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Abstract

We study the problem of attacking video recognition models
in the black-box setting, where the model information is un-
known and the adversary can only make queries to detect the
predicted top-1 class and its probability. Compared with the
black-box attack on images, attacking videos is more chal-
lenging as the computation cost for searching the adversar-
ial perturbations on a video is much higher due to its high
dimensionality. To overcome this challenge, we propose a
heuristic black-box attack model that generates adversarial
perturbations only on the selected frames and regions. More
specifically, a heuristic-based algorithm is proposed to mea-
sure the importance of each frame in the video towards gener-
ating the adversarial examples. Based on the frames’ impor-
tance, the proposed algorithm heuristically searches a subset
of frames where the generated adversarial example has strong
adversarial attack ability while keeps the perturbations lower
than the given bound. Besides, to further boost the attack ef-
ficiency, we propose to generate the perturbations only on the
salient regions of the selected frames. In this way, the gen-
erated perturbations are sparse in both temporal and spatial
domains. Experimental results of attacking two mainstream
video recognition methods on the UCF-101 dataset and the
HMDB-51 dataset demonstrate that the proposed heuristic
black-box adversarial attack method can significantly reduce
the computation cost and lead to more than 28% reduction in
query numbers for the untargeted attack on both datasets.

Introduction

Deep neural networks are vulnerable to adversarial sam-
ples (Goodfellow, Shlens, and Szegedy 2014; Szegedy et al.
2013). Recent works have shown that adding a small human-
imperceptible perturbation to a clean sample can fool the
deep models, leading them to make wrong predictions with
high confidence (Moosavi-Dezfooli et al. 2017). As results,
it has raised serious security concerns for the deployment
of deep models in security-critical applications, such as face
recognition (Kurakin, Goodfellow, and Bengio 2016), video
surveillance (Sultani, Chen, and Shah 2018), etc. Therefore,
it is crucial to study the adversarial examples for deep neural
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networks. In addition, investigating adversarial samples also
helps to understand the working mechanism of deep models
and provides opportunities to improve networks’ robustness.

Nevertheless, most of the existing works focus on explor-
ing adversarial samples for image recognition models un-
der white-box or black-box settings (Kurakin, Goodfellow,
and Bengio 2016; Szegedy et al. 2013; Papernot et al. 2016;
Carlini and Wagner 2017; Su, Vargas, and Sakurai 2019).
Adversarial attacks on video models, especially the black-
box attacks, have been seldom explored. Indeed, deep neural
network based real-time video classification systems, e.g.,
video surveillance systems, are being increasing deploys in
real-world scenarios. Therefore, it is crucial to investigating
the adversarial samples for video models.

This paper studies the problem of generating adversarial
samples to attack video recognition models in the black-
box settings, where the model is not revealed and we can
only make queries to detect the predicted top-1 class and its
probability. The major obstacle for solving this problem is
how to reduce the number of queries to improve attack ef-
ficiency. Compare to statistic images, the dimensionality of
video data is much higher as videos have both temporal and
spatial dimensions. As results, directly extending the exist-
ing black-box attack methods proposed for image models to
video models will consume much more queries for gradient
estimation, leading to the low attack efficiency.

To this end, we propose an efficient black-box attack
method specially for video models in this paper. Consid-
ering the fact that video data contains both temporal and
spatial redundancy, it is therefore not necessary to search
the adversarial perturbations for all the frames (Wei, Zhu,
and Su 2019). Besides, for a given video, different frames
and different regions in each frame contribute differently to-
wards video classification results (Peng, Zhao, and Zhang
2018). Intuitively, the key frames which contain the key ev-
idence of one specific event, or the salient regions in the
key frame (usually the foreground regions), play a vital role
for the video classification results. As results, generating ad-
versarial perturbations on the salient regions of key frames
is the most effective way to attack video models. Moti-
vated by this, we propose a heuristic-based method to select
the key frames for adversarial samples generation. Figure
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Figure 1: Overview of the proposed heuristic algorithm for black-box adversarial attacks on video recognition models.

1 overviews the proposed method. In the proposed method,
the perturbation directions are initialized with the samples
from other classes different from the class of the clean video.
Meanwhile, it heuristically searches a subset of frames from
the clean video with the initialized directions, and the salient
regions detected from the selected frames are utilized to up-
date the initial directions. The initial directions as well as
the selected key frames are updated iteratively to make the
number of selected frames as small as possible while keeps
the perturbation noise lower than the given bound. Then the
initial direction which has the minimum distance to the de-
cision boundary is chosen as the final initial direction and
zeroth order optimization (Chen et al. 2017) is next utilized
for direction updating. As the perturbations are generated
only for the salient regions of the selected frames, the pro-
posed method significantly reduces the number of queries.
Our major contributions can be summarized as follows:

• We propose an efficient black-box adversarial attack
model that heuristically select a subset consisting of the
key frames to generate adversarial perturbations.

• We introduce saliency detection in the black-box adver-
sarial attack model to generate adversarial perturbations
only on the salience regions of the key frames, which fur-
ther reduces query numbers. As far as we know, this is the
first attempt to introduce prior knowledge for black-box
video attack.

• Extensive experiments on two benchmark data sets
demonstrate that the proposed method is efficient and ef-
fective. It reduces more than 28% reduction in query num-
bers for the untargeted attack.

Related Work

Adversarial Attack on Image Models

Recent works on adversarial attack are mostly focus on im-
age models, including both white-box (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014; Kurakin, Goodfel-
low, and Bengio 2016; Dong et al. 2018; Carlini and Wag-
ner 2017; Moosavi-Dezfooli, Fawzi, and Frossard 2016;

Papernot et al. 2016; Sarkar et al. 2017) and black-box at-
tacks (Chen et al. 2017; Tu et al. 2018; Cheng et al. 2018;
Brendel, Rauber, and Bethge 2017; Papernot et al. 2017;
Liu et al. 2016). This section reviews recent works on gen-
erating adversarial samples for image models.

White-box Attack White-box attack assumes that the
structure as well as the parameters of the targeted model
are known to the attacker. In this setting, attacks can be
done easily as the gradient of attack objective function can
be computed via backpropagation. In recent years, different
white box attack methods have been proposed. For exam-
ple, L-BFGS attack (Szegedy et al. 2013) first crafts adver-
sarial examples against deep neural networks towards maxi-
mizing the network’s prediction error. and demonstrates the
transferability of adversarial examples. Fast Gradient Sign
Method (FGSM) (Goodfellow, Shlens, and Szegedy 2014)
updates gradient once along the direction of the sign of gra-
dient at each pixel. FGSM can be applied in multiple times
with small step size for better adversarial examples in (Ku-
rakin, Goodfellow, and Bengio 2016), and also be combined
with momentum to increase adversarial intensity (Dong et
al. 2018). C&W’s Attack (Carlini and Wagner 2017) gener-
ates the targeted adversarial examples by defining effective
objective functions, and provides three types of attacks: l0
attack, l2 attack, and l∞ attack. Other algorithms such as
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016),
Jacobian-based Saliency Map Attack (JSMA) (Papernot et
al. 2016), UPSET and ANGRI (Sarkar et al. 2017), etc, have
carried out white box attacks from different aspects.

Black-box Attack Compare with the white-box attack,
the black-box attack is a more realistic but more chal-
lenging setting as the model information remains unknown
to the attacker. Existing efforts on black-box attack for
image models include Zeroth Order Optimization (ZOO)
(Chen et al. 2017), Autoencoder-based Zeroth Order Opti-
mization Method (AutoZOOM) (Tu et al. 2018), decision
based black-box attack (Brendel, Rauber, and Bethge 2017),
Opt-attack (Cheng et al. 2018). Zeroth Order Optimization
(ZOO) (Chen et al. 2017) uses ADAM’s update rule or New-
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ton’s method to update perturbations with the formulation of
the C&W attack, gradients estimated by symmetric differ-
ence quotient, and coordinate-wise Hessian. Autoencoder-
based Zeroth Order Optimization Method (AutoZOOM) (Tu
et al. 2018) is a query-efficient black-box attack, which em-
ploys an autoencoder in reducing query counts, and the ran-
dom full gradient estimation. Decision-based black-box at-
tack (Brendel, Rauber, and Bethge 2017) starts with an ad-
versarial perturbation and performs a random walk on the
boundary to reduce the perturbation. Opt-attack (Cheng et
al. 2018) formulates the black-box attack into a real-valued
optimization problem, which requires fewer queries but
finds smaller perturbations of adversarial examples. There
also exist transfer-based attacks using a white-box attack to-
wards the substitute model for generating adversarial exam-
ples in a black-box setting, such as (Papernot et al. 2017),
(Liu et al. 2016).

Adversarial Attack on Video Models

There is much less related work on generating adversarial
samples to attack video models compared with adversarial
attacks on image models. The first white-box attack method
for video recognition models is proposed in (Wei, Zhu, and
Su 2019), where an l2,1-norm regularization based optimiza-
tion algorithm is proposed to compute the sparse adversarial
perturbations for videos. Different from (Wei, Zhu, and Su
2019), (Li et al. 2018) took advantages of Generative Ad-
versarial Networks (GANs) to do a white-box attack. Their
attack method generates the universal perturbation offline
and works with unseen input for the real-time video recog-
nition model. Nevertheless, the above mentioned methods
assume the complete knowledge of the video recognition
models which is different from our settings. Another work is
(Inkawhich et al. 2019) which proposes an untargeted adver-
sarial attack that based on FGSM (Goodfellow, Shlens, and
Szegedy 2015) and iterative FGSM (Kurakin, Goodfellow,
and Bengio 2017) for flow-based video recognition mod-
els in both white-box and black-box settings. The proposed
white-box attack leverages Flownet2 and chain rule to obtain
the gradients through the whole video recognition model,
where Flownet2 is required to estimate optical flow frames
while also providing gradient information easily. They used
the transferability of adversarial examples generated by the
white-box model to implement the black-box attack. Differ-
ent to these two works which generate the adversarial pertur-
bations for all the frames in the video, our work heuristically
searches a subset of frames and the adversarial perturba-
tions are only generated on the salient regions of the selected
frames, which effectively reduce the number of queries.

Methodology

In this section, we introduce the proposed heuristic black-
box attack algorithm for video recognition models. We as-
sume that the predicted top-1 class and its probability are
known to an attacker.

Denote the video recognition model as a function F .
Specifically, the DNN F (x) takes a clean video x ∈
RT×W×H×C as an input and output the top-1 class ŷ and its

probability P (ŷ|x), where T , W , H , C denote the number
of frames, width, height, and the number of channels respec-
tively. It suffices to denote its associated true class label by
y ∈ Y = {1, · · · ,K}, where K is the number of classes, and
its adversarial example by xadv . In the untargeted attack, the
goal is to make F (xadv) �= y, while for the targeted attack
with the targeted adversarial class yadv , the goal is to satisfy
F (xadv) = yadv .

Our attack algorithm is built based on the Opt-attack
(Cheng et al. 2018), which is originally proposed for at-
tacking image models by formulating the hard-label black-
box attack as a real-valued optimization problem that can be
solved by zeroth order optimization algorithms. We extend
Opt-attack (Cheng et al. 2018) from image models to video
models. Specifically, to deal with the high dimensional video
data and improve the attack efficiency, we propose a heuris-
tic algorithm to select a subset of video frames and only
search the adversarial perturbations for the selected frames.
Following the Opt-attack, we denote θ as the search direc-
tion of the video. The function of the distance from x to the
decision boundary along the direction θ is denoted as g(θ),
which is calculated by a fine-grained search and a binary
search function defined in (Cheng et al. 2018). The objec-
tive of Opt-attack’s is to find the direction that minimizes
g(θ) by zeroth order optimization proposed in (Cheng et
al. 2018). In Opt-attack algorithm, the optimization process
can be divided into two parts: direction initialization and di-
rection updating. The direction initialization is done by the
function θ = p

‖p‖ , where p = x̂−x, and x̂ denotes the video
from other classes; Then update θ with the zeroth order opti-
mization and g(θ). Finally, we find the adversarial example
by xadv = x+ g(θ∗)× θ∗, where θ∗ is the optimal solution
of the zeroth order optimization.

Here, we focus on the direction initialization part, and
propose heuristic temporal and spatial selection methods in
direction initialization for generating barely noticeable ad-
versarial videos that result in misclassification of DNN F .
Specifically, we attempt to find the sparse θ by modifying p
with the equation p = p×M , where M ∈ {0, 1}T×W×H×C

is the mask introducing temporal and spatial sparsity. For
each element in M , if its value equals 1, the corresponding
pixel in the video will be included in the process of perturba-
tion computation. The selected regions with M are named as
masked regions. During the adversarial example generation,
the computed perturbations are only added to the masked
regions. Next, we describe in detail the proposed heuristic
sparse methods.

It worth to mention that it has been demonstrated in Ue-
sato et al., the type of gradient-free optimizer has relatively
small influence towards the attack efficiency. Hence, we use
the zero-order optimization here. The estimated gradient is
defined as

ĝ =
g(θ + βu)− g(θ)

β
· u (1)

where u is a random Gaussian vector of the same size as
θ, and β > 0 is a smoothing parameter which will reduce
by 10 times if the estimated gradients can’t provide useful
information for updating θ. Following (Cheng et al. 2018),
we set β = 0.005 in all experiments. Besides, we sample
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u from Gaussian distribution for 20 times to calculate their
estimators and average them to get more stable ĝ. In each
iteration, θ is updated by

θ ← θ − ηĝ (2)

where η is the step size, which is adjusted at each iteration
by a backtracking line-search approach.

Heuristic Temporal Sparsity

Videos have successive frames in the temporal domain, thus,
we consider to search a subset of frames that contributes the
most to the success of an adversarial attack. Here we intro-
duce the concept of temporal sparsity which refers to the
adversarial perturbations generated only on the selected key
frames during the direction initialization process.

In order to achieve temporal sparsity, we first propose a
heuristic-based algorithm to evaluate the importance of each
frame. Given a frame t, Mt means that all frames except
the t-th frame are equal to 1. Based on F , we can get top-1
class label and its probability by ŷt, P (ŷt|(p×Mt + x)) =
F (p × Mt + x), ∀t ∈ {1, · · · , T}. We then sort the se-
quence of video frames according to the descending order of
P (ŷt|(p×Mt + x)) under the condition that ŷt is an adver-
sarial label. Note that, the larger value of P (ŷt|(p×Mt+x))
means the less importance of t-th frame towards generating
the adversarial sample.

We search a set of key frames based on the sorted video
frame sequence. This searching process is performed dur-
ing the direction initialization for all randomly selected x̂.
Denote ω as the bound of mean absolute perturbation of
each pixel in videos that determines when to stop toward
searching a smaller set of key frames. When the mean abso-
lute perturbation on the selected key frames lower than the
bound ω, our method will continue searching a smaller set
of key frames for adversarial perturbation generation. The
value of ω is selected according to the experiments on val-
idation set, which we will discuss in the experimental part.
Algorithm 1 summarizes the whole procedure of searching
the key frames for the targeted attack. In Algorithm 1, DEL-
FRAME sets the values of i-th frame in M to 0; SORTED
sorts the indexes of frames in descending order by the as-
sociated top-1 probabilities; LENS calculates the number of
selected key frames; and MAP computes the mean absolute
perturbation for g(θ)× θ.

Heuristic Spatial Sparsity

Intuitively, salient regions, for example, the foreground of
the frames, contribute more to the video classification re-
sults. Generating adversarial perturbations on the salient re-
gions will be more likely to fool the deep models. There-
fore, we introduce the saliency maps of video frames as
prior knowledge for the generation of adversarial perturba-
tions. As the perturbation are only generated for salient re-
gions, it hence introduces spatial sparsity. To generate the
saliency map for each frame, an efficient saliency detection
approach proposed in (Hou and Zhang 2007) and implement
by OpenCV (Bradski 2000) is applied. To control the area
ratio of the salient region in the frame, we introduce a pa-
rameter ϕ ∈ (0, 1], and smaller ϕ leads to smaller portion of

Algorithm 1: Heuristic temporal selection algorithm for
the targeted attack.

Input : DNN F , clean video x, true label y, target
class yadv , initial mask
M ∈ {1}T×W×H×C , an empty array A.

Output : Mask of key frames M .
Parameter: Bound ω.

1 x̂← a video sample of target class yadv;
2 p, k ← x̂− x, 0 ;
3 for t← 1 to T do
4 Mt ← DELFRAME(M, t) ; // the values

of i-th frame are equal to 0.
5 ŷ, P (ŷ|(p×Mt + x))← F (p×Mt + x) ;
6 if ŷ = yadv then
7 A[k], k ← (t, P (ŷ|(p×Mt + x))), k + 1;
8 end
9 A← SORTED(A) ; // indexes of frames

are sorted in descending order by
P (ŷ|(p×Mt + x)).

10 θinit ← p
‖p‖ for i← 1 to k do

11 M̂ ← DELFRAME(M,A[i]) ;
12 p̂← p× M̂ ;

13 θ ← p̂

‖p̂‖ ;

14 ŷ, P (ŷ|(x+ p̂))← F (x+ p̂) ;
15 if ŷ = yadv then
16 if MAP(g(θ)× θ) ≤ ω then

17 if LENS(M̂) < LENS(M) then // the
number of key frames.

18 M, θinit ← M̂, θ;
19 else
20 if

MAP(g(θ)× θ) < MAP(g(θinit)× θinit)
then

21 M, θinit ← M̂, θ;
22 end

23 end
24 return M

salient regions. In the untarget attack, we initialize the mask
M to introduce spatial sparsity for all video frames based on
ϕ. In the targeted attack, we also use the heuristic-based al-
gorithm to obtain the descending order sequence of frames.
After that, we only add spatial sparsity on the selected frame
in M . In M , the pixels of salient regions is as 1 while the rest
is set 0. We investigate different values of ϕ in Section 10.

Overall Framework

The whole process of the our method for the targeted attack
is describe in Algorithm 2, where SPATIAL function per-
forms a saliency detection with ϕ for each frame, and initial-
izes M by setting the values of the salient regions to 1, the
others to 0; UPDATE represents the zeroth order optimiza-
tion to update θ, . In the overall framework, we firstly ini-
tialize M by SPATIAL to implement spatial sparsity, then
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Algorithm 2: Heuristic-based targeted attack algorithm.
Input : DNN F , clean video x, true label y, target

class yadv , an empty array A
Output : Adversarial example xadv .
Parameter: ω, ϕ, the number of update iterations I .

1 M ← SPATIAL(x, ϕ);
2 M ← Algorithm 1(F, x, y, yadv,M,A, ω);
3 θ = x̂−x

‖x̂−x‖ ;
4 θ = θ×M

‖θ×M‖ ;
5 for t← 1 to I do

6 ĝ = g(θ+βu)−g(θ)
β · u;

7 θ = θ − ηĝ;
8 end
9 xadv = x+ g(θ)× θ;

10 return xadv

combine the spatial sparsity with the temporal sparsity by
Algorithm 1 to get the final M . After that, we obtain the
temporal and spatial sparse θ, and use UPDATE to update θ
iteratively. Finally, the adversarial example can be found by
the optimal direction.

Experiments

In this section, we test the performance of our heuristic
based black-box attack algorithm with various parameters
ω and ϕ in reducing overall perturbations and the number of
queries. Furthermore, we show a comprehension evaluation
of our method on multiple video recognition models.

Experimental Setting

Datasets. We consider two widely used datasets for video
recognition: UCF-101 (Su et al. 2009) and HMDB-51
(Kuehne et al. 2011). UCF-101 is an action recognition
dataset that contains 13,320 videos with 101 action cate-
gories. HMDB-51 is a dataset for human motion recognition
and contains a total of 7000 clips distributed in 51 action
classes. Both datasets split 70% of the videos as training set
and the remaining 30% as test set. During the evaluation, we
use 16-frame snippets that uniform sampled from each video
as input samples of target models.

Metrics. Four metrics are used to evaluate the perfor-
mance of our method on various sides. 1) fooling rate (FR):
the ratio of adversarial videos that are successfully mis-
classified. 2) Median queries (MQ) (Ilyas et al. 2018): the
median number of queries. 3) Mean absolute perturbation
(MAP): denotes the mean perturbation of each pixel in the
entire video. We use MAP∗ to denote the MAP of each pixel
in the masked region. 4) Sparsity (S): represents the pro-
portion of pixels with no perturbations versus all pixels in a
specific video. S = 1 − 1

T

∑T
t=1 ϕt, where ϕ is the area of

the selected salient region at the corresponding frame, ϕt is
ϕ of the t-th frame and T is the total number of frames.

Threat Model We use the special case of the Partial-
information setting (Ilyas et al. 2018). In this setting, the

Table 1: Test Accuracy(%) of the target models.
Model UCF-101 HMDB-51
C3D 85.88 59.57

LRCN 64.92 37.42

attacker only has access to the top-1 class ŷ and its prob-
ability P (ŷ|x), given a video x. Both untargeted and tar-
geted black-box attacks are considered. In the experiments,
two video recognition models, Long-term Recurrent Convo-
lutional Networks (LRCN) (Donahue et al. ) and C3D (Hara,
Kataoka, and Satoh 2018) are used as target models. LRCN
(Donahue et al. ) model uses Recurrent Neural Networks
(RNNs) to encodes the temporal information and long-range
dependencies on the features generated by CNNs. In our im-
plementation, Inception V3 (Szegedy et al. 2016) is ultilzied
to extract features for video frames and LSTM is utilized for
video classification; C3D model (Hara, Kataoka, and Satoh
2018) applies 3D convolution to learn spatio-temporal fea-
tures from videos with spatio-temporal filters for video clas-
sification. These models are the main methods of video clas-
sification. Table 1 summarizes the test accuracy of 16-frame
snippets with these two models.

Parameter Setting

Note that we have two parameters need to set in Algorithm 2,
one is the perturbations bound ω and the other one is the area
ratio of salient regions ϕ. The parameter tuning is done on 30
videos that randomly sampled from the test set of UCF-101
and can be correctly classified by the target models. We do a
grid search to find the most appropriate values for these two
parameters. For ω, we set it as {0, 3, 6, 9, 12, 15,∞} in the
untargeted attack, as {0, 15, 30, 45,∞} in the targeted attack
since the targeted attack has larger perturbations than the un-
targeted attack, and evaluate the attack performance on C3D
model. Table 2 shows the performance on the untargeted at-
tack. Basically, large ω leads to sparse perturbations When
ω is set to ∞ , the sparsity value can be as low as 83.75%,
which means that only 2.6 (16× (1−83.75%) ≈ 2.6) video
frames will be selected to generate the adversarial pertur-
bations. Therefore, to strikes a balance between the MAP∗

and temporal sparsity, we set ω = 3 in the untargeted attack
to conduct subsequent experiments. Table 4 lists the results
on the targeted attack. The values of ω and MQ is greater
than those in the untargeted attack since the targeted attack
has larger perturbations than the untargeted attack. We set
ω = 30 in experiments of the targeted attack.

Similarly, we perform grid search to decide the value of ϕ.
For the untargeted attack, we fix ω = 3 and set parameter ϕ
as {0.2, 0.4, 0.6, 0.8, 1.0} to evaluate the performance. Table
3 lists the results. Note that, ϕ = 1 means that all the regions
in the frame are selected. As can be seen, when the value of
ϕ is small, the median query number (MQ), mean absolute
perturbations (MAP) will be reduced, while the mean abso-
lute perturbations (MAP∗) on the selected regions will be
increased. When ϕ = 0.2, the sparsity value can be as high
as 85.00%, which results in a large MAP∗ and lower fool-
ing rate (FP). To balance the metrics MAP∗, MQ and MAP,

12342



Table 2: Results of our algorithm with various ω in the un-
targeted attack.

ω FR(%) MQ MAP MAP ∗ S(%)
0 100 16085.0 3.7033 3.8449 17.69
3 100 16085.0 3.6858 3.9667 25.19
6 100 15996.0 3.7471 4.0328 23.94
9 100 17527.0 3.7757 4.2862 34.19
12 100 15912.5 3.8169 4.3646 36.44
15 100 16795.0 3.7274 4.3429 36.69
∞ 100 14382.0 3.6039 7.9585 83.75

Table 3: Results of our algorithm with various ϕ in the un-
targeted attack.

ϕ FR(%) MQ MAP MAP ∗ S(%)
0.2 90 8770.0 1.5890 8.7153 85.00
0.4 100 12336.0 2.6273 7.0203 68.84
0.6 100 14125.0 3.2194 5.7604 54.25
0.8 100 13845.0 3.4507 4.6347 40.33
1.0 100 16085.0 3.6858 3.9667 25.19

we set ϕ as 0.6 for the untargeted attack. When ϕ = 0.6,
it reduces the number of queries by 22.17% and the overall
perturbations (MAP) by 25.79%. The results also suggest
that the incursion of spatial sparsity brings to our method
not just a reduction in the number of queries but a reduction
in MAP. Table 4 lists the results for the targeted attack. Sim-
ilarly, in order to balance the metrics MAP∗, MQ and MAP,
we set ϕ as 0.8 for the targeted attack.

Performance Comparison

We compare our method with the Opt-attack (Cheng et al.
2018) which originally proposed to attack image classifi-
cation models under black-box setting. We directly extend
Opt-attack to attack video models for comparison. Besides,
we also compare with one variant of our method by remov-
ing the spatial sparsity module. In this setting, only temporal
sparsity is considered. The evaluations are performed with
two video recognition models on two datasets.

Table 6 lists the performance comparisons regarding to
the untargeted attack as well the targeted attack on UCF-
101 dataset and HMDB-51 dataset. For untargeted attack,
we have the following observations. First, compared to Opt-
attack, our method that considers both temporal and spa-
tial sparsity significantly reduces the number of queries. For
LRCN and C3D model, the number of queries has been re-
duced by more than 28% on both datasets. Second, com-
pared to introducing temporal sparsity, introducing spatial
sparsity is more effective in reducing the query numbers. For
example, for C3D, introducing temporal sparsity alone helps
to reduce the query numbers around 9% while introducing
both spatial and temporal sparsity reduce the query numbers
for more than 28% on UCF-101. By looking into the results,
we found that around 12% of the queries are spent on search-
ing a set of key frames that maximize the sparsity value
while keeping the mean absolute perturbations (MAP) lower
than the given bound. Third, on most cases, introducing tem-

Table 4: Results of our algorithm with various ω in the tar-
geted attack.

ω FR(%) MQ MAP MAP ∗ S(%)
0 100 302230.50 9.7547 10.5442 8.54
15 100 302230.50 9.7178 10.6463 11.67
30 100 323615.50 8.5328 11.1309 26.88
45 100 307470.00 10.6991 14.8790 35.00
∞ 100 209826.00 5.0075 16.6886 71.98

Table 5: Results of our algorithm with various ϕ in the tar-
geted attack.

ϕ FR(%) MQ MAP MAP ∗ S(%)
0.2 100 142253.5 11.7693 17.6957 44.17
0.4 100 146720.0 13.4624 18.9002 36.54
0.6 100 175194.5 11.4973 16.2451 34.58
0.8 100 191216.0 10.7961 13.4766 22.58
1.0 100 323615.0 8.5328 11.1309 26.88

poral and spatial sparsity helps to make the adversarial per-
turbations much sparser and hence reduce the mean absolute
perturbations (MAP). In summary, introducing temporal and
spatial sparsity increases the query efficiency and helps to
achieve human-imperceptible perturbations.

For the targeted attack, similar trends are observed as the
untargeted attack. By introducing both spatial and temporal
sparsity, our method significantly reduces the query num-
bers. On UCF-101 dataset, the query numbers can be re-
duced from 445,279 to 399,655 for LRCN model. For C3D
model, the query numbers have been reduced by more than
19.59% on both datasets. Although spatial sparsity signifi-
cantly reduces the number of queries, it increases MQ, MAP
and MAP∗ a large margin on the targeted attack. Compared
to the untargeted attack, MQ, MAP as well MAP∗ on the
targeted attack are much higher. One major reason is that
compared to the untargeted attack, the target attack are much
more difficult. Besides, to make sure that it achieves 100%
of the fooling rate, the MAP as well MAP∗ increased sig-
nificantly when introducing the spatial sparsity. The results
basically suggest that for the targeted attack, the selected
saliency regions from the clean video frames may not con-
tribute much to the classification of targeted classes, hence it
increases the perturbations in order to successfully fool the
recognition model, the generated sparse directions cause the
targeted attack to fall into local optimal solutions and stop
the direction updating early. In addition, introducing tempo-
ral sparsity increases the query numbers because 39.75% of
the queries are spent on searching a small set of keyframes
in order to achieve temporal sparsity.

Figure 2 further shows four examples of adversarial
frames generated by the proposed method. For all the exam-
ples, our method successfully fools the recognition model.
For example, in the first example, the ground-truth label
for the video is “Apply eye makeup”, by adding the gen-
erated human-imperceptible adversarial perturbations (sec-
ond row), the model tends to predict a wrong label “Playing
flute” at the top-1 place. By re-scaling the adversarial per-
turbations to the range of 0-255, we visualize the adversarial

12343



Table 6: Untargeted and targeted attacks against C3D/LRCN Models. For all attack models, the Fooling Rate (FR) is 100%.
Dataset Target Model Attack Model Untargeted attacks Targeted attacks

MQ MAP MAP ∗ S(%) MQ MAP MAP ∗ S(%)

UCF-101

C3D
Opt-attack (Cheng et al. 2018) 17997.5 4.2540 4.2540 0.00 207944.5 9.0906 9.0906 0.00

Our (Temp.) 16292.0 4.0895 4.3642 21.19 313229.0 7.8069 10.4700 28.00
Our (Temp. + Spat.) 12940.0 3.0346 5.5189 54.33 167217.0 10.8588 15.4904 34.28

LRCN
Opt-attack (Cheng et al. 2018) 12359.5 1.8320 1.8320 0.00 445279.0 13.4795 13.4795 0.00

Our (Temp.) 14713.5 1.8754 1.8794 17.19 566719.0 11.7858 14.7894 23.33
Our (Temp. + Spat.) 8421.5 1.8383 3.0848 47.50 399655.0 11.2066 19.8620 46.92

HMDB-51

C3D
Opt-attack (Cheng et al. 2018) 14509.5 2.8930 2.8930 0.00 205286.5 6.5704 6.5704 0.00

Our (Temp.) 13536.5 2.9214 3.2010 26.94 196371.5 8.3599 10.6761 21.88
Our (Temp. + Spat.) 10616.0 2.3765 4.4574 57.04 144917.5 9.6109 12.2993 28.70

LRCN
Opt-attack (Cheng et al. 2018) 18655.0 2.7586 2.7586 0.00 224414.0 3.8598 3.8598 0.00

Our (Temp.) 15369.5 2.8011 2.8923 24.22 339367.0 4.0618 5.5601 28.75
Our (Temp. + Spat.) 13311.5 1.5390 2.8302 62.03 206120.0 12.7966 18.1835 42.87

Figure 2: Examples of adversarial frames generated in the untargeted attack by our method. The clean frames are show in the
top row; the corresponding adversarial frames are in the middle row and the perturbations are show in the bottom row. The
perturbations are visualized by re-scaling them into the range of 0-255.

perturbations in the third row. As can be seen, the generated
adversarial perturbations are basically quite sparse and most
of them are focused on the foreground of the key frames.

Conclusion

In this paper, we proposed a heuristic black-box adversar-
ial attack algorithm for video recognition models. To reduce
query numbers and improve attack efficiency, our method
explores the sparsity of adversarial perturbations in both
temporal and spatial domains. Our algorithm is adaptive
to multiple target models and video datasets and enjoys
global sparsity and query efficiency improvement. More-
over, the experimental results demonstrate that video recog-
nition models are vulnerable to adversarial attack, and our
algorithm achieves small human-imperceptible perturbation
using fewer queries. The most pertinent area of future work
is to further investigate the black-box attack for the targeted
attack using fewer queries.
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