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Abstract

Binary codes are widely used to represent the data due to their
small storage and efficient computation. However, there ex-
ists an ambiguity problem that lots of binary codes share the
same Hamming distance to a query. To alleviate the ambigu-
ity problem, weighted binary codes assign different weights
to each bit of binary codes and compare the binary codes
by the weighted Hamming distance. Till now, performing the
querying from the weighted binary codes efficiently is still an
open issue. In this paper, we propose a new method to rank the
weighted binary codes and return the nearest weighted binary
codes of the query efficiently. In our method, based on the
multi-index hash tables, two algorithms, the table bucket find-
ing algorithm and the table merging algorithm, are proposed
to select the nearest weighted binary codes of the query in
a non-exhaustive and accurate way. The proposed algorithms
are justified by proving their theoretic properties. The exper-
iments on three large-scale datasets validate both the search
efficiency and the search accuracy of our method. Especially
for the number of weighted binary codes up to one billion,
our method shows a great improvement of more than 1000
times faster than the linear scan.

Introduction

With the explosive growth of data, binary codes are widely
used to represent the data due to their small storage and
efficient computation. Given a query, the nearest binary
codes can be ranked and returned efficiently by comput-
ing the Hamming distance between the query and the bi-
nary codes. BRISK (Leutenegger, Chli, and Siegwart 2011),
ORB (Rublee et al. 2011), and other binary image de-
scriptors (Balntas, Tang, and Mikolajczyk 2018) are de-
signed to represent the image data, and successfully used in
various applications, including image matching, 3D recon-
struction and object recognition. End-to-end feature learn-
ing methods (Li et al. 2019; Song et al. 2018) based on
the neural networks extract the binary codes from the im-
ages and are widely used in image retrieval and cross re-
trieval. In addition to these specific image binary codes,
hashing methods (Liu et al. 2014; 2017; Lin et al. 2019;
Liu et al. 2019; Wang et al. 2018) are used to map different
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high-dimensional feature vectors into compact binary codes.
Since these feature vectors may represent image data, video
data, or other multimedia data, the hashing methods can be
used in various multimedia retrieval applications.

However, the number of possible Hamming distance is
limited and different binary codes may share the same Ham-
ming distance to the given binary query. To alleviate this am-
biguity problem and further improve the performance of bi-
nary codes, weighted binary codes are used (Fan et al. 2013;
Gordo et al. 2014; Zhang et al. 2013). By assigning bitwise
weights to each bit of binary codes, the distance between a
pair of binary codes is calculated by weighted Hamming dis-
tance instead of Hamming distance. For example, (Huang,
Wei, and Zhang 2017; Fan et al. 2013) are designed to learn
the weights for the binary image descriptors to improve their
discriminative power for image matching. And (Duan et al.
2015; Weng et al. 2016) are designed to learn the weights
for the binary codes generated by different hashing methods
to improve their search accuracy for multimedia retrieval.

Although weighted binary codes can alleviate the ambi-
guity problem, querying from the binary codes by weighted
Hamming distance is slower than that by Hamming distance.
To accelerate the querying process from the weighted bi-
nary codes, some methods (Gordo et al. 2014) use lookup
tables to compute the query-independent values in advance.
However, it is still an exhaustive linear scan. Some meth-
ods (Duan et al. 2015; Norouzi, Punjani, and Fleet 2014) use
Hamming distance to find the neighbors that have the small-
est Hamming distance to the query and rank them accord-
ing to the weighted Hamming distance. This non-exhaustive
way is fast but cannot return the nearest weighted binary
codes of the query accurately, resulting in a degraded per-
formance of weighted binary codes in the application.

In this paper, we propose a new method to rank the
weighted binary codes and return the nearest weighted bi-
nary codes of the query in a non-exhaustive but accurate
way. The diagram of our method is shown in Fig. 1. Based
on the multi-index hash tables (Norouzi, Punjani, and Fleet
2014) on the binary code substrings, our method can effi-
ciently choose the candidates in each table and merge the
candidates to select the nearest weighted binary codes of
the query. Theoretical analysis is provided to prove the our

12346



h1,1 h1,b/m h1,(m-1)*b/m+1 h1,b

hn,1 hn,b/m hn,(m-1)*b/m+1 hn,b
substring 1 substring m

database codes

table 1

substring as index.

IDs stored in the

table buckets.

multi-index hash tables

weighted

hashing method

table bucket

finding algorithm

for each table

indices of the

buckets to be probed

table merging

algorithm

return K
identifiers of

nearest weighted

binary codes

candidates in

the buckets

no
binary query

and weights

table m

substring as index.

IDs stored in the

table buckets.

query
if K-NN
are found

candidates in

the max-heap
yes

Figure 1: The diagram of our method to find the K nearest weighted binary codes of the query.

method can return the same ranking result as the linear scan
does on the weighted binary codes. And the experiments
show that our method is much faster than the linear scan.

Related Work

Multi-Index Hash Tables on Binary Codes

To avoid the exhaustive linear search on the binary codes,
multi-index hash tables (Norouzi, Punjani, and Fleet 2014)
are built to accelerate the search on the binary codes and
to return the K nearest binary codes of the query in a non-
exhaustive way.

In the multi-index tables (Norouzi, Punjani, and Fleet
2014), to index the binary codes from the database, m dif-
ferent hash tables are built based on m disjoint substrings of
the binary codes as the index. If a binary code differs from
the query by r bits, it is an r-neighbor of the query. And the
multi-index tables can find the r-neighbors of the query effi-
ciently by probing each table. To return the K nearest binary
codes of the query, the Hamming search radius r is progres-
sively increased to find the r-neighbors of the query, until K
nearest binary codes are found.

In (Norouzi, Punjani, and Fleet 2014), the author men-
tioned that the multi-index tables can be used to return the
top K weighted binary codes by using Hamming distance to
find the candidates that have the smallest Hamming distance
to the query and culling them according to the weighted
Hamming distance. However, this method cannot return the
K nearest weighted binary codes accurately. When increas-
ing the search radius progressively until K neighbors are
found, it guarantees that the binary codes that are found
have smaller Hamming distance to the query than the ones

that are not found. In contrast, it cannot guarantee that these
binary codes have the smaller weighted Hamming distance
than the ones that are not found. The binary codes which
have the larger Hamming distance from the query may have
the smaller weighted Hamming distance.

Querying from Weighted Binary Codes

As shown in Fig. 1, based on the multi-index hash tables, our
method is composed of the table bucket finding algorithm
and the table merging algorithm. Since we focus on finding
the nearest neighbors of the query in the weighted Hamming
space, in the following, we use the K-Nearest Neighbors
(K-NN) of the query to denote the K nearest weighted bi-
nary codes of the query.

Table Bucket Finding Algorithm

We start with a single-index hash table and propose a ta-
ble bucket finding algorithm to find the table buckets in the
single-index table. To further solve the long-code problem
mentioned in (Norouzi, Punjani, and Fleet 2014), we extend
to the multi-index hash tables and use the table bucket find-
ing algorithm in each table. A table merging algorithm is
proposed to merge the candidates from each table.

Assume a binary query q ∈ {0, 1}b, a binary code g ∈
{0, 1}b and the weight functions wi(·) for each bit are given,
where b is the length of the binary code and wi : {0, 1} →
R. The weighted Hamming distance between the query q
and the binary code g is defined as:

dw(q,g) =

b∑
i=1

wi(qi ⊕ gi), (1)
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where ⊕ is an xor operation, wi(·) is a weight function for
the ith bit, qi is the ith bit of q, and gi is the ith bit of g.

Instead of finding the K-NN of the query q exhaustively,
a single-index hash table is built by using the binary codes
as the index of the hash table buckets. We probe the buckets
in order from smallest to largest according to their weighted
Hamming distance to the query, and take the identifiers as
candidates in each probed table bucket until K candidates
are found. These K candidates are the K-NN of the query.

The whole process of finding the buckets in order from
smallest to largest can be regarded as multiple sequences
combination problem (one bit represents one sequence). A
algorithm (Matsui, Yamasaki, and Aizawa 2018; Babenko
and Lempitsky 2015) is used to solve the multiple sequences
combination problem. However, this algorithm is not suit-
able in this situation. The algorithm can only traverse a few
sequences (e.g. 2 or 4) simultaneously to find the combi-
nation composing the bucket index that have the smallest
weighted Hamming distance to the query. But in this situa-
tion, we have b sequences where b is much larger than 4 such
that the traversal space is very large.

Based on the characteristic of the weighted binary codes,
we propose a table bucket finding algorithm to find the bit
combination which can compose the bucket index with the
smallest weighted Hamming distance to the query. In the
process of searching for the nearest neighbors of the query,
since the query is fixed in each comparison between the
query and the binary codes, the weight values for the xor
result between the binary codes and the query can be pre-
computed and stored. Hence, Eqn. (1) is rewritten as

dw(g) =

b∑
i=1

ŵi(gi), (2)

where gi is the ith bit of g, ŵi : {0, 1} → R is a function
to store the pre-computed weight value for the ith bit and is
defined as: {

ŵi(0) = wi(0⊕ qi)
ŵi(1) = wi(1⊕ qi).

(3)

As the input values of the function ŵi(·) are 0 or 1, cor-
respondingly, there are two output values of ŵi(·). To con-
struct a b-bit binary code h= [h1 . . . hb] that has the small-
est weighted Hamming distance (smallest sum of weights)
to the query, each bit hi of h is obtained as

hi =

{
0 ŵi(0) ≤ ŵi(1)
1 otherwise.

(4)

When the ith bit of h is changed (i.e. from 0 to 1 or from
1 to 0), we use h̄i to denote the changed bit. When the bit is
changed, the weight for this bit will increase. The increased
weight Δŵi of the ith bit is defined as

Δŵi = ŵi(h̄i)− ŵi(hi). (5)

The bits are ranked from smallest to largest according to
Δŵi in advance. The leftmost bit has the smallest increased
weight.

After ranking the bits and constructing the smallest binary
code h, to give the buckets to be probed in order from small-
est to largest, we maintain a priority queue. The top of the

priority queue is the binary code that has the smallest sum
of weights in the queue. h is the first one that is pushed into
the priority queue. When taking out the top binary code h̃
from the priority queue and probing the corresponding hash
bucket, two new binary codes are constructed from h̃ by two
different operations and pushed into the priority queue, re-
spectively.
Operation 1 is to construct a binary code by changing

the unchanged bit right next to the rightmost changed bit of
h̃ if the rightmost changed bit is not at the end of the current
binary code. For example, assume h̃ = [h1 . . . h̄r . . . hb],
where h̄r is rightmost changed bit. Then, the new binary
code is constructed as ĥ = [h1 . . . h̄rh̄r+1 . . . hb].
Operation 2 is to construct a binary code by moving

the rightmost changed bit of h̃ to the next bit if the position
of the rightmost changed bit is not at the end. For exam-
ple, assume h̃ = [h1 . . . h̄r . . . hb], where h̄r is rightmost
changed bit. Then, the new binary code is constructed as
ḣ = [h1 . . . hrh̄r+1 . . . hb].

For both operations, the new binary code has a larger sum
of weights than the current one since the bits are ranked
from smallest to largest according to Eqn.(5) in advance. It
should be noted that for the initial binary code h which has
no changed bit, only the first operation is permitted, which
means to change the first bit of the binary code.

The pseudocode for querying with the single-index hash
table is shown in Alg. 1. Init() is a function that constructs
the binary code h which has the smallest sum of weights
according to the query q and the weights w, and generates
an order that denotes the positions of bits from smallest to
largest according to Eqn.(5). Operation1() and Operation2()
are two functions corresponding to above two operations to
generate the new binary codes, respectively.

Algorithm 1 Querying with single-index hash table
Input: q, table, K, weights w
Output: u � a set of ranked identifiers

1: u← ∅
2: pri que← ∅ � priority queue
3: [pri que, order]← Init(q, w)
4: while |u| < K do
5: code← pri que.top()
6: pri que.pop() � remove top item from queue
7: pri que.push(Operation1(code, order))
8: pri que.push(Operation2(code, order))
9: û← table.bucket(code) � identifiers in the bucket

10: u.extend(û)
11: end while

To prove that our algorithm can always find the binary
code that has the smallest sum of weights among the un-
probed binary codes, we begin with the following corollary.
Corollary 1 : Every binary code can be generated by

above two operations.
Proof . A detailed proof is provided in Appendix A in the

supplemental material.
We prove the correctness of our algorithm as follows:
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Theorem 1 : The binary code that has the smallest sum
of weights among the un-probed binary codes is always in
the priority queue.
Proof . A detailed proof is provided in Appendix B in the

supplemental material.

Table Merging Algorithm

As described in (Norouzi, Punjani, and Fleet 2014), when
the length of the binary code increases, the range of the table
index expands and there are more table buckets in the table
where a lot of buckets are empty. Traversing these empty
table buckets is inefficient.

To solve this problem, following (Norouzi, Punjani, and
Fleet 2014), m different hash tables are built based on the
m disjoint substrings of the binary codes as the index in our
method. The length of each substring is �b/m	 or 
b/m�.
For convenience, we assume that b can be divided by m, and
that the substrings comprise continuous bits.

Before describing the following table merging algorithm,
we define f : {0, 1}b/m → R as a function to calculate the
sum of weights of the substring s in the table, which is:

f(s) =

b/m∑
j=1

ŵj(sj), (6)

where sj is the jth bit of s and ŵj is the weight function for
the jth bit in the corresponding table.

When given a query, each table maintains a priority queue
according to the sum of weights of the corresponding sub-
string. The priority queues operate the same as in Alg. 1
to find the un-probed bucket which is indexed by the cor-
responding substring and has the smallest sum of weights.
Then, in each round we take out the top substring of each
priority queue. By treating the substring as the index of the
hash table bucket in the corresponding table, we can probe
the table buckets and take the identifiers in each bucket as
the candidates.

To merge the candidates from each bucket and determine
if the K-NN of the query are found, a K-size max-heap
is built to filter the candidates. The root node of the max-
heap has the largest sum of weights in the heap. Assume
the node r ∈ {0, 1}b in the max-heap is in the form of
r = [r1, . . . , rm] where ri is the substring of r in the ith

table. And a function g : {0, 1}b → R to calculate the sum
of weights of the node is defined as

g(r) =

m∑
i=1

f(ri). (7)

For each round, when the identifiers are taken from each
table, they are compared to the root node in the max-heap.
If an identifier r̂ has a smaller sum of weights than the root
node r (i.e. g(r̂) < g(r)), the root node is thrown away
and the identifier is inserted into the max-heap. The process
continues for multiple rounds until the root node of the max-
heap is smaller or equal to a threshold.

In detail, assume there are m tables and a b-bit binary code
h is partitioned into m disjoint substrings s. When the top

substring si of the ith priority queue is taken out, the queue
will have the new top substring ŝi. The associated identifiers
from the table bucket si of the ith table are taken out and
compared with the root node of the max-heap. The sum of
weights from the top substring of each current priority queue
is calculated as

S =

m∑
i=1

f (̂si). (8)

If the max-heap has K nodes and the root node r of the
max-heap is smaller or equal to the sum of weights from the
top substring of each current priority queue (i.e. g(r) ≤ S),
the top K nearest neighbors are found and the process stops.

We prove that the table merging algorithm can find the
K-NN of the query with Theorem 2.
Theorem 2 : The binary codes that are found and stored

in the max-heap have the smallest sum of weights among all
binary codes.
Proof . A detailed proof is provided in Appendix C in the

supplemental material.
We can further accelerate the searching process by reduc-

ing the number of the hash table buckets to be probed. In
every round, assume the priority queues are ranked in some
order sorder. If the top substrings from the first j queues are
taken out, define the current sum of weights as below

Ŝ =

j∑
i=1

f (̂sorder[i])+

m∑
i=j+1

f(sorder[i]). (9)

Obviously, Ŝ ≤ S according to Eqn. (7). The searching
process terminates when g(r) ≤ Ŝ. It has been proved that
the binary codes that are found are the smallest among all
the binary codes. From the equation, we can see that when
the substring in the ith queue is taken out, Ŝ will increase
Δfi, which is defined as

Δfi = f (̂si)− f(si). (10)

We want to make Ŝ smallest among all the orders such
that the root node of the max-heap can be smaller or equal to
Ŝ faster. Hence, the order can be obtained by ranking the pri-
ority queues from smallest to largest according to Eqn.(10).

The pseudocode for querying with multi-index hash tables
is shown in Alg. 2. Init(), Operation1() and Operation2() are
the same functions as in the Alg. 1. m denotes the number
of substrings for the binary code. table[], pri que[], order[]
denotes a set of tables, a set of priority queues, and a set
of bit rankings for each substring, respectively. Split() is a
function that splits the binary code and the weights into m
parts. max heap.satisfied() denotes whether max-heap has
K nodes and the root node of the max-heap satisfies the
stopping criterion. que order denotes the order of the pri-
ority queues to be checked. Sort() is a function that deter-
mines the ranking of the priority queues from smallest to
largest according to Eqn.(10). As our method performs the
querying process from the weighted binary codes based on
the multi-index hash tables, we call it Multi-Index Weighted
Querying (MIWQ).
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Algorithm 2 Querying with multi-index hash tables
Input: q, table[],K,m, weights w
Output: max heap

1: max heap← ∅
2: [pri que[], order[]]← Split(Init(q,w),m)
3: while !max heap.satisfied() do
4: for i← 1 to m do
5: code[i]← pri que[i].top()
6: pri que[i].pop()
7: pri que[i].push(Operation1(code[i], order[i]))
8: pri que[i].push(Operation2(code[i], order[i]))
9: end for

10: que order ← Sort(pri que[].top(), code[])
11: for i← 1 to m do
12: cur = que order[i]
13: max heap.insert(table[cur].hash(code[cur]))
14: if max heap.satisfied() then
15: break
16: end if
17: end for
18: end while

Table 1: The precision results on Places205.

bit method
precision (%)

1-NN 10-NN 100-NN

32

Baseline 21.56 22.23 19.83
MIH 22.81 23.20 20.86

Linear Scan 25.29 24.97 22.64
MIWQ 25.29 24.97 22.64

64

Baseline 31.17 29.71 26.67
MIH 31.41 30.27 27.46

Linear Scan 34.46 31.96 28.72
MIWQ 34.46 31.96 28.72

EXPERIMENTS

Datasets and Environment

The experiments are performed on the three datasets:
Places205, GIST1M and SIFT1B.

The Places205 dataset (Zhou et al. 2014) is a scene-
centric dataset with 205 scene categories. For each category,
we randomly choose 5,000 images for search and 50 im-
ages as queries. Hence, we have 1,025,000 images for search
and 10,250 queries. Each image is represented by a 128-D
feature (Cakir et al. 2017). The features are extracted from
the fc7 layer of AlexNet (Krizhevsky, Sutskever, and Hinton
2012) pre-trained on ImageNet and reduced to 128 dimen-
sions by PCA.

GIST1M dataset (Jegou, Douze, and Schmid 2011) con-
tains 1 million 960-D GIST descriptors (Oliva and Torralba
2001) which are global descriptors, and extracted from Tiny
image set (Torralba, Fergus, and Freeman 2008). The dataset
contains 1000 queries.

SIFT1B dataset (Jegou, Douze, and Schmid 2011) con-
tains 1 billion 128-D SIFT descriptors (Lowe 2004) and
10000 queries.

In the experiments, to evaluate the efficiency and the ac-

Table 2: The precision results on GIST1M.

bit method
precision (%)

1-NN 10-NN 100-NN

32

Baseline 11.90 7.57 5.11
MIH 12.10 8.46 5.92

Linear Scan 13.20 9.94 7.31
MIWQ 13.20 9.94 7.31

64

Baseline 21.10 14.47 10.16
MIH 21.50 16.11 11.55

Linear Scan 24.90 19.14 13.65
MIWQ 24.90 19.14 13.65
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Figure 2: Comparison between MIWQ and MIH on SIFT1B.

curacy of different querying methods on the weighted bi-
nary codes, the classical data-independent hashing algo-
rithm Locality-Sensitive Hashing (LSH) (Andoni and Indyk
2006) is used to map high-dimensional vectors into binary
codes, and a weighted hashing method, Asymmetric Dis-
tance (Asym) (Gordo et al. 2014) is used to generate the
weights for each bit of binary codes. All the experiments
are run on a single core Intel Core-i7 CPU with 32GB of
memory. The comparison of the querying methods on other
binary codes and other weights is provided in Appendix D
in the supplementary material to show the generality of our
method.

Comparison to Different Querying Methods

Precision@K is usually used to measure the accuracy of the
approximate K-NN search. (Wang et al. 2018; Matsui, Ya-
masaki, and Aizawa 2018). Here, we use precision@K to
evaluate whether our method can return the same results
as the linear scan returns, and compare the performance
of weighted binary codes in the approximate K-NN search
with that of binary codes. The precision@K is defined as
the fraction of the true retrieved neighbors to the retrieved
neighbors. It is formulated as follows

precision@K =
the true retrieved neighbors

K
(11)

For Places205, the ground truth refers to as the true neigh-
bors the identifiers that have the same label as the query. For
GIST1M and SIFT1B, the ground truth refers to as the true
neighbors the top 1000 identifiers selected by linear scan
with the Euclidean distance from the query in the original
space, i.e. Euclidean space.

The precision@K results on Places205 and GIST1M
are shown in Table 1 and Table 2, respectively. In the ta-
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Table 3: The average time for the query on Places205.

bit method
speed-up factors for K-NN

1-NN 10-NN 100-NN
time(ms) speed-up factor time(ms) speed-up factor time(ms) speed-up factor

32
Linear Scan 23.06 1.0 23.06 1.0 23.06 1.0

MIH 0.11 209.6 0.21 109.8 0.52 44.3
MIWQ 0.11 209.6 0.21 109.8 0.55 41.9

64
Linear Scan 33.83 1.0 33.83 1.0 33.83 1.0

MIH 0.51 66.3 1.03 32.84 2.4 14.0
MIWQ 0.63 53.6 1.42 23.82 3.65 9.2

Table 4: The average time for the query on GIST1M.

bit method
speed-up factors for K-NN

1-NN 10-NN 100-NN
time(ms) speed-up factor time(ms) speed-up factor time(ms) speed-up factor

32
Linear Scan 22.17 1.0 22.17 1.0 22.17 1.0

MIH 0.1 221.7 0.16 138.5 0.37 59.9
MIWQ 0.12 184.7 0.25 88.6 0.77 28.7

64
Linear Scan 39.36 1.0 39.36 1.0 39.36 1.0

MIH 0.87 45.2 1.65 23.8 3.15 12.4
MIWQ 1.84 21.3 3.9 10.0 8.17 4.8

Table 5: The average time for the query on Places205 with longer binary codes.

bit method
speed-up factors for K-NN

1-NN 10-NN 100-NN
time(ms) speed-up factor time(ms) speed-up factor time(ms) speed-up factor

128
Linear Scan 65.93 1.0 65.93 1.0 65.93 1.0

MIH 2.08 31.6 4.19 15.7 8.50 7.7
MIWQ 3.13 21.0 6.71 9.8 15.25 4.3

256
Linear Scan 103.92 1.0 103.92 1.0 103.92 1.0

MIH 5.68 18.2 11.80 8.8 21.22 4.8
MIWQ 9.30 11.1 21.97 4.7 39.28 2.6

Table 6: The precision results for the query on SIFT1B.

bit method precision (%)
1-NN 10-NN 100-NN

32

Baseline 1.61 1.66 1.77
MIH 3.04 2.04 1.48

Linear Scan 3.25 2.77 2.66
MIWQ 3.25 2.77 2.66

64

Baseline 7.62 8.26 9.07
MIH 25.18 20.22 10.52

Linear Scan 26.77 21.18 14.13
MIWQ 26.77 21.18 14.13

bles, Baseline denotes querying from the binary codes ac-
cording to Hamming distance, Linear Scan denotes query-
ing from the binary code by the linear scan according
to weighted Hamming distance, and Multi-Index Hash-
ing (MIH) (Norouzi, Punjani, and Fleet 2014) is a non-
exhaustive but inexact querying method for the binary codes
according to weighted Hamming distance. These querying
methods are all implemented in C++. For MIH and our

method, MIWQ, we use the same heuristic (Norouzi, Pun-
jani, and Fleet 2014) to determine the number of the sub-
strings m, which is b/log2n where b is the length of the bi-
nary code and n is the data size. According to the results,
MIH can achieve higher search accuracy than Baseline, but
is inferior to MIWQ. As MIH cannot return the K nearest
weighted binary codes accurately, MIH is inferior to MIWQ.
Since MIWQ achieves the same search accuracy as Linear
Scan, it shows that MIWQ can return the K nearest weighted
binary codes of the query accurately.

The speed-up factor is used to measure how fast our
method and MIH are compared to the linear scan on the
weighted binary codes. The speed-up factor is defined as di-
viding the run-time cost of the linear scan by the run-time
cost of the test method, which is formulated as follows

speed−up factor =
time cost of linear scan

time cost of test method
(12)

Table 3 and Table 4 shows the average time for each
query of returning the different amounts of Nearest Neigh-
bors (NN) on Places205 and GIST1M, respectively. Linear
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Table 7: The average time for the query on SIFT1B.

bit method
speed-up factors for K-NN

1-NN 10-NN 100-NN
time(ms) speed-up factor time(ms) speed-up factor time(ms) speed-up factor

32
Linear Scan 22380.15 1.0 22380.15 1.0 22380.15 1.0

MIH 6.13 3650.9 6.14 3644.9 6.38 3507.8
MIWQ 6.15 3639.0 6.31 3546.7 6.53 3427.3

64
Linear Scan 43623.33 1.0 43623.33 1.0 43623.33 1.0

MIH 7.77 5614.3 11.42 3819.9 22.96 1899.9
MIWQ 7.78 5607.1 12.65 3448.4 32.17 1356.0

Table 8: Time cost (ms) on SIFT1B.
bit-K NN MIWQ PQTable PQTablemax heap

32-1 6.15 51.31 50.44
32-10 6.31 51.22 50.48

32-100 6.53 51.43 50.55
64-1 7.78 57.26 54.53

64-10 12.65 64.55 61.21
64-100 32.17 92.11 85.33

Scan is accelerated by adopting the look-up tables (Gordo et
al. 2014). From the results, we can see that MIH and MIWQ
are both faster than Linear Scan in all the cases. MIWQ is
comparable or a litter inferior to MIH in the average time.
From the tables, we can see that the query time of both MIH
and MIWQ for 100-NN is larger than that for 1-NN. To re-
turn more neighbors about the query, more buckets need to
be probed, resulting in a larger time cost.

Case of Longer Binary Codes

In the above experiments, we analyze the performance of our
method for 32 bits and 64 bits, which are the commonly used
length of binary codes for the hashing methods. In some sit-
uations, longer binary codes (such as 128 bits and 256 bits)
are used to achieve higher search accuracy but with addi-
tional storage cost. Here, we analyze the performance of our
method in the case of long binary codes.

Table 5 shows the average time for the query on
Places205. For 128 bits and 256 bits, MIWQ can still accel-
erate the search on the binary codes. By comparing Table 5
to Table 3, the speed-up factors for 128 bit and 256 bits are
smaller than the ones for 32 bits and 64 bits.

Case of Larger Dataset

Table 6 shows the precision@K results on SIFT1B. From
the results, we can see that MIWQ still achieves better search
accuracy than MIH and Baseline.

Table 7 shows the average time for the query on SIFT1B.
From the results, we can see that MIH and MIWQ both have
a large improvement on the speed compared to linear scan.
MIWQ achieves almost the same time cost as MIH does
for 32 bits and 64 bits. In the aspect of comparing candi-
dates, MIWQ compares candidates by using weighted Ham-
ming distance, while MIH compares candidates by using

Hamming distance at first and then culls candidates by us-
ing weighted Hamming distance. Hence, MIH has a smaller
time cost than our method. However, the factors to affect
the search efficiency is not only the distance computation,
but also the number of the candidates to be compared and
the number of the table buckets to be probed. The number
of candidates and the number of table buckets are shown
in Fig. 2. Since the average number of candidates and table
buckets in our method are both smaller than those in MIH,
our method can be almost as fast as MIH.

PQTable

Recently, PQTable (Matsui, Yamasaki, and Aizawa 2018) is
proposed to perform an efficient search for Product Quanti-
zation (PQ) (Jegou, Douze, and Schmid 2011) which is an-
other encoding method. With some modifications, PQTable
can be used for querying from the weighted binary codes.
The binary codes are split into disjoint parts each of which
consists of continuous 8-bit binary codes. Then, each part
can be regarded as a codebook, and PQTable is applied.

Since PQTable and our method both can return the near-
est weighted binary codes of the query accurately, we com-
pare them with respect to the running time. As PQTable
is also based on the multi-index tables, to further explore
the difference between our method and PQTable, our ta-
ble merge algorithm is applied to PQTable and replaces
the table merge algorithm of PQTable, which is dubbed as
PQTablemax heap. Table 8 shows the time comparison be-
tween MIWQ, PQTable and PQTablemax heap. According
to the results, our table merging algorithm is faster than
that of PQTable, which shows that our table merging al-
gorithm can terminate the process by determining whether
the K-NN of the query have been found faster than that
of PQTable. Comparing MIWQ with PQTablemax heap,
with same table merging algorithm, MIWQ is faster than
PQTablemax heap, especially for the 32-bit case. As MIWQ
and PQTablemax heap both perform the exact K-NN search,
the order of table buckets to be probed is the same. The dif-
ference between them is the process to find the next hash
table bucket. Since our method exploits the characteristics
of the weighted binary codes, the bucket candidate space to
traverse from our method is smaller than that of PQTable.
Hence, our method can find the next smallest un-probed bi-
nary bucket faster than PQTable.
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Conclusion
In this paper, a new querying method is proposed to return
the nearest weighted binary codes of the query in a non-
exhaustive way. The method consists of two algorithms, the
table bucket finding algorithm and the table merging algo-
rithm. The former one is designed to consecutively find the
un-probed table buckets, and the latter one is developed to
merge the candidates from each table. The experiments show
that our method can produce the same querying results as
linear scan does with a large time speed-up on the large-
scale dataset which includes up to 1 billion data points.
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