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Abstract

Video super-resolution (VSR) methods have recently achieved
a remarkable success due to the development of deep convolu-
tional neural networks (CNN). Current state-of-the-art CNN
methods usually treat the VSR problem as a large number of
separate multi-frame super-resolution tasks, at which a batch
of low resolution (LR) frames is utilized to generate a single
high resolution (HR) frame, and running a slide window to
select LR frames over the entire video would obtain a series
of HR frames. However, duo to the complex temporal depen-
dency between frames, with the number of LR input frames
increase, the performance of the reconstructed HR frames
become worse. The reason is in that these methods lack the
ability to model complex temporal dependencies and hard to
give an accurate motion estimation and compensation for VSR
process. Which makes the performance degrade drastically
when the motion in frames is complex. In this paper, we pro-
pose a Motion-Adaptive Feedback Cell (MAFC), a simple
but effective block, which can efficiently capture the motion
compensation and feed it back to the network in an adaptive
way. Our approach efficiently utilizes the information of the
inter-frame motion, the dependence of the network on motion
estimation and compensation method can be avoid. In addition,
benefiting from the excellent nature of MAFC, the network
can achieve better performance in the case of extremely com-
plex motion scenarios. Extensive evaluations and comparisons
validate the strengths of our approach, and the experimental re-
sults demonstrated that the proposed framework is outperform
the state-of-the-art methods.

Introduction

Image and video super-resolution (SR) is now an efficient
method that could be widely used in many fields ranging
from the medical and satellite imaging (Thornton, Atkin-
son, and Holland 2006; Shi et al. 2013) to the security and
surveillance (Zou and Yuen 2011), it has attracted much more
attention in recent years. As a domain-specific of cross-modal
learning (Yu et al. 2019; 2018), SR technology aims to gener-
ate a High-Resolution (HR) image from a Low-Resolution
(LR) input one, which guarantees the restoration of the low
frequency information in the frequency band and predicts
the high frequency information above the cutoff frequency.
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With the development of convolution neural networks, the
deep learning based single image super-resolution (SISR) has
received significant attention from the research community
over the past few years (Kim, Kwon Lee, and Mu Lee 2016a;
He et al. 2016), which achieve the state-of-the-art perfor-
mances in terms of the peak signal-to-noise ratio (PSNR)
and the structural similarity index (SSIM) (Wang et al. 2004).
However, the SISR methods do not consider the temporal
relationship between frames, that make its results in video
super-resolution (VSR) is not satisfactory.

Recently, the multi-frame SR technology is proposed in
the field of video super-resolution, in which the information
of the motion relationship between input frames is utilized
to improve the performance. It takes multiple LR frames as
inputs and output HR frames by taking into account sub-
pixel motions between the neighboring LR frames. Usually,
most deep learning based VSR methods (Liao et al. 2015;
Kappeler et al. 2016; Caballero et al. 2017; Liu et al. 2017;
Tao et al. 2017) follow a similar procedure that consists of
two steps: the first step is the motion estimation and compen-
sation, and the second one is an up-sampling process. The
motion estimation and compensation are the key of these
methods, it is a hard task, and especially when the complex
motion or parallax appear across the neighboring frames.
Caballero et.al.(Caballero et al. 2017) had proposed an effi-
cient spatial transformer network to compensate the motion
between frames fed to the SR network, but network perfor-
mance decreases when the number of input frames exceeds 5.
Jo et.al.(Jo et al. 2018) had explored a method based on the
dynamic upsampling filters estimation which avoid explicit
motion compensation, but it is also hard to make full use of
the video’s motion information.

In addition, reducing the number of frames which in-
put into the network at the same time, could effectively
improve the network’s ability to model the complex tem-
poral dependencies(Sajjadi, Vemulapalli, and Brown 2018;
Haris, Shakhnarovich, and Ukita 2019). However, the de-
crease in the number of input frames also means that the
network be likely to receive less useful information, and the
performance of the network will be further limited.

In the deep-learning based VSR methods abovementioned,
the input images are connected in parallel and the network
has not treated them discriminately, which limits the ability
of networks to learn the useful information when the input
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Figure 1: Our method aims to generate high-resolution video frames (2nd row) from low-resolution ones (1st row, visualized using pixel
duplication). The low-resolution frames (1st row) are downsampled from the corresponding groundtruth frames (3rd row) with noise and blur.

frames were too large. This would lead to the performance of
the network decrease too much as the input frames number
increasing(Caballero et al. 2017; Wang et al. 2018).

In this paper, we focus on the problem of the motion es-
timation and compensation of video super resolution, and
propose a Motion-Adaptive Feedback Ceil (MAFC) and a
novel network named Motion-Adaptive Feedback Network
(MAFN) to improve the VSR performance. MAFC can sen-
sitively capture the motion information between each frame
and feed back to the network in an adaptive way, and MAFN
can process each input image independently by the channel
separation method which can meets the input requirements of
MAFC. Furthermore, we apply the proposed model to super
resolve videos. The experimental results demonstrate that our
approach can be applied in the complex motion scenarios,
and achieve state-of-the-art performance. Moreover, it can
also effectively solve the problem of network performance
degradation caused by excessive input frames.

The advantages of our model can be summarized as fol-
lows. 1). It makes full use of the motion relationship between
different frames and avoids motion compensation operation.
2). It can enhance the connection between each frame fea-
tures, and the different frame features can be treated dis-
criminately. 3). The temporal dependency can be efficiently
modelled by the network, and the performance of the network
improves as the number of input frames increasing.

Related Works

Early works have made efforts on addressing the VSR prob-
lems by putting the motion between HR frames, the blurring
process and the subsampling altogether into one framework
and focused on solving for the sharp frames with an opti-
mization (Ma et al. 2015). Among these traditional methods,
Protter et al. (Protter et al. 2008) and Takeda et al. (Takeda
et al. 2009) avoided the motion estimation by employing
nonlocal mean and 3D steering kernel regression. Liu and
Sun (Liu and Sun 2013) proposed a Bayesian approach to
estimate HR video sequences, which can also compute the

motion fields and blur kernels simultaneously.

Recently, with the rise of deep learning, various networks
have been designed in video super-resolution field, such as
early deep learning method BRCN (Huang, Wang, and Wang
2015) using recurrent neural networks to model long-term
contextual information of temporal sequences. Specifically,
they used bidirectional connection between video frames with
three types of convolutions: the feedforward convolution for
spatial dependency, the recurrent convolution for long-term
temporal dependency, and the conditional convolution for
long-term contextual information. Besides, Liao et al. (Liao
et al. 2015) proposed DESR, which reduces computational
load for motion estimation by employing a noniterative frame-
work. The SR drafts are generated by several hand-designed
optical flow algorithms, leading to a deep network produce
final results. Likewise, Kappeler et al. (Kappeler et al. 2016)
proposed VSRnet, which compensates motions in input LR
frames by using a hand-designed optical flow algorithm as
a preprocessing before being fed to a pretrained deep SR
network. Caballero et al. (Caballero et al. 2017) proposed
VESPCN, which learns motions between input LR frames
and improves HR frame reconstruction accuracy in real-time.
Furthermore, this end-to-end deep network estimates the op-
tical flow between input LR frames with a learned CNN to
warp frames by a spatial transformer (Jaderberg et al. 2015),
and produces an HR frame through another deep network.

Similar to the above methods, the work in (Liu et al. 2017)
also learns and compensates the motion between input LR
frames. But after the motion compensation, they adaptively
use the motion information in various temporal radius by
temporal adaptive neural network. The network is composed
of several SR inference branches for each different temporal
radius, and the final output is generated by aggregating the
outputs of all the branches. Tao et al. (Tao et al. 2017) used
motion compensation transformer module from (Caballero
et al. 2017) for the motion estimation, and proposed a sub-
pixel motion compensation layer for simultaneous motion
compensation and upsampling. For following SR network,
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Figure 2: The proposed motion-adaptive feedback cell (MAFC).

an encoder-decoder style network with skip connections is
used to accelerate the training and the ConvLSTM module is
used since video is sequential data. Jo et.al (Jo et al. 2018) de-
signed a network which reconstructs image by generating the
dynamic upsampling filters and a residual image. Sajjadi et.al
(Sajjadi, Vemulapalli, and Brown 2018) proposed a frame-
recurrent video super-resolution framework that uses the pre-
viously inferred HR estimate to super-resolve the subsequent
frame. Li et.al (Li et al. 2019) optimized the structure of 3D
convolution and proposes a fast VSR method. Inspired by
the idea of back-projection, Haris et.al(Haris, Shakhnarovich,
and Ukita 2019) integrated spatial and temporal contexts from
continuous video frames using a recurrent encoder-decoder
module.

Method

Our starting point is improving the ability of network to
model the motion information from the video. We restrict our
analysis to the motion compensation between each frame and
do not further investigate potentially beneficial extensions
such as recurrence (Kim, Kwon Lee, and Mu Lee 2016b)
and residual learning (Kim, Kwon Lee, and Mu Lee 2016a),
width and depth of network (Zhang et al. 2018a) or different
loss functions (Lai et al. 2017; Ledig et al. 2017). After
presenting an introduction of the MAFC in Sec. 3.1 and
defining a novel network used for combining MAFC in Sec.
3.2, we justify our design choices in Sec. 3.3 and give details
on the implementation and training procedure in Sec. 3.4 and
3.5, respectively.

Motion-Adaptive Feedback Cell

The motion compensation operations of the existing methods
are performed directly on the input data, which can be seen as
a form of preprocessing. Due to some complex motions are
difficult to be modeled, the low-quality motion compensation
methods will lead to the performance of network decrease
drastically(Caballero et al. 2017; Wang et al. 2018). What is
more, the temporal dependencies among input frames may
become too complex for networks to learn useful information,
and act as noise degrading their performance(Caballero et al.
2017).

Considering the problem mentioned above, we advise a
motion feedback mechanism between each frame feature and
propose a Motion-Adaptive Feedback Cell (MAFC), which
can update the current frame features adaptively according to

the difference between its neighboring frames. The overview
of the proposed MAFC is shown in Fig.2.

As shown in Fig.2, two input F t
n and F t−1

n are the feature
maps from different frames but with the same convolutional
receptive field, and the output Mct,t−1

n is the motion com-
pensation information of the input frames. The first step in
MAFC is to throw away the redundant information from the
cell state by a motion screen unit (MSU), and normalize it be-
tween 0 and 1. Next, we use the updated information Dt,t−1

n
to infer the candidate values of motion compensation by a
compensation estimation unit (CEU). Finally, we combine
the two strategies to create the final cell state and use them
as motion compensation features Mct,t−1

n . Among them :

Dt,t−1
n = σ(Wm1[F

t
n, F

t−1
n ] + bm1), (1)

Ct,t−1
n = Wm2[D

t,t−1
n ] + bm2, (2)

Mct,t−1
n = σ(Ct,t−1

n ∗Dt,t−1
n ), (3)

The motion screen unit is made by a reduction operating
followed by a convolution layer and a sigmoid layer, and
the compensation estimation unit similarly consists of two
convolution layers and a sigmoid layer. Where σ is a sigmoid
layer, Wm1 and Wm2 are the convolution parameters of MSU
and CEU.

In short, MSU is the initial screening of motion informa-
tion, while CEU is the adaptive enhancement and restrain
of the screened motion. Generally, the motion existing in
video is very complex, such as the motion of image back-
ground, rigid motion of the whole face, non-rigid motion of
facial expression and so on. The contribution of these mo-
tions to image reconstruction is different. The goal of the
MSU screening process is to filter out unimportant move-
ments such as background movements. The CEU is work to
estimate the importance degree of the remaining multi-type
motions Dt,t−1

n after MSU’s screening, and generate their
corresponding weight coefficients Ct,t−1

n adaptively. Then,
at the end of the MAFC, The multiplication of Dt,t−1

n and
Ct,t−1

n accomplishes the function for multi-type motions’s
enhance or restrain, and feedback to the network more clear
and concise motion compensation features.

Network Design

Given a low-resolution, noisy and blurry video Xt, the goal
of the VSR is to estimate a high-resolution, noise-free and
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Figure 3: Network architectures for one mid-block of MAFN, named MAFB.

blur-free version Ŷt. The LR frames Xt are downsampled
from the corresponding groundtruth (GT) frames Yt with
noise and blur, where t denotes the time step. With the VSR
network G and the network parameters θ, the VSR problem
is defined as:

Ŷt = Gθ(Xt−L:t+L), (4)

where L is the temporal radius and the input frames num-
ber T for the network is 2L+ 1.

MAFC requires the two inputs from different frames to
work properly. Unfortunately, none of existing deep learn-
ing based VSR methods work in this way. Thus, our MAFC
cannot be carried out in the existing network structures. To ad-
dress this problem, we simply conduct a lightweight network
as shown in Fig.4, which consists of three parts: an Input-
Block to map an input frames Fslr into the deep features,
a Mid-Block to convert the features to the more complete
facial presentation features, and a Output-Block to produce
the output image Ŷ from the facial presentation features. The
detail of mid-block is shown in Fig.3. Besides, it is worth
noting that each mid-layer has the same structure.

For the last layer output Fn−1, we first update the represen-
tation features of each input by a simple SR block and obtain
the Frn. Then, the adjacent features are used as the inputs
and sent to the MAFC in pairs, leading to the corresponding
motion compensation information Mcn. It should be noted
that each MAFC has the same model parameters in this layer,
and that is MAFC utilizes a weight sharing way to ensure
the fairness of motion compensation operation between any
frames. Finally, we combine the motion compensation infor-
mation with the newly obtained representation features to
obtain the final output Fn. Among them:

Fn−1 = [F t−L
n−1 , ..., F

t
n−1, ..., F

t+L
n−1 ], (5)

Frtn = σ(Wf [F
t
n−1] + bf ),

Mct,t+1
n = MAFC(Frtn, F rtn+1),

(6)

F t
n = [Mct−1,t

n , F rtn,Mct,t+1
n ],

Fn = [F t−L
n , ..., F t

n, ..., F
t+L
n ],

(7)

where Wf is the parameters of SR block. For each updated
representation feature Frtn, we combine its adjacent motion
compensation information and itself as the final output. Then,
let k3 denote that the convolution kernel size is 3, s1 denotes
that the stride is 1 and d16 denotes that the number of feature
channels is 16. The Input-Layer is made by a k3s1d16 fol-
lowed by a relu function, SR-Block is two k3s1d16 and a relu
function, and the Output-Block architecture is: k3s1d128,
PixelShuffle x2, k3s1d64, PixelShuffle x2, k3s1d1.

Why Does MAFC Work Better?

A short answer is that it could more efficient utilize the
motion information against common motion compensation
operation. The most methods rely heavily on the accuracy
of motion estimation and compensation. However the com-
plex motions are difficult to model, it can introduce ad-
verse effects if not handled properly. Specifically, while mo-
tion compensation operation such as the STN (Jaderberg et
al. 2015) is essential pieces in almost all the state-of-the-
art VSR models (Liao et al. 2015; Kappeler et al. 2016;
Caballero et al. 2017; Liu et al. 2017; Tao et al. 2017;
Sajjadi, Vemulapalli, and Brown 2018), they tend to increase
the spatial homogeneity information through affine trans-
formation and interpolation. Therefore, it may ignore the
problem of model complexity caused by breaking spatial
consistency.
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Figure 4: Pipeline of our proposed MAFN model.

Another aspect of the limitations is that the fusion process
of the continuous frame is carried out in a way of weighted
sum. As a result, it hard to make full use of the variation and
correlation between each frame to model video motion. When
too many frames are sent into the network, the performance
of the network will decline significantly.

The advantages of our method can be reflected in two
aspects. On the one hand, our network map the separated im-
ages of each frame into the same feature space by the convo-
lution layer with weight sharing. In this space, the difference
between each group of features represents each frame’s mo-
tion. MAFC could more efficient and intuitive to extract the
variations between each frame features and feed back them to
the network. the complexity of the network’s temporal depen-
dence modeling has been greatly reduced. On the other hand,
because of the MAFC works after each SR-Layer, motion im-
formation with different convolution receptive fields could be
simultaneously utilized by the network. So that the network
has a richer source of information for modeling temporal de-
pendencies. In the subsequent experiments, we further prove
that our method has better modeling ability for the complex
time dependence of video.

Implementation Details

Dataset We conduct experiments on VoxCeleb dataset. It
contains over 1 million utterances for 6,112 celebrities, ex-
tracted from videos uploaded to YouTube, which provides
the sequences of tracked faces in the form of bounding boxes.

Dataset VoxCeleb
objects sequences frames

Training 100 3884 776640
Validation 5 10 2144
Testing 18 697 139368

Table 1: Datasets used in facial video super-resolution.

Here we select 3884 video sequences of 100 people for
training, 10 video sequences of 5 people for verification and
697 sequences of 18 people for testing. For each sequence,
we compute a box enclosing the faces from all frames and

use it to crop face images from the original video. All face
images are resized to 128× 128. Table.1 presents the split of
training, validation and testing sets.

Degradation models Considering the influence of a vari-
ety of adverse factors in the image acquisition processing, the
obtained image may have some problems such as noise, blur
and low resolution at the same time. The image degradation
model can be approximated as :

Xt = DtBtYt + Zt, (8)

where Dt and Bt is the downsampling and fuzzy matrix,
Zt is the additional noise. Our LR inputs are generated from
HR frames according to the above image degradation model.
We first blur HR image by Gaussian kernel of size 7× 7 with
standard deviation 1.6, bicubic downsample HR image with
scaling factor 4, and then add Gaussian noise with noise level
5 (Zhang et al. 2018b).

Training Procedure

The pipeline of our network structure is shown in Fig.3,
named Motion-Adaptive Feedback Network MAFN, which
is a flexible network. For our experiments, the network has
one input layer, one output layer and seven SR blocks, which
only consists of two convolution layers and one sigmoid layer.
Furthermore, the loss function of MAFN is:

LG(θ) =
1

M

M∑
i=1

{
∥∥∥Yt − Ŷt

∥∥∥}, (9)

where M is the number of training images. We implement our
model by using the pytorch environment, and optimize our
network by Adam with back propagation. The momentum
parameter is set to 0.1, weight decay is set to 2× 10−4, and
the initial learning rate is set to 1×10−3 and be divided a half
every 10 epochs. Batchsize is set to 16. Training a MAFN
on VoxCeleb dataset generally takes 10 hours with one Ti-
tan X Pascal GPU. For assessing the quality of SR results,
we employ two objective image quality assessment metrics:
Peak Signal to Noise Ratio (PSNR) and structural similarity
(SSIM). All metrics are performed on the Y-channel (YCbCr
color space) of super-resolved images.
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Methods T = 3 T = 5 T = 7
PSRN SSIM PSRN SSIM PSRN SSIM

Bicubic 29.95 0.8416 29.95 0.8416 29.95 0.8416
DESR 32.19 0.8929 32.30 0.8953 32.09 0.8929
VESPCN 33.07 0.9097 33.14 0.9112 32.79 0.9055
LIU et.al 32.70 0.9033 32.82 0.9063 32.66 0.9033
SPMC 33.03 0.9066 33.23 0.9099 33.44 0.9132
FRVSR 33.26 0.9105 33.42 0.9129 33.53 0.9147
VSR DUF 34.38 0.9290 34.14 0.9245 33.82 0.9214
FSTRN 32.96 0.9059 33.11 0.9089 33.07 0.9085
RBPN 33.16 0.9084 33.67 0.9158 33.91 0.9232
MAFN 34.15 0.9237 34.59 0.9279 34.81 0.9318

Table 2: Performance of facial video hallucination on the testing sets

Evaluation

In order to demonstrate the effect of our proposed MAFC,
we first compare the proposed network with other state-of-
the-art methods. Furthermore, we also investigate the impact
of model architecture and input frames number on the perfor-
mance.

Comparisons with State-of-the-Arts

Quantitative comparisons

We compare our proposed MAFN with the state-of-the-art
VSR methods, including DESR (Liao et al. 2015), VESPCN
(Caballero et al. 2017), LIU et.al (Liu et al. 2017), SPMC
(Tao et al. 2017), FRVSR (Sajjadi, Vemulapalli, and Brown
2018), VSR DUF (Jo et al. 2018) FSTRN (Li et al. 2019)
and RBPN (Haris, Shakhnarovich, and Ukita 2019). For fair
comparison, we train all models with the same training set.
To demonstrate the ability of each method to model complex
temporal dependencies, we use different numbers of input
frames to train and test the network, where T ∈ {3, 5, 7}.

Quantitative comparison with other state-of-the-art VSR
methods is shown in Table.2. In general, VSR DUF (Jo et
al. 2018) nearly achieves the best performance except our
method, but the performance decreases significantly as the
number of input frames increases. We think the reason is this
method has no explicitly motion estimation and compensa-
tion operation, which making it difficult for the network to
model the complex dependencies between frames. In addi-
tion, due to a lightweight structure, our method does not get
the highest performance at T = 3. Then, our method achieves
the best performance when T = 5, and the performance of
all methods except VSR DUF has been improved. It can be
seen that motion compensation operation could enhance the
network’s modeling ability for complex motion.

Specifically, when T = 7, the performance of SPMC,
FRVSR, RBPN and ours methods increased, but other meth-
ods decreased. The common feature of FRVSR and RBPN is
that the network input only contains two frames of images at
the same time. As for the SPMC, we modified the way the
network reads in the image and made it consistent with the

FRVSR. It is found that the network input with fewer images
could effectively increase the network’s ability to model tem-
poral dependence. The advantage of this method is that the
performance of the network can increase with the increase of
the input frames number, but the lack of input also could lead
to the performance of the network is hard to further improve.
Benefit from the ability of MAFC to utilize inter-frame mo-
tion information, our method achieves excellent performance
at T=7. Moreover, compared with T=5, the performance of
the MAFN has a significant increase.

Qualitative results

A qualitative comparison between our method and other
SR methods are shown in Figure. 5. There are three face im-
ages, each of which is reconstructed from seven consecutive
frames. The super-resolved results from our method tend to
be more appealing and clearer than those from other methods
especially on the mouth and eyes.

In Figure. 1, we show more example results from the vox-
celeb dataset. This method is applied to many scenes and has
high image fidelity.

Ablation Study

We conduct the ablation study on our proposed network to
demonstrate the effects of our methods. Since our network
is a really simple network which is similar to the Fast Super
Resolution Convolution Neural Network (Dong, Loy, and
Tang 2016), it doesn’t merit any additional discussion here.
In this section, we mainly make a detailed discussion on
how to improve the performance with MAFC. We conduct
4 experiments to estimate the basic network, signal screen
uint, compensation estimation uint, and MAFC, respectively.
Specifically, by removing the MAFC from our MAFN, the
remaining parts constitute the first network, named ‘BasicNet
v1’. The second network, named ‘BasicNet v2’, has the same
structure as ‘MAFN’ except that the MAFC retains only
the signal screen uint. in the same way, the third network
‘BasicNet v3’ is the MAFC retains only the compensation
estimation uint. In this part, we study the effects of different
networks. For fairly comparison, the differences between the

12473



(a) (b) (c) (d) (e) (f) (g)

Figure 5: Visual evaluation on scale 4. (a) Original HR images. (b) Input LR images. (c) Results of Caballero et al.′s method (VESPCN). (d)
Results of Sajjadi et al.′s method (FRVSR). (e) Results of Jo et al.′s method (VSR DUF). (f) Results of Haris et al.′s method (RBPN). (g)
Results of our MAFN.

four networks are only the part of MAFC and we train all
those models with other same implementation details.

T BasicNet
v1

BasicNet
v2

BasicNet
v3

MAFN

3 32.48 33.89 33.82 34.15
5 32.64 34.20 33.11 34.59
7 32.55 34.37 33.29 34.81

Table 3: Ablation study on effects of MAFC.

Table.3 shows the results of different network structures.
It can be seen that: (1) Compared to other networks, the ba-
sic network (BasicNet v1) has lower performance and the
increase of the number of input frames does not significantly
improve its results. (2) BasicNet v2 and BasicNet v3 are
both can achieve good performance. It can be seen that the
subtraction followed by convolution operation and the par-
allel followed by convolution operation can achieve motion
compensation for input two-frame features. (3) The model
using two uint (signal screen and compensation estimation)
achieves the best performance, which indicates that more rich
and distinct motion compensation information brings more
improvement.

Conclusion

In this paper, we propose a Motion-Adaptive Feedback Ceil
(MAFC) and a novel network named Motion-Adaptive Feed-
back Network (MAFN) for video super-resolution. The key
contribute of this paper is that, we find the shortcoming of
the current VSR method based on the motion estimation and
compensation, and put forward an adaptive feedback method
to deal with its drawback, and obtain the satisfactory results.
The advantage of MAFC is it can efficiently extract the dif-
ferences between each frame features intuitively, and capture

the differences of each frame in each level representation
space, which makes the motion information between each
frame image could be learned more sufficiently. Extensive
experiments show that MAFC significantly outperforms state-
of-the-arts. Thus, we believe this motion adaptive feedback
strategy could be more widely applicable in practice, and it is
readily used to other machine vision problems such as video
deblurring, compression artifact removal and even optical
flow learning.
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