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Abstract

We aim to detect real-world concurrent activities performed
by a single person from a streaming 3D skeleton sequence.
Different from most existing works that deal with concur-
rent activities performed by multiple persons that are seldom
correlated, we focus on concurrent activities that are spatio-
temporally or causally correlated and performed by a single
person. For the sake of generalization, we propose an ap-
proach based on a decompositional design to learn a ded-
icated feature representation for each activity class. To ad-
dress the scalability issue, we further extend the class-level
decompositional design to the postural-primitive level, such
that each class-wise representation does not need to be ex-
tracted by independent backbones, but through a dedicated
weighted aggregation of a shared pool of postural primi-
tives. There are multiple interdependent instances deriving
from each decomposition. Thus, we propose Stacked Rela-
tion Networks (SRN), with a specialized relation network for
each decomposition, so as to enhance the expressiveness of
instance-wise representations via the inter-instance relation-
ship modeling. SRN achieves state-of-the-art performance
on a public dataset and a newly collected dataset. The re-
lation weights within SRN are interpretable among the ac-
tivity contexts. The new dataset and code are available at
https://github.com/weiyi1991/UA Concurrent/

1 Introduction

Human activity detection is an important problem in com-
puter vision with many practical applications such as video
surveillance, human computer interaction, smart home, etc.
There are several issues hindering the practical applicabil-
ity of activity detection algorithms, including a large va-
riety of scenes (e.g, background, viewpoint, distance and
illumination), diversity in human-object interactions (i.e,
similar motions may appear in different activities regard-
ing different objects), and complexity of body movement
(i.e, human ego motion is usually multi-purpose and tempo-
rally or causally correlated). Among these issues, the vari-
ety of scenes can be handled by disentangling human mo-
tions from the environment using 3D human skeletal key
points (Aggarwal and Xia 2014). The diversity in human-
object interactions is often addressed by integrating image
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Figure 1: Samples of single-person concurrent activities.

appearance features with 3D skeletal data (Wang et al. 2012;
Yu, Liu, and Yuan 2014). However, the last issue of com-
plexity of body movement has not been well addressed. Most
existing 3D skeleton based activity recognition methods
(Gao et al. 2018; Hu, Cui, and Yu 2018; Ke et al. 2018;
Li et al. 2018; Liu, Akhtar, and Mian 2017; Shi et al. 2018;
Weng et al. 2019; Yan, Xiong, and Lin 2018; Zhang et al.
2018) are developed for trimmed activity sequences and lim-
ited by the assumption that one subject can only perform one
activity at a time.

This one-activity-at-a-time assumption is indeed prob-
lematic in the reality, as one person usually performs multi-
ple activities concurrently. In this work, we aim to address
the problem of detecting single-person concurrent activi-
ties (see Figure 1) from streaming 3D skeleton sequences.
In our setting, representing a specific body motion with a
unified fixed-size feature representation is not a good solu-
tion due to two generalization issues. (i) It is hard to make
a unified fixed-size representation flexible enough to ac-
commodate an indefinite number of concurrent activities.
(ii) The combinations of concurrent activities at the test
stage might be different from those at the training stage,
for which the unified representation learned in training will
become inadequate. To this end, we choose a decomposi-
tional design to represent each activity class with a ded-
icated representation. An intuitive implementation of such
a decompositional design is to extract dedicated class-wise
features using separate branches of the model. However,
this approach suffers from the scalability issue, as the num-
ber of classes can increase arbitrarily in general. To ad-
dress this scalability issue, we employ a shared backbone
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for all classes at lower semantic-agnostic level (namely the
postural-primitive level), and retain learning separate rep-
resentation for each class at higher semantic-specific class
level. The representations at postural-primitive level are de-
compositional by nature because they are extracted from
multiple postural primitives. The two levels are connected
by a weighted average pooling module which aggregates the
postural primitive presentations dedicatedly for each class.

This decompositional design results in a number of in-
stances for both class-wise and postural-primitive levels. For
the class level, the decomposed instances refer to individ-
ual activities (e.g, bend down or pick up trash), and for the
postural-primitive level, the decomposed instances refer to
individual poses or movements (e.g, the position of left hand,
or the velocity of right arm). Some activity classes or prim-
itive states tend to co-occur or be mutually exclusive while
others can be independent. It is thus beneficial to augment
the feature representations with their contexts, so as to re-
duce the fuzziness. A recent work of relation network (Hu
et al. 2018) is suitable for this purpose, in learning feature
representations of interdependent instances through the at-
tentive modeling of the inter-instance relationships.

In this paper, we propose a new model by extending
the relation network to the spatio-temporal domain for 3D
single-person concurrent activity detection problem. We
propose the Stacked Relation Networks (SRN) which con-
sists of two relation networks with each for a specific de-
composition. The first relation network extracts feature rep-
resentations for two types of postural primitives (from 3D
skeletal joints and bones). The extracted primitive represen-
tations are pooled averagely according to the learned class-
wise weights, so as to extract a raw representation for each
activity class. We feed the raw class-wise representations
into the second relation network, to augment the represen-
tation with inter-class relationships. This augmented class-
wise features are finally fed into a set of class-wise LSTM
classifiers to determine the occurrence of each activity class.

The contributions of this work are three-fold. (i) We pro-
pose a two-level decompositional approach for 3D single-
person concurrent activity detection. This decompositional
design makes our model general and scalable. (ii) The ac-
tivity or primitive instances deriving from the decomposi-
tion and the inter-instance relationships can be appropriately
modeled using two relation networks. We further extend
the frontier of this thought to the new end-to-end trainable
“stacked” relation networks, which can effectively extract
expressive class-wise representations for activity detection.
Relation weights produced from the relation networks are
interpretable. (iii) The proposed stacked relation networks
achieve the state-of-the-art performance on a public bench-
mark dataset and a newly collected dataset.

2 Related work

Our method is most relevant to single-person activity recog-
nition methods using 3D skeleton data. We review three cat-
egories of methods from the ones with more constrained set-
tings to less-constrained ones: (i) activity classification on
trimmed sequences, (ii) activity detection from untrimmed

sequences, and (iii) concurrent activity detection. We also
review relation network used in other tasks.

Activity classification on trimmed sequences. Under
the assumption that each activity interval has been pre-
segmented from the streaming sequences, the task is to clas-
sify a well-trimmed video interval into one of the prede-
fined activity classes. Due to this simplified formulation,
these methods mainly focus on the design and learning of
discriminative features, e.g, anthropometry (Du, Wang, and
Wang 2015), integration of spatial and temporal cues (Liu et
al. 2017), sequential dependency range adjustments (Lee et
al. 2017), and spatio-temporal graph formulations (Shi et al.
2019; Yan, Xiong, and Lin 2018), etc.

Activity detection from untrimmed sequences. Relax-
ing from the activity classification on well-trimmed se-
quences to activity detection from untrimmed sequence in-
troduces new challenges. However, there is still one useful
assumption to make, that there exists only one activity to
be classified within a time interval. Thus, the task requires
not only to recognize activities but also to localize them
along the temporal dimension. Existing methods achieve ac-
tivity localization using several sequential models, e.g, RNN
(Donahue et al. 2015), hidden Markov models (Wu and Shao
2014), and dynamic time warping (Zhao et al. 2013). Due to
the flexibility and adaptability in modeling the long-range
dependencies of streaming sequences, RNN has become the
model of choice for handling untrimmed data.

Concurrent activity detection. The introduction of ac-
tivity concurrency removes the single-activity constraint,
that at each time a subject can perform multiple activities.
There exists very few works addressing this general prob-
lem. The most relevant one is (Wei et al. 2013), which uses
hand-crafted features to represent activities and their tem-
poral relationships. Furthermore, this method relies on the
sliding window to segment sequences and uses local de-
tectors to classify activities for each interval. Notably, the
model in (Wei et al. 2013) shares some spirit with our de-
compositional approach, in that the weight vector is learned
to parameterize the importance of body parts for each activ-
ity class. Major difference between our method and (Wei
et al. 2013) is that our model is deep, end-to-end train-
able. Also, we utilize inter-instance relationships to augment
feature representations for each instance, while (Wei et al.
2013) assumes the independence of instances deriving from
the decomposition.

Other related tasks. There are other tasks that are re-
lated to concurrent activity detection. The multi-label activ-
ity detection problem (Yeung et al. 2017) provides multi-
ple labels for each frame, but usually these “concurrent” ac-
tivities are performed by multiple persons, which lacks of
semantic correlations, i.e, whether two activities are mu-
tually exclusive or not. (Lillo, Soto, and Niebles 2014;
Lillo, Niebles, and Soto 2016) define the concept of com-
plex activity which is the composition of several activities.
The activity recognition is performed at the level of complex
activities, so for the sake of generalization at the test stage,
it requires a huge number of pre-defined complex activities
due to the combination blast. This restricts the practicabil-
ity significantly. On the contrary to these tasks, our target
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single-person concurrent activity detection problem involves
more semantic correlations, and is more practical from the
perspective of generalization.

Relation network. Based on the intuition that contex-
tual information is helpful in localizing and classifying ob-
jects, Hu et al(Hu et al. 2018) proposed the relation network
for object detection. The integration of contextual feature is
achieved using relation modules, and the importance of each
piece of contextual information is estimated using an atten-
tion mechanism. Note that the adaption of the relation net-
work to our problem involves significant modifications and
improvements regarding various factors, e.g, the input, noise
tolerance, temporal relationship, and the connection for two
heterogeneous relation networks.

3 Method

The proposed Stacked Relation Networks (SRN) is a two-
level pipeline (Figure 2) consists of two relation networks —
one for learning postural primitive representations (RN-PP),
and the other for learning class-wise representations (RN-
CLS). RN-PP extracts the postural primitive representations.
The input is a 3D skeleton sequence obtained from the RGB-
D sensor. Specifically, we embed two types of raw postural
primitive representations (from 3D skeletal joints and bones)
into a high-dimensional latent space, and use RN-PP to aug-
ment the embedded representations with co-occurrence rela-
tionships between a pair of such primitives. The augmented
postural primitive representations will be averagely pooled
according to the learned class-wise weights, and fed into the
second level as raw class-wise representations. Next, RN-
CLS will augment these raw representations with inter-class
co-occurrence relationships, which will then be used by the
class-wise LSTM binary classifiers for activity recognition.

In RN-PP and RN-CLS, the inter-instance relationships
are partially estimated by an attention module, and the in-
fluences of the contextual representations on an instance
representation are parameterized by the estimated relation-
ships. The two relation networks are connected through a
weighted average pooling layer. The two relation networks
share similar architectures, and their parameters are shared
spatio-temporally by all instances at the same level.

We will review the preliminaries of relation network in
§ 3.1. The architecture of RN-PP and RN-CLS will be in-
troduced in § 3.2 and § 3.3, respectively. Finally, § 3.4 will
describe the LSTM classification and the training of SRN.

3.1 Review of relation network

The relation network was first proposed for object detection
(Hu et al. 2018), with a major improvement on instance-wise
representations in terms of expressive capabilities, by lever-
aging the co-occurrence relationships among objects. The
architecture of a relation network is composed of a fully-
connected layer and a relation layer in alternations. A fully-
connected layer maps an instance-wise representation to a
new latent space via both linear and nonlinear transforma-
tions. A relation layer augments an instance-wise represen-
tation by linearly aggregating the representations of contex-
tual instances (e.g, nearby objects). The relation layer is de-

signed to be multi-head, such that the representation aug-
mentation benefits from the advantage of ensemble learning
in flexibility.

We describe the details regarding augmenting the repre-
sentation of the nth instance with the representations from
other instances. Let fn denote the representation of the nth

instance, and let fm denote the representation of any other
instance with contextual co-occurrence relationship with the
nth instance. Assume that there are Nr parallel relation
modules within a relation layer, and each of them outputs
a relation feature fR(n) ∈ R

df , which is computed as a
weighted sum of the representations of other instances:

fR(n) =
∑
m

ω̄mn · (WV · fm), (1)

where WV is a weight matrix of a linear transformation
shared among all instances. ω̄mn represents the attentively
estimated relation weight between the nth and mth in-
stances. ω̄mn is computed as a normalized attention weight:
ω̄mn = ωmn

∑
k ωkn , and ωmn is computed as the scaled dot-

product similarity:

ωmn =
dot(WK · fm,WQ · fn)√

dk
, (2)

where WK and WQ are linear transformation matrices that
are shared among all instances. dk is the dimension of the
linearly transformed fm.

Representation fn is augmented by concatenating all re-
lation features:

fn := fn + Concat
[
f1R(n), ..., f

Nr

R (n)
]
. (3)

3.2 Learning postural primitive representations

Input. As in Figure 2, the input at time step t to the SRN
pipeline is a set of 3D body skeletal points. The first step
to obtain postural representation is to extract raw joint rep-
resentations (i.e, positions and offsets) and bone representa-
tions (i.e, positions, directions and offsets) from these skele-
tal points. Since it is hard to directly measure the relation
weights between these two heterogeneous raw representa-
tions, they are first embedded into a common latent space
as the ‘emb’ steps in Figure 2 (a), and then the embedded
representations are fed to RN-PP for augmentation.

Spatial relationships of the postural primitive represen-
tations are learned in the spatial relation layer (S-relation) in
RN-PP via a feature augmentation process following steps
in Eqs. (1, 2, 3) and pipeline depicted in Figure 2 (a). Since
RN-PP is applied at every time step, the learnable param-
eters of S-relation, i.e, WV in (1), and WK and WQ in
(2), are shared across the temporal domain for the purpose
of generalization. We note that the raw input skeletal data
are with much lower dimensionality when compared to the
augmented postural representations. However, raw skele-
tal data are also much noisier due to the unreliable sen-
sor or body pose estimation, resulting in unreliable relation
weights learned in (2). To address this issue, for each pair
of instances, we incorporate a learnable weight ω̂mn (which
is optimized during back-propagation) that is also tempo-
rally shared. The weight ω̂mn serves as the complementary
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Figure 2: Pipeline overview: (a) In the first level, postural primitive representations are extracted via RN-PP. (b) In the second
level, class-wise representations are extracted via RN-CLS, and afterwards a set of LSTM binary activity classifications are per-
formed based on these representations. S-relation and T-relation represent the spatial and temporal relation layers, respectively.

base relation weight, which works hand-in-hand with the at-
tentively estimated weight ω̄mn (see Figure 6 for visualiza-
tions). The postural primitive relation feature fp,R(n) for the
nth instance can then be computed as the following:

fp,R(n) =
∑
m

(ω̄mn + ω̂mn) · (WV · fmp ), (4)

where fmp denotes the representation of the mth postural
primitive at time step t; subscript p indicates the postural-
primitive level. Weight ω̂mn is initialized as 0. This design
can effectively strengthen the robustness and flexibility of
the relation module without harming performance. Given the
relation features from all parallel relation modules, RN-PP
outputs the augmented representation obtained from (3).

3.3 Learning class-wise representations

Input. As shown in Figure 2, the first level of SRN pro-
duces augmented representations for all Np postural primi-
tives Fp = (f1p , · · · , fNp

p ), which will then be converted into
a form of raw class-wise representations that can be taken as
input to RN-CLS for activity detection in the second level.
Specifically, Fp is averagely pooled according to a learned
weight matrix Λ = (Λ1, · · · ,ΛNc), where Nc represents
the number of activity classes; and Λn = (λ1

n, · · · , λNp
n )

represents the set of weights for the nth class. Formally,
the raw representation for the nth class is computed as
fnc = 1

Np

∑
m λm

n · fmp , where subscripts p and c are used
to index postural-primitive level and class level representa-
tions, respectively.

Temporal relationship. The SRN architecture can incor-
porate arbitrary number of relation layers in the pipeline. In
Figure 2, RN-PP contains a S-relation layer, while RN-CLS
contains a S-relation layer followed by a temporal relation
layer (T-relation). Both RN-PP and RN-CLS share the same
principled architecture. The intuition behind the T-relation
layer is to augment the activity instance-wise representation
with temporal contexts, so as to enhance the robustness of
the representations. The T-relation layer also enforces tem-
poral smoothness in the representation.

We provide justification on why T-relation layer is not
used in RN-PP. We observed frequent fluctuations in the
postural primitive features, which are noisy but might con-

tain useful local patterns and discriminative information. Di-
rectly smoothing out of these signals can reduce representa-
tion expressibility. In contrast, learning high-level class-wise
representations in RN-CLS is more global, so temporal con-
tinuity can be assumed in general.

We denote the temporal relation feature for the nth class
output by the T-relation layer at time t as fnc,R(t), which can
be computed from the spatially augmented representation
for the nth class as:

fnc,R(t) =
1

2

[−→
WV · fnc (t− 1) +

←−
WV · fnc (t+ 1)

]
, (5)

where fnc (t− 1) and fnc (t+ 1) are spatially augmented rep-
resentation for the nth class at time step (t− 1) and (t+1),
respectively.

−→
WV and

←−
WV are two temporally shared ma-

trices of linear transformations, which play the similar role
as the encoding matrices in bidirectional RNN (Schuster and
Paliwal 1997) for the previous and next hidden states.

There are two major distinctions between the computa-
tion of the spatial relation features in (4) and that of the
temporal features in (5). First, to reduce model complex-
ity and improve running efficiency, we do not explicitly
model the across-time inter-instance relations in an exhaus-
tive message-passing fashion, but implicitly impose such
relationships through the spatially augmented features, i.e,
fnc (t − 1) and fnc (t + 1) in (5). Second, unlike the adaptive
relation weight used in the S-relation layer in (4), we employ
fixed relation weight 1

2 for the representations at the previ-
ous and next time steps. This is based on an assumption that
consecutive information should be constantly helpful. Given
fnc,R(t), we augment the representation for the nth class by
fnc (t) := fnc (t) + fnc,R(t).

3.4 Classification and SRN training

Given the spatio-temporally augmented class-wise represen-
tations Fc(t) =

(
f1c (t), · · · , fNc

c (t)
)

from RN-CLS, each
class-wise representation is fed to the corresponding ded-
icated LSTM binary classifier to predict the logits Zt =
(z1t , · · · , zNc

t ), where znt ∈ [−1, 1] represents the occurring
likelihood of the nth class. SRN is trained by minimizing
the mean squared error between Z and the ground-truth log-
its Z̃. Specifically, a ground-truth logit z̃nt = 1 indicates that
the nth activity class occurs at time t, and znt = −1 indicates
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the absence of the nth class at time t. The objective function
is given as L =

∑T
t

∑Nc

n (znt − z̃nt )
2, which is minimized

using back-propagation with ADAM optimizer and learning
rate 0.001, betas (0.9, 0.999).

4 Experiments

To evaluate the effectiveness of SRN, we conduct experi-
ments on the UCLA concurrent activity dataset (Wei et al.
2013), which provides 3D human skeleton sequences with
concurrent activity annotations. We further collect a larger
3D concurrent activity detection dataset, to provide both the
skeletal sequences and the corresponding RGB-D videos of
a wider range of concurrent activities.

Implementation details. The input of our proposed
Stacked Relation Network consists two parts, i.e, joint pos-
tural primitive representations and bone primitive represen-
tations as shown in Figure 5 (b). The raw representation for
each joint postural primitive consists of two components:
(i) normalized joint positions and (ii) their offset between
frames. To unify the format for UCLA dataset (with 20 joints
per subject acquired using Kinect V1) (Wei et al. 2013) and
the newly collected dataset (with 25 joints per subject ac-
quired using Kinect V2), we keep the 20 joints tracked by
Kinect V1, and ignore additional joints provided by Kinect
V2. Dimension of the raw features for each joint postural
primitive is 6. The raw representation for each bone pos-
tural primitive consists of three components: (i) the center
position of the two endpoints of each bone, (ii) the unit ori-
entation vector of the bone, and (iii) the offset of center po-
sition between frames. We take all bone postural primitives
except the two foot bones which are more noisy in gen-
eral. Dimension of the raw feature for each bone postural
primitive is 9. After all, the dimension of input features is
20× 6 + 17× 9 = 273.

We use Nr = 4 parallel relation modules within an S-
relation layer. Dimension of the relation feature df is 64,
and dk in (2) is set as 8. We set the hidden dimension for
each LSTM binary classifier as 128. Our method is imple-
mented with PyTorch. All experiments are conducted on a
machine with an NVIDIA GTX1080Ti GPU with 11GB on-
board memory.

4.1 Dataset and experiment setup

UCLA concurrent activity dataset (Wei et al. 2013), to
our knowledge, is the only publicly available dataset for
3D single-person concurrent activity detection. It contains
12 indoor activity classes and 61 sequences, with at most 3
concurrent activities in each frame. We follow the same ex-
perimental setting as in (Wei et al. 2013) to use sequences
with even indices for training and the remaining for test.
A new concurrent activity dataset. A major shortcom-
ing of the UCLA dataset is that the number of activity
classes and amount of sequences are relatively small. To this
end, we collected a larger and more challenging 3D con-
current activity detection dataset. This dataset contains 201
sequences of indoor, real-world common daily life activi-
ties with high co-occurring likelihoods. We annotated 35
indoor activity classes: drink, eat, read book, write on pa-

per, write on blackboard, look at monitor, use remote con-
troller, play/read phone, make a call, pick up phone, turn on
monitor, type on keyboard, fetch water, pour water, throw
trash, pick up trash, tear up paper, wear jacket, take off
jacket, wear shoes, take off shoes, wear on glasses, take off
glasses, touch hair, clapping, wave hand, nod head, shake
head, wipe face, bend down, walk, sit, stand up, jump, cross
leg. The RGB-D videos are captured in resolution 512 ×
424 at 15 FPS. We provide three types of data sources: RGB
videos, Depth videos and human skeleton sequences. Fig-
ure 3 shows two sample frames with skeletal joints overlay
on the RGB-D videos. The dataset is captured at two in-door
locations with multiple volunteers. The number of concur-
rent activities at each frame varies from 1 to 5. This dataset
includes three times more activity classes and amount of se-
quences over the UCLA dataset. It contains subtle activities
that are not easily perceivable, e.g, nod head, shake head.
Many activities are highly correlated, e.g, pick up phone,
read/play phone, make a call, etc. We use two thirds of the
sequences for training and the remaining for test.

Figure 3: Sample frames of the new RGB-D concurrent ac-
tivity dataset. The skeletons are drawn on the color images.
The data is captured with varieties of human subjects, cam-
era views and activity classes. Total number of concurrent
activities and combinations may vary on different videos.

4.2 Evaluation criteria

Average precision (AP). We evaluate the per-activity-
interval performance in terms of average precision following
(Wei et al. 2013). A detected activity interval is considered to
be correct if the overlap between it and a ground-truth inter-
val is greater than or equal to 60%. We set the threshold 0.8
to obtain intervals in our experiments. We use both the mean
class-wise AP (MAP) and overall AP (OAP) over all classes
as metrics. The AP score is sensitive to false positives, which
sets a strict requirement in the localization accuracy of the
compared methods.
Error rate (ER). In addition to the above per-interval eval-
uation, we also evaluate the per-frame activity detection per-
formance in terms of error rate. We use a binary vector Gi,j
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Figure 4: Wrong prediction area (WPA). The plot shows a
clip of ground-truth annotation and activity prediction result.
Blue and red indicate false positives and false negatives, re-
spectively. WPA is defined as the sum of false positive and
false negative areas.

(1 for occurrence and 0 for absence) to denote the ground-
truth annotation of the ith sequence for the jth activity class.
We use Si,j to denote the corresponding prediction scores
re-scaled to the range of [0, 1]. As illustrated in Figure 4, we
define the wrong prediction area (WPA) as the sum of the
false positive and false negative areas:

WPAi,j =
∑
t

(1−Gt
i,j) · St

i,j︸ ︷︷ ︸
false positive

+Gt
i,j · (1− St

i,j)︸ ︷︷ ︸
false negative

. (6)

ER for all sequences over all classes is computed by ER =∑
i

∑
j

WPAij

Ti
, where Ti is the length of the ith sequence.

4.3 Results and analysis

Compared methods. We compare SRN with three SVM-
based methods (namely ALE, MIP and COA) described
in (Wei et al. 2013), two LSTM-based baselines named
LSTM3 and LSTM4, respectively and one state-of-the-art
model on activity classification task - Adaptive Graph Con-
volutional Network (AGCN) (Shi et al. 2019). LSTM3 is
a 3-layer LSTM with 128 hidden units for each layer, fol-
lowed by a linear classifier. Compared to LSTM3, LSTM4
has larger capacity, i.e, 4 layers with 256 hidden units for
each layer. Both LSTM3 and LSTM4 take as input a 310
dimensional vector with four types of features (joint posi-
tions, angles, offsets, pairwise joint distances) as in (Vee-
riah, Zhuang, and Qi 2015). While AGCN takes the same
input features of SRN. To adapt AGCN to our problem set-
ting, we changed the output of network from single label per
video to multiple label per frame. The amount of trainable
parameters for LSTM3, LSTM4, AGCN and SRN are 0.5M,
2.2M, 6.9M and 2.8M, respectively.
Analysis. Table 1 and Table 2 show the performance evalu-
ation of our method and comparison to others on the two
datasets. SRN achieves the best performance on all three
metrics (OAP, MAP and ER) on both datasets. Table 1 shows
that SRN outperforms all baselines in 5 out of 12 activ-
ity classes on the UCLA dataset in class-wise AP scores.
Note that ALE, MIP and COA achieves moderate OAP, but
yield poor MAP with large standard deviations. This is be-
cause these methods overfit on a few frequently occurring
classes, e.g, sit, stand and drink, while underfit the other
classes. In contrast, SRN outperforms all baselines signifi-
cantly in MAP and the MAP standard deviation. It indicates
that SRN is more robust on the imbalance datasets. Com-
pared to LSTM3 and LSTM4 based on the unified fixed-size
representation, SRN achieves more balanced performance.
A reasonable explanation is that the decompositional design

Table 1: Comparisons on the UCLA dataset. ↑ (↓) means the
higher (lower) the better. See § 4.2 for criteria descriptions.

Activity ALE MIP COA LSTM3 LSTM4 AGCN SRN
make a call 0.85 0.93 0.97 0.71 0.69 0.82 0.97

sit 0.99 0.98 0.98 0.73 0.79 0.87 0.96
stand 0.99 0.98 0.98 0.91 0.90 0.91 0.94
drink 0.91 0.92 0.96 0.95 0.92 0.90 0.90
type on keyboard 0.92 0.91 0.93 0.99 0.93 0.98 0.97
turn on monitor 0.55 0.42 0.43 0.86 0.84 0.88 1.00

fetch water 0.58 0.59 0.60 0.99 0.95 0.91 0.95
pour water 0.71 0.58 0.71 0.85 0.81 0.92 0.95

press button 0.66 0.22 0.33 0.92 0.79 0.86 0.99

pick up trash 0.39 0.40 0.55 0.72 0.80 0.66 0.82

throw trash 0.21 0.29 0.59 0.91 0.77 0.76 0.84
bend down 0.47 0.58 0.67 0.85 0.89 0.87 0.86
MAP ↑ 0.69 0.65 0.73 0.87 0.84 0.86 0.93
± std ↓ 0.25 0.28 0.23 0.10 0.08 0.08 0.06

OAP ↑ 0.84 0.86 0.88 0.86 0.86 0.88 0.91

ER ↓ n/a n/a n/a 0.29 0.30 0.31 0.22

Table 2: Comparisons on the new dataset. ↑ (↓) means the
higher (lower) the better. See § 4.2 for criteria descriptions.

Method OAP ↑ MAP ↑ ± std ↓ ER ↓
LSTM3 0.56 0.44 ± 0.30 1.24
LSTM4 0.57 0.43 ± 0.31 1.31
AGCN 0.55 0.44 ± 0.34 1.30
SRN 0.61 0.48 ± 0.31 1.20

and relationship modeling of SRN can effectively increase
the network representative capacity and flexibility with only
moderate parameter increment. Our SRN also outperforms
AGCN on both three metrics with the same input features,
which demonstrates the class-wise representation learning
of SRN is more effective than the unified feature. In our
newly collected dataset, although OAP and ER are not as
high as on UCLA dataset due to the data variances and im-
perceptible class differences, the performance of SRN also
outperforms other methods in a certain margin. We also want
to mention that SRN achieves such good performance with
only a small amount parameters (on a par with LSTM4).

4.4 Ablation study

We conducted detailed ablation study to evaluate four as-
pects of SRN: (i) necessity of relation layers at each level,
(ii) necessity of the T-relation layer, (iii) design of the rela-
tion weight, and (iv) decompositional design for the activ-
ity representation. We create several variants of our model
by disabling/adding/swapping layers or exchanges compo-
nent modules, and evaluate these variants on the UCLA
dataset. All variants take the same input. Evaluation results
are shown in Table 3, where (a) represents the standard SRN
as in Figure 2, and the rest (b) to (i) are variants to compare.
Specifically, the standard SRN in (a) contains one RN-PP
and one RN-CLS with T-relation layer, where the relation
weight is the sum of the attentively estimated weight ω̄mn

and the learnable base weight ω̂mn in (4).
Relationship modeling at each level. To evaluate the ef-
fectiveness of the proposed relation modules, we keep the
basic architecture settings intact (i.e, FC layers, weighted
average pooling) but consider in Table 3 (b) a stacked net-
work without relation layers in both RN-PP and RN-CLS,
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Figure 5: (a) Visualization of the absolute value of average pooling weight Λ (defined in § 3.3) on UCLA dataset. (b) Legend
of skeletal joints and bones in color groups, which corresponds to the indices of the horizontal axis in (a).

Table 3: Ablation study on the UCLA dataset.
Method OAP ↑ MAP ↑ ± std ER ↓
(a) SRN (see Figure 2) 0.91 0.93 ± 0.06 0.22

(b) SRN w/o all relation layers 0.85 0.81 ± 0.14 0.27
(c) SRN w/o relation layers in RN-CLS 0.87 0.89 ± 0.10 0.23
(d) SRN w/o relation layers in RN-PP 0.85 0.82 ± 0.14 0.27
(e) SRN w/o T-relation in RN-CLS 0.88 0.87 ± 0.11 0.26
(f) SRN w/ T-relation in RN-PP 0.88 0.87 ± 0.10 0.24
(g) SRN w/o ω̄mn in (4) 0.88 0.88 ± 0.08 0.23
(h) SRN w/o ω̂mn in (4) 0.87 0.83 ± 0.10 0.26
(i) SRN w/ unified activity representation 0.85 0.86 ± 0.11 0.40

in Table 3 (c) a relation network without RN-CLS, and in
Table 3 (d) a relation network without RN-PP. Observe that
(c) has 2% improvements in OAP, 8% in MAP and 5% in
ER than (b), while (d) has no improvement. This suggests
that RN-PP can better capture information from raw input
features. The postural primitive module in (d) only uses FC
layers to learn representations, thus the expressibility there is
insufficient to learn good enough class-wise representations.
The comparison between (a) and (c) demonstrates that it is
beneficial to model the inter-class relationships for learning
class-wise representations.
Temporal relation. We investigate the capability of tempo-
ral relation module (T-relation in Figure 2). In Table 3 (e),
no temporal relation modules are applied to neither RN-PP
nor RN-CLS. In (f), T-relation is applied to both RN-PP
and RN-CLS. Observe that Table 3 (a) (w/ T-relation only
in RN-CLS) performs better than (e) on all metrics. Since
class-level T-relation incorporates temporal context in fea-
ture learning, it makes activity predictions more immune
against inconsistent spatial features. In Table 3 (f), adding
T-relation to postural primitive learning causes negative ef-
fects in reducing the discriminability of the representation,
which results in inferior class-wise representations.
Relation weights. We investigate two aspects of the rela-
tion weights defined in (4). In Table 3 (g), we use only the
learnable relation weight ω̂mn to compute relation features.
In (h), we use only the input-dependent attentive relation
weight ω̄mn. The results show that either ω̂mn or ω̄mn alone
cannot match the use of them combined. The attentive re-
lation weight ω̄mn is good at estimating instance relation-
ships with diverse motion features. However, ω̂mn is input-
independent and thus good at modeling global relationship

among instances, which can provide some resistance to the
noise incurred by the attentively estimated weights.
Decompositional design in class-wise representations. We
compare the performance of the proposed decompositional
design (with class-wise representation) and an unified ap-
proach (without decomposition of representation). We cre-
ate a variant model based on the following modifications.
First, we only maintain a unified set of learnable weights for
all classes at the weighted average pooling layer, instead of
maintaining a unique set of weights per class. As such, the
pooling layer will output a raw unified representation. Sec-
ond, we remove all relation layers within RN-CLS. Third,
we replace the class-wise LSTM binary classifiers with a
unified multi-class LSTM classifier. Performance drops sig-
nificantly after the removal of the decompositional design in
Table 3 (i) when compared with original SRN in (a). Such
drop should be caused by the loss of representation capacity
and poor inter-class relationship modeling.

4.5 Interpretability

Average pooling weight. As described in § 3.3 and Figure 2,
raw class-wise representations are computed from averagely
pooling of the postural primitive representations according
to the class-wise weights Λ. Therefore, the absolute value of
Λ can reflect the influences of each postural primitive rep-
resentation to each activity class. As such, we visualize the
absolute value of average pooling weights in Figure 5. En-
tries of each row represent the learned pooling weights of
all postural primitive instances for a specific activity class.
The human skeletal joints and bones are visualized into five
groups of colors in Figure 5 (b). Observe in Figure 5 (a) that
the upper-body groups, such as left and right arms (red and
green), tend to have more influence on upper-limb activi-
ties, e.g, pour water, type on keyboard, etc. The lower-body
groups (blue and purple) have more influence on lower-body
or full-body activities, e.g, bend and sit. These observations
are consistent with our common knowledge. These result
shows the interpretability of the learned weights, which also
supports the rationality of our decompositional design.
Relation weights. The two types of spatial relation weights
(namely, the attentively estimated weight ω̄mn and learnable
weight ω̂mn) in (4) play an important role at modeling co-
occurrence relationship between activity pairs. We visualize
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Figure 6: Distributions of the spatial relation weight at the class level on UCLA dataset. Blue curves show distributions of
ω̄mn + ω̂mn for each activity pair. Red vertical line indicates the learnable relation weight ω̂mn. Green dotted line indicates the
zero relation weight. Please zoom in for details.

Figure 7: Statistical co-occurrence likelihood of the class
pairs. Positive value (∼ 1) means that the two classes tend to
co-occur; negative value (∼ −1) means they are statistically
exclusive. Please zoom in for details.

the distributions of these relation weights in Figure 6 to in-
vestigate their interpretability. In Figure 6, each row corre-
sponds to a query class, so we can study the influences of a
specific contextual class against each query class by check-
ing Figure 6 column-by-column. We visualize ω̂mn using a
red line, as the value is fixed for a class pair. Note that ω̄mn

is a normalized weight, thus the magnitude is less meaning-
ful. We visualize ω̄mn + ω̂mn using a blue curve to show
the distribution more clearly. In general, the farther a distri-
bution deviates from zero, the stronger the co-occurring re-
lationship between the current class pair is. However, since
ω̄mn ∈ [0, 1], the sign of ω̂mn is meaningful in that a pos-
itive (negative) ω̂mn provides the lower (upper) bound for
the relationship strength.

Further insights can be obtained by comparing the rela-
tion weight distributions in Figure 6 with the statistical co-
occurrence likelihoods of activities computed by coefficient
of colligation (Yule 1912) in Figure 7. The co-occurrence
likelihood ρ is computed as:

ρ =
μ11μ00 − μ10μ01

μ11μ00 + μ10μ01
, (7)

where μ11 / μ00 denotes the number of occurrences where
both activity class A and B get 1 (occur) / 0 (not-occur).
μ10 denotes the counts where activity class A occurs and B
does not; and vice versa for μ01. When ρ approaches 1, A
and B always co-occur. When ρ → −1, A and B seldom
co-occur. When ρ → 0, the co-occurrence between A and
B is neutral. The co-occurrence likelihood of activities can
reflect the co-occurrence of two activities in three aspects,
e.g., co-occurring, mutually exclusive, or neutral. Many en-
tries in Figure 6 match those in Figure 7 perfectly (in that
the cases of ω̄mn and ω̂mn away from 0 match large abso-
lute values in Figure 7 and vice versa). Such well-matching
cases include the influences of drink as a key on all query
classes except fetch water, and the influences of press but-
ton on all query classes except type on keyboard and sit. For
the entries in Figure 6 not matching Figure 7, our model au-
tomatically learns and adopts a conservative attitude to these
relationships, such that even if these contexts are not helpful
for augmenting the query representation, they at least do no
harm. Such a conservation strategy is reflected in two cases:
(i) Inaccurate weights in Figure 6 are pushed to zero, e.g, the
influences of make a call as a key on queries turn on monitor,
type on keyboard and bend down; (ii) Inaccurate weights in
Figure 6 are limited by a low upper bound by negative ω̂mn

and the relationship strengths are further weakened by ω̄mn.
Examples include the influences of stand as key on query
pour water, and the influences of fetch water as a key on
query bend down.

12336



5 Conclusion

In this work, we describe an end-to-end network to de-
tect single-person concurrent activities from untrimmed 3D
skeletal sequence. The core of our approach is based on an
decompositional design, where the attention-guided relation
network can be applied to model low-level features from
body part locations/movements, and adaptively learn rela-
tions between features that enables the learning of a ded-
icated feature representation for each activity class. Scala-
bility of this approach is further addressed in the proposed
Stacked Relation Network (SRN). SRN achieves the state-
of-the-art performance on a public dataset and a newly col-
lected dataset. The learned relation weights of SRN are
lightweight and interpretable among the activity contexts.
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