares the per-
ceptual losses over 100 test images for both the baseline
model (i.e. our model without common features) and our
full model. As reported in Table 1, the style loss of our full
model is significantly improved over the baseline, demon-
strating the effectiveness of common features.

To verify the effect of whitening operation functioned on
content features, we remove learnable matrices Wwhi at all
scales to see how the performance changes. As shown in
Figure 9, without the purified operation and whitening loss,
the baseline model blurs the overall contours with yellow
blobs. In constrast, our full model better matches the target

Content Stylew/o loss Ours

Figure 9: Ablation study on whitening loss. With the pro-
posed loss, clearer content contours and better style pattern
consistency are achieved.

style to the content image and preserves the spatial structures
& style pattern consistency, yielding more visually pleasing
results. This proves that the proposed operation enables the
content features to be more compatible with the target styles.

The multi-scale strategy is evaluated by replacing the full
model with an alternative model that only fuses content and
style at relu 4 layer while fixing the other parts. The com-
parison shown in Figure 8 demonstrates that the multi-scale
strategy is more successful in capturing the salient style pat-
terns, leading to better stylization results.

Applications We demonstrate the flexibility of our model
using two applications. All these tasks are completed with
the same trained model without any further fine-tuning.

Being able to adjust the degree of stylization is a useful
feature. In our model, this can be achieved by blending be-
tween the stylized feature map fcs and the VGG-based fea-
ture fc before feeding to the decoder, which is:

F = (1− α) · fc + α · fcs.
By definition, the network outputs the reconstructed image
Ic→c when α = 0, the fully stylized image Is→c when
α = 1, and a smooth transition between the two when α
is gradually changed from 0 to 1; see Figure 6.

In Figure 7, we present our model’s ability for applying
different styles to different image regions. Masks are used to
specify the correspondences between different content im-
age regions and the desired styles. Pair-wise exchangeable
feature extraction only consider the masked regions when
applying a given style, helping to achieve optimal styliza-
tion effect for individual regions.

Conclusions

In this paper, we have presented a novel framework,
EFANet, for transferring an arbitrary style to a content im-
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age. By analyzing the common style feature from both in-
puts as a guider for alignment, exchangeable style features
are extracted. Better stylization can be achieved for the
content image by fusing its purified content feature with
the aligned style feature from the style image. Experiments
show that our method significantly improves the stylization
performance over the prior state-of-the-art methods.
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