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Abstract

Recently, Human Attribute Recognition (HAR) has become
a hot topic due to its scientific challenges and application po-
tentials, where localizing attributes is a crucial stage but not
well handled. In this paper, we propose a novel deep learn-
ing approach to HAR, namely Distraction-aware HAR (Da-
HAR). It enhances deep CNN feature learning by improving
attribute localization through a coarse-to-fine attention mech-
anism. At the coarse step, a self-mask block is built to roughly
discriminate and reduce distractions, while at the fine step, a
masked attention branch is applied to further eliminate irrel-
evant regions. Thanks to this mechanism, feature learning is
more accurate, especially when heavy occlusions and com-
plex backgrounds exist. Extensive experiments are conducted
on the WIDER-Attribute and RAP databases, and state-of-
the-art results are achieved, demonstrating the effectiveness
of the proposed approach.

Introduction

Given an input image with a target person, Human Attribute
Recognition (HAR) predicts his or her semantic character-
istics, including low-level ones (e.g. wearing logo or plaid),
mid-level ones (e.g. wearing hat or T-shirt), and high-level
ones (e.g. gender, dressing formally). Accurate recognition
of such attributes not only improves machine intelligence on
cognition of humans, but also benefits a large number of ap-
plications such as person re-identification (Ling et al. 2019;
Han et al. 2018), pedestrian detection (Tian et al. 2015), and
person retrieval (Feris et al. 2014; Wang et al. 2013).

Existing investigations of HAR can be classified into three
domains, i.e., clothing domain, surveillance domain, and
general domain. The techniques in the clothing domain have
received extensive attentions (Al-Halah, Stiefelhagen, and
Grauman 2017; Sarafianos, Vrigkas, and Kakadiaris 2017;
Liu et al. 2016; Chen et al. 2015) due to their potentials in
commercial applications. This type of methods generally re-
quire the input images of high resolutions with persons at a
small number of pre-defined poses, and fine-grained cloth-
ing style recognition is still challenging. There are also nu-
merous studies in the surveillance domain (Wang et al. 2019;
Gao et al. 2019; Li et al. 2019; Liu et al. 2018; Wang et
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Figure 1: Human Attribute Recognition is challenging due to
large variations of body gestures, external occlusions, light-
ing conditions, image resolutions and blurrinesses.

al. 2017), because these techniques are playing an impor-
tant role in public security. Input images are recorded by
a diversity of monitoring cameras, and the major difficul-
ties lie in low resolutions, high blurrinesses, and complex
backgrounds. In the past several years, interests have been
shown in the general domain (Guo, Fan, and Wang 2017;
Sarfraz et al. 2017; Li et al. 2016b), where input images are
acquired in arbitrary scenarios exhibiting additional varia-
tions of gestures, viewpoints, illuminations, and occlusions,
as depicted in Figure 1.

Regardless of differences between domains, HAR meth-
ods basically share a common framework, which conducts
attribute-sensitive feature extraction on attribute-related re-
gions for classification. In the literature, the majority of
existing efforts to HAR have been made on building ef-
fective features, and a large number of works focus on
improving the discrimination and the robustness of rep-
resentations of appearance properties. Features are evolv-
ing from handcrafted ones (Joo, Wang, and Zhu 2013;
Cao et al. 2008) to deep learned ones (Zhu et al. 2017b;
Yu et al. 2016), with promising performance achieved.

To generate qualified features, attribute-related region lo-
calization is very crucial, which aims to locate the regions
that contain useful clues for attribute recognition. With
incorrect localization of such regions, attribute prediction
tends to fail because meaningful features can hardly be cap-
tured. In both the surveillance and general domains (espe-
cially the latter one), the accuracy of attribute localization
is usually susceptible to pose variations and external occlu-
sions. Therefore, recent attempts develop more sophisticated
schemes to locate attribute-related regions, including ex-
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Figure 2: Examples of distractions (best scene in color). In-
put images (1st row) in HAR usually contain target subjects
(masked in red) and distractions (enclosed in green con-
tours). We visualize some cases when the attention mech-
anism mistakenly responds to surrounding people (1st and
2nd columns), similar objects (3rd column) and puzzling
backgrounds (4th column), leading to incorrect outputs (2nd
row).

ploiting auxiliary cues of target persons (Fabbri, Calderara,
and Cucchiara 2017; Li et al. 2018; Park, Nie, and Zhu 2017;
Tan et al. 2019) and applying the attention mechanism
(Tan et al. 2019; Sarafianos, Xu, and Kakadiaris 2018;
Liu et al. 2017; Zhu et al. 2017a). They indeed deliver some
performance gains; however, it is really a difficult task to ob-
tain accurate human auxiliary information, such as detailed
body parts and meticulous body poses, in the presence of
those negative factors. Meanwhile, the traditional attention
mechanism is prone to confusing areas, named distractions,
which are caused by surrounding people, similar objects and
puzzling backgrounds, as shown in Figure 2. These facts
suggest space for improvement.

This paper proposes a novel method, namely Distraction-
Aware HAR (Da-HAR), dealing with prediction of attributes
of target persons in the wild (i.e. in the general domain). It
emphasizes the importance of attribute-related region local-
ization and enhances it by a coarse-to-fine attention mecha-
nism, which largely reduces irrelevant distraction areas and
substantially strengthens the following feature learning pro-
cedure. Specifically, at the coarse step, a self-mask block
is designed to distill consensus information from extracted
CNN features at different scales and highlight the most
salient regions, in order to learn a rough distraction-aware
mask from the input image. At the fine step, the traditional
attention mechanism (Xu et al. 2015) is integrated by in-
troducing a mask branch to further refine the distraction-
aware information. This branch functions in a multi-task
manner to boost results of classification and segmentation
through making use of their interactions. In addition to
distraction-aware attribute localization, considering that hu-
man attributes naturally exist at different semantic levels, we
jointly use the features extracted from multiple layers of the
deep network to improve the discriminative power. Com-

prehensive experiments are carried out on two major public
benchmarks, i.e. WIDER-Attribute and RAP, and state-of-
the-art results are reached, which clearly illustrate the com-
petency of the proposed approach.

Related Work

Due to extensive real-world applications, HAR has drawn
many attentions in recent years, with the scores on main
benchmarks (Li et al. 2016b; Deng et al. 2014; Li et al.
2016a) continuously improved.

Early work focuses on extracting more discriminative fea-
tures. (Cao et al. 2008) utilizes Histogram of Oriented Gra-
dients (HoG) to represent person appearances and employs
an ensemble classifier for gender recognition. (Joo, Wang,
and Zhu 2013) builds a rich dictionary of detailed human
parts based on HoG and color histograms, handling more at-
tributes. CNN models, such as GoogLeNet (Szegedy et al.
2015), ResNet (He et al. 2016), and DenseNet (Huang et al.
2017), dominate this areas with stronger features and better
scores.

Recently, increasing efforts have been made to improve
attribute localization and thus boost the HAR performance.
These methods can be classified into two categories. One
explores auxiliary cues of other tasks, e.g. body part detec-
tion or annotation (Fabbri, Calderara, and Cucchiara 2017),
pose estimation (Park, Nie, and Zhu 2017; Li et al. 2018),
and human parsing (Tan et al. 2019), while the other intro-
duces the attention mechanism to underline more important
regions (Zhu et al. 2017a; Liu et al. 2017; Sarafianos, Xu,
and Kakadiaris 2018; Tan et al. 2019).

(Fabbri, Calderara, and Cucchiara 2017) leverages body
part annotation to calculate the pose-normalized feature
maps of the head-shoulder, upper body, and lower body
parts, respectively. The three feature maps are then em-
ployed in prediction and the optimal result is combined with
that of the entire person to generate final decision. (Park,
Nie, and Zhu 2017) jointly infers human poses and attributes
in a sparse graph, which is built based on the annotated key-
points of the target person. (Li et al. 2018) transfers the
knowledge learned from an off-the-shelf human pose es-
timation network and integrates pose information into at-
tribute recognition to boost the performance. (Tan et al.
2019) simultaneously performs attribute recognition and hu-
man parsing in a multi-task learning manner, which further
refines the features by parsing results. Unfortunately, target
persons in HAR often have arbitrary variations in pose, oc-
clusion, and background, e.g. in the surveillance and gen-
eral domains. In this case, the clues of the auxiliary tasks
mentioned above are no longer accurately available, making
those methods unstable.

(Zhu et al. 2017a) firstly applies the attention mechanism
to attribute recognition and discovers that the confidence-
weighted scheme benefits most to recognition scores.
(Sarafianos, Xu, and Kakadiaris 2018) follows this intuition
and extends the regular attention scheme to a multi-scale
attention-aggregated one. (Liu et al. 2017) learns multiple
attentive masks corresponding to features at different lay-
ers and adds them back on the original features to form
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Figure 3: Overall framework of our Da-HAR. The Main Net (purple) follows the structure of ResNet-101. We insert several
self-mask blocks (yellow) between different layers in the backbone network to learn the distraction awareness. Features from
different levels are collected and fused by a fusion block (blue), and the result is then sent to a side prediction branch, which
contains a mask block (green) and an attention block (red) to guide the network to better concentrate on the attribute-related
regions.

up attentive ones. (Tan et al. 2019) combines parsing atten-
tion, label attention, and spatial attention to ameliorate the
accuracy of attribute localization. In particular, spatial at-
tention learns several attention masks to better concentrate
on attribute-related regions for prediction. However, these
methods conduct attention learning on the entire input patch
without any constraint, and the weights or masks generated
are thus sensitive to confusion areas incurred by surrounding
people, similar objects, and puzzling background, as shown
in Fig. 2, making their results problematic.

The proposed method presents a novel approach, which
tends to make use of both the advantages of the two groups
of methods by inducing additional clues from person seg-
mentation into attention learning in a progressive way. It
localizes more accurate attribute regions by largely elim-
inating distraction areas through a coarse-to-fine attention
scheme, and builds more powerful attribute features by inte-
grating the ones extracted from multiple layers of the deep
network.

Methodology

Overall Framework

The overall framework of our approach is illustrated in Fig-
ure 3. It consists of a main network as well as a side branch.
Given an image patch with a target person, the proposed
method processes it through both the main network and the
side branch and their attribute predictions are combined to
provide final results.

In the main network, we adopt ResNet-101 as the back-
bone, following recent studies (Zhu et al. 2017a; Sarafianos,
Xu, and Kakadiaris 2018). We then add the self-mask block

to the backbone to generate the features that are enhanced
by the learned coarse distraction awareness. The features fi-
nally pass through a global average pooling layer and de-
liver Main Net predictions. In the side branch, we collect
and combine the features at multiple layers from the back-
bone. These aggregated features are fed to the masked at-
tention block, which further refines the previous distraction
awareness. The same structure for classification is used to
produce Side Branch predictions. At last, the Main Net and
Side Branch predictions are averaged for decision making.

Coarse-to-fine Distraction-Aware Learning

As mentioned in Sec. 1, distractions with the patterns or ap-
pearances that are similar to the target may appear in the
given image in the form of surrounding people, similar ob-
jects, and puzzling backgrounds (see Figure 2), which tend
to induce false activations during the recognition process.
The case even degenerates in real-world crowded scenes,
such as assembly and campaign. Therefore, it is a difficult
task to separate the target from distractions through bound-
ing boxes. To deal with this issue, we propose a coarse-to-
fine attention mechanism to progressively learn distraction
awareness and substantially strengthen attribute features.

Coarse Distraction-Aware Learning. In the first stage,
we roughly approximate the location of the target person
by using the provided image-level labels. As we know, la-
bels are assigned to the target person, to whom the high-
lighted features (activated neurons) are correlated. There-
fore, a rough localization can be obtained by combing the
features according to a weighted sum rule. To verify this in-
tuition, we sum up all the channels of the output feature from
the 4th layer or the 5th layer and employ the median value as
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Figure 4: Visualization of summed features. By summing up
the output features at the 4th layer (3rd column) or the 5th
layer (2nd column) along the dimension of the channels and
using the median value as a threshold for binarization, the
approximate outline of the target person is rendered.

a threshold to binarize the summed feature map. As we can
see in Figure 4, an approximate outline of the target person.

Based on the analysis above, we propose a self-mask
block to learn the distraction-awareness. The structure of
our self-mask block is shown in Figure 3. It contains a mask
block to predict the saliency information, which is employed
to optimize the input features to filter out the unconcerned
regions. The mask block is constructed similar to a resid-
ual block, which is a stack of three 1× 1 convolution layers
and some batch normalization and activation layers. Since
the self-mask blocks access the features at the correspond-
ing layers, they only capture coarse distraction information.

Fine Distraction-Aware Learning. To further improve
the localization accuracy of attribute-related regions, we
propose a masked attention block. Since this block has ac-
cess to the features collected from different layers, which
contain the coarse distraction-awareness, it makes refine-
ment to build more precise distraction-awareness.

A confidence-weighted attention mechanism (Zhu et al.
2017a) is exploited in the side branch to guide the network
to explicitly focus on the attribute-related regions. However,
recall that the essence of the attention mechanism is a re-
weighting process on the give features, and the attention
mechanism thus cannot rectify the false activations induced
by distractions. To introduce distraction-aware learning to
the regular attention mechanism, we design a masked at-
tention block by integrating a mask branch after multi-level
feature fusion (described in the next sub-section), as shown
in Figure 3. This mask is employed to preprocess the fused
feature before it is passed to the attention module. Note that
the mask block constructed here is different from that in the
self-mask block. We add two residual blocks on the top of
the mask block so that it works in a multi-task manner, deal-
ing with recognition and segmentation rather than simply
distilling the consensus information.

Multi-Level Feature Aggregation

Features at multiple layers are collected and leveraged in
the side branch to enhance the representation ability, as hu-
man attributes correspond to different semantic levels. To

be specific, some attributes, such as long hair, wearing logo
and stripes, are highly correlated to low-level features, e.g.
colors, edges and local textons, which are encoded by the
bottom layers of the network. Meanwhile, other attributes,
like wearing T-shirt, sunglasses and jeans, are object-related,
which are relevant to mid-level semantics extracted from
deeper layers. In addition, a few attributes are at semanti-
cally high level and related to the features from top layers
with several co-existing evidences. For example, gender is
linked to body shapes and dressing styles, while dressing
formally relates to ties and suits.

As features at different layers possess different spatial
sizes and numbers of channels, a fusion block is proposed
to balance the spatial resolutions and channel widths of
these features. This block consists of three components: a
1× 1 convolution layer for channel reduction to the channel
widths; a re-sampling layer for scale adjustment to reconcile
spatial resolutions; and a layer of stacked residual blocks to
alleviate the aliasing effect of up-sampling.

Training Scheme

Loss Functions. The Binary Cross-Entropy (BCE) loss is
adopted in model training, formulated as:

o

Lb(ŷp, y) = −
C∑

c=1

log(σ(ŷcp))y
c + log(1− σ(ŷcp))(1− yc), (1)

where C is the total number of attributes, ŷcp and yc corre-
spond to the predicted result and ground-truth label for each
attribute c, respectively, and σ(·) represents the sigmoid ac-
tivation function.

When the total number of concerned attributes increases,
the influence of the class imbalance problem can no longer
be neglected. We thus also employ the weighted BCE-loss
(Yu et al. 2016) as:

Lw(ŷp, y) = −
C∑

c=1

1

2ωc
log(σ(ŷcp))y

c+

1

2(1− ωc)
log(1− σ(ŷcp))(1− yc),

(2)

where ωc is the positive sample ratio of attribute c.
Supervision without Ground-Truth. If the ground-truth

masks are given in the HAR datasets, our training can be eas-
ily performed. Unfortunately, the public HAR datasets rarely
provide pixel-level annotations. Besides, pixel-level manual
annotations are time-consuming. Therefore, we make use of
the semantic segmentation results, which are obtained by
an off-the-shelf segmentation technique, as our pixel-level
ground truths, since it reports excellent performance.

Specifically, we train the segmentation network on the
MS-COCO dataset, where FPN (Lin et al. 2017) is employed
as the backbone network. The P2 feature is utilized as the fi-
nal representation for segmentation. We crop target persons
by bounding boxes and resize them to 224 × 224 as input.
For training the masks, we only exploit the annotations of
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Imbalance Ratio 1:1 1:3 1:18 1:3 1:4 1:1 1:13 1:6 1:11 1:2 1:9 1:28 1:3 1:18

R-CNN ICCV’15 94 81 60 91 76 94 78 89 68 96 80 72 87 55 80.0
R*CNN ICCV’15 94 82 62 91 76 95 79 89 68 96 80 73 87 56 80.5
DHC ECCV’16 94 82 64 92 78 95 80 90 69 96 81 76 88 55 81.3
VeSPA BMVC’17 - - - - - - - - - - - - - - 82.4
CAM PRL’17 95 85 71 94 78 96 81 89 75 96 81 73 88 60 82.9
ResNet-101 CVPR’16 94 85 69 91 80 96 83 91 78 95 82 74 89 65 83.7
SRN* CVPR’17 95 87 72 92 82 95 84 92 80 96 84 76 90 66 85.1
DIAA ECCV’18 96 88 74 93 83 96 85 93 81 96 85 78 90 68 86.4

Da-HAR (Ours) 97 89 76 96 85 97 86 92 81 97 87 79 91 70 87.3

Table 1: Quantitative comparison in terms of mAP between our proposed approach and eight counterparts on the WIDER-
Attribute dataset. Note that the asterisk mark next to SRN indicates that the method is re-implemented by (Sarafianos, Xu, and
Kakadiaris 2018), because the original work includes the validation set for training while the others do not.

the target person and discard all the unnecessary labels. Ac-
cording to our experiments, the generated segmentation re-
sults well serve as the ground truths for the masked attention
block in Da-HAR, except for some cases when the target
person is mostly occluded by surrounding people or objects.

Experiments

We evaluate our approach on two major public datasets,
namely WIDER-Attribute and RAP. The WIDER-Attribute
dataset consists of 13,789 images, where 57,524 instances
are labeled with corresponding bounding boxes and 14 at-
tribute categories. The RAP dataset is smaller than WIDER-
Attribute, but it contains a larger number of attribute cate-
gories. It has a total number of 41,585 cropped images from
26 surveillance cameras, and the images are annotated with
69 attribute categories.

Training Details

We utilize a ResNet-101 model (He et al. 2016) pre-trained
on the ImageNet dataset (Deng et al. 2009), as the back-
bone of our Da-HAR. All the proposed blocks, i.e., the self-
mask block, the feature fusion block, and the masked atten-
tion block, are initialized with Gaussian noise (m = 0, σ =
0.01).

To avoid over-fitting, the data augmentation strategies em-
ployed in (Zhu et al. 2017a) are adopted in our training.
We firstly resize the input images to 256 × 256. Then, the
resized images are cropped at four corners and the center,
with the cropping width and height randomly chosen from
the set {256, 224, 192, 168, 128}. At last, the cropped im-
ages are resized to 224 × 224. Note that we keep the ratio
of height/width at 2 for the RAP dataset. Random horizon-
tal flipping and color jittering are also applied for the data
augmentation.

The stochastic gradient descent algorithm is utilized in the
training process, with a batch size of 32, a momentum of 0.9
and a weight decay of 0.0005. The initial learning rate is set
to 0.003, and gamma is set to 0.1. Our model is trained on

a single NVIDIA 1080Ti GPU. Two different strategies are
used in inference. One directly resizes the input images to
256 × 256, while the other introduces an averaged result of
five-crop evaluation.

Results

WIDER-Attribute. On this dataset, mean Average Preci-
sion (mAP) is employed as the metric. We compare our Da-
HAR with the latest methods, including R-CNN (Girshick
2015), R*CNN (Gkioxari, Girshick, and Malik 2015), DHC
(Li et al. 2016b), CAM (Guo, Fan, and Wang 2017), VeSPA
(Sarfraz et al. 2017), SRN (Zhu et al. 2017a), DIAA (Sarafi-
anos, Xu, and Kakadiaris 2018) and a fine-tuned ResNet-
101 network (He et al. 2016). Note that SRN results are
quoted from (Sarafianos, Xu, and Kakadiaris 2018), where
the method is re-implemented without using the validation
set for fair comparison.

Table 1 displays the results of different methods in de-
tails. We can see that our approach outperforms all the ex-
isting methods on the WIDER-Attribute dataset. Compared
to DIAA, which reports the previous state-of-the-art score,
Da-HAR achieves an mAP gain of 0.9%. Specifically, the re-
sults of some attributes related to accessories (e.g., Hat and
Sunglasses) and with strong local patterns (e.g., T-shirt, Skirt
and Plaid) increase more than 1%. Since these attributes usu-
ally have strong activations within small regions, they are
easier to be influenced by surrounding distractions. By in-
troducing the coarse-to-fine attention mechanism, Da-HAR
proves effective in reducing such interferences and thus
strengthening features. In particular, the proposed method
shows the largest improvement (3%) on the Hat attribute,
even though the baseline is relatively high (93%). In gen-
eral, Hat is a frequently appeared attribute and its prediction
seriously suffers from distractions. It highlights the advan-
tage of the proposed method.

RAP. On this dataset, we follow the standard protocol
(Li et al. 2016a) and only report the prediction results on
51 attributes whose positive sample ratios are higher than
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Method loss mA (%) Acc (%) Prec (%) Rec (%) F1 (%)

HPNet ICCV’17 s. 76.12 65.39 77.53 78.79 78.05
JRL ICCV’17 o. 77.81 - 78.11 78.98 78.58
VeSPA BMVC’17 s. 77.70 67.35 79.51 79.67 79.59
WPAL BMVC’17 w. 81.25 50.30 57.17 78.39 66.12
GAM AVSS’17 o. 79.73 83.79 76.96 78.72 77.83
GRL IJCAI’18 w. 81.20 - 77.70 80.90 79.29
LGNet BMVC’18 s. 78.68 68.00 80.36 79.82 80.09
PGDM ICME’18 w. 74.31 64.57 78.86 75.90 77.35
VSGR AAAI’19 o. 77.91 70.04 82.05 80.64 81.34
RCRA AAAI’19 w. 78.47 - 82.67 76.65 79.54
IA2Net PRL’19 f. 77.44 67.75 79.01 77.45 78.03
JLPLS TIP’19 o. 81.25 67.91 78.56 81.45 79.98
CoCNN IJCAI’19 o. 81.42 68.37 81.04 80.27 80.65
DCL ICCV’19 m. 83.70 - - - -

Da-HAR (Ours)
o. 73.78 68.67 84.54 76.84 80.50
w. 84.28 59.84 66.50 84.13 74.28
m. 79.44 68.86 80.14 81.30 80.72

Table 2: Quantitative results of our proposed method and
fourteen counterparts on the RAP dataset. s., o., w., f., and
m. represent the Softmax loss, Original BCE-loss, Weighted
BCE-loss, Focal BCE-loss, and a Mixed loss, respectively.

1%. Multiple metrics are used, involving mean Accuracy
(mA), instance Accuracy (Acc), instance Precision (Prec),
instance Recall (Rec), and instance F1 score (F1). Refer
to (Li et al. 2016a) for their definitions and explanations.
We compare our approach with 14 existing counterparts, in-
cluding HPNet (Liu et al. 2017), JRL (Wang et al. 2017),
VeSPA (Sarfraz et al. 2017), WPAL (Yu et al. 2016), GAM
(Fabbri, Calderara, and Cucchiara 2017), GRL (Zhao et al.
2018), LGNet (Liu et al. 2018), PGDM (Li et al. 2018),
VSGR (Li et al. 2019), RCRA (Zhao et al. 2019), I2ANet
(Ji et al. 2019), JLPLS (Tan et al. 2019), CoCNN (Han et
al. 2019), and DCL (Wang et al. 2019), as shown in Table
2. The samples in the RAP dataset are collected from real
world surveillance scenarios, and compared to the ones in
WIDER-Attribute, there are less distractions. Under this cir-
cumstance, our method still reaches very promising results
compared to the state-of-the-art methods.

Since the problem of class imbalance in RAP is very se-
vere, the performance fluctuates under different loss func-
tions. Da-HAR effectively filters out distractions and thus
reduces false positives, showing the superiority in Precision
with the highest score of 84.54% under BCE-loss. As the
original BCE-loss emphasizes the majority attributes, the
trained network tends to induce strong biases on the minority
ones, which impairs Recall. The weighted BCE-loss assigns
penalties to the minority attributes and enforces the network
to better distinguish them. In this case, the highest instance
Recall of 84.13% is achieved , along with the highest mean
Accuracy of 84.28%. However, the discriminative informa-
tion in the majority attributes is suppressed, which leads to a
Precision drop. At last, a mixed loss function makes a better
trade-off between Precision and Recall and delivers a mod-
erate F1 score of 80.72%.

Ablation Study

To validate our contributions, we further perform ablation
studies on the WIDER-Attribute dataset. The images are

Multi-Level Self-Mask Masked Ignore mAP (%)
Feature Attention 0-labeled Crops / Full

85.3 / 86.2
� 85.7 / 86.5

� 85.8 / 86.6
� 86.0 / 86.8

� � � 86.2 / 87.1
� � � � 86.5 / 87.3

� � � � 87.2 / 88.0

Table 3: Ablation Study on the WIDER-Attribute dataset.
We re-implement SRN (Zhu et al. 2017a) without its spa-
tial regularization module as our baseline, whose results are
reported in the first row. The last row displays the results
obtained by adding the validation subset to the training pro-
cess.

acquired in unconstrained scenarios, including marching,
parading, cheering and different ceremonies, where the tar-
get person is more likely to appear in crowds, i.e., dis-
tractions occur more frequently in cropped input images.
Therefore, this dataset is suitable for analyzing the proposed
method.

Sub-Module Analysis. Here, we investigate the contribu-
tion of each module to the final results of Da-HAR in Table
3. We re-implement SRN (Zhu et al. 2017a) without its spa-
tial regularization module to serve as our baseline network,
which achieves an mAP of 85.3% (obtained by using the
average results of five-crop evaluation). If we utilize the un-
cropped (full) patch and resize it to 256 × 256 as the input,
the baseline increases to 86.2%, as the uncropped patch con-
tains more information. Our feature fusion block boosts the
performance to 85.7%/86.5%, which demonstrates the effec-
tiveness of leveraging multi-level semantic clues. When the
self-mask block is applied only, an mAP of 85.8%/86.6%
is reached by learning the coarse distraction-awareness. The
masked attention block, i.e., the fine distraction-aware learn-
ing step, further improves the mAP to 86.0%/86.8%. These
facts underline the necessity of the coarse-to-fine attention
scheme. By integrating all the three components, the mAP
rises to 86.2%/87.1%. We also observe that the mAP score
grows to 86.5%/87.3%, if we ignore 0-label attributes at the
training phase, which are previously treated as negatives in
the literature. This step makes data more consistent in train-
ing, in spite of losing some samples. If the validation set is
added to the training one as (Zhu et al. 2017a) does, an mAP
of 87.2%/88.0% is obtained.

Masked Attention Analysis. To further verify the effec-
tiveness of the coarse-to-fine distraction-aware feature learn-
ing and demonstrate the impact of the auxiliary supervision
from segmentation, we visualize the saliency mask, i.e., the
output of the masked attention module in the side branch
in Figure 5. The visualized masks are trained with and with-
out the auxiliary supervision. For convenience, a cropped in-
put image and the corresponding masks trained without/with
supervision are gathered to form a triplet of images. These
triplets are arranged into three panels, which are separated
by two dashed lines, according to their different levels of
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I. Easy

II. Medium

III. Hard

Level of 
Difficulties

Input Image Mask w/o 
supervision

Mask w/ 
supervision

a) Simple object occlusion

a) Ordinary person occlusion

a) Severe person occlusion

b) Common pose c) Complex object occlusion

b) Low resolution and Blur c) Similar person occlusion

b) Uncommon pose c) Confusing position

Input Image Mask w/o 
supervision

Mask w/ 
supervision Input Image Mask w/o 

supervision
Mask w/ 

supervision

Figure 5: Visualization of Attentive Mask. The visualized masks are trained with and without the auxiliary supervision.

difficulties. In each panel, they are grouped into three zones,
with respect to the challenges.

The first panel consists of images with simple object
occlusion (I-a), common pose (I-b), and moderate occlu-
sion by complex objects (I-c). In this case, the saliency
masks generated without supervision are well estimated with
slight noises. When we use proper supervision, the gener-
ated masks are obviously better.

The second panel contains images with severe occlusions
by ordinary people (II-a), low resolution and blur (II-b), and
occlusions by people having similar appearances (II-c). Al-
though the distractions are more severe compared to those in
the first panel, our mask still locates the target person with-
out supervision. If supervision is included in training, our
method achieves a very accurate localization.

The images in the third panel are considered to be hard
for HAR with heavy occlusions by people having extremely
similar appearances (III-a), irregular pose (III-b), and severe
occlusions with confusing positioning (III-c). The white
jacket (III-c) are wrongly identified as the pants of the tar-
get person, who is dressed in red. Under such circumstances,
the masks trained without supervision are not good, but the
supervised ones are decent, which demonstrates the effec-
tiveness of the pre-trained segmentation network.

Computational Complexity Analysis. To better under-
stand our method, we calculate the overall network parame-
ters and record the inference time. The baseline network has
45.4M parameters, and the inference time of a single im-
age by a NVIDIA 1080Ti is 22.28ms. When all the blocks
are added, the final network (Da-HAR) has 52.4M parame-
ters in total and the inference time only slightly increases to
24.04ms.

Conclusion

In this paper, we introduce a distraction-aware learning
method for HAR, namely Da-HAR. It underlines the ne-
cessity of attribute-related region localization and a coarse-
to-fine attention scheme is proposed for this issue. A self-
mask block is presented to roughly locate distractions at
each layer, and a masked attention mechanism is designed
to refine the coarse distraction awareness to further filter out
false activations. We also integrate the multi-level semantics
of human attributes to improve the performance. Extensive
experiments are carried out on the WIDER-Attribute and
RAP datasets and state of the art results are reached, which
demonstrate the effectiveness of the proposed Da-HAR.
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