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Abstract

Existing face super-resolution (SR) methods mainly assume
the input image to be noise-free. Their performance degrades
drastically when applied to real-world scenarios where the
input image is always contaminated by noise. In this paper,
we propose a Facial Attribute Capsules Network (FACN) to
deal with the problem of high-scale super-resolution of noisy
face image. Capsule is a group of neurons whose activity vec-
tor models different properties of the same entity. Inspired
by the concept of capsule, we propose an integrated repre-
sentation model of facial information, which named Facial
Attribute Capsule (FAC). In the SR processing, we first gen-
erated a group of FACs from the input LR face, and then re-
constructed the HR face from this group of FACs. Aiming to
effectively improve the robustness of FAC to noise, we gener-
ate FAC in semantic, probabilistic and facial attributes man-
ners by means of integrated learning strategy. Each FAC can
be divided into two sub-capsules: Semantic Capsule (SC) and
Probabilistic Capsule (PC). Them describe an explicit facial
attribute in detail from two aspects of semantic representa-
tion and probability distribution. The group of FACs model
an image as a combination of facial attribute information in
the semantic space and probabilistic space by an attribute-
disentangling way. The diverse FACs could better combine
the face prior information to generate the face images with
fine-grained semantic attributes. Extensive benchmark exper-
iments show that our method achieves superior hallucination
results and outperforms state-of-the-art for very low resolu-
tion (LR) noise face image super resolution.

Introduction

Face image super resolution (SR) is a special case of gen-
eral image SR, aiming to generate a High-Resolution (HR)
face image from a Low-Resolution (LR) input image. It can
provide more critical information for visual perception and
identity analysis. However, when images are noisy and their
resolutions are inadequately small (e.g. as in some real situ-
ations), there is little information available to be inferred re-
liably from these LR images. Very low-resolution and noisy
face images not only impede human perception but also im-
pair computer analysis.
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Figure 1: Our face SR results on different noise levels. (a) Original
HR images. (b),(c) and (d) are the blurry LR image with 5, 10 and
30 level noise. (e) Our SR result from the LR image. (f), (g) and
(h) are our SR result from the (b),(c) and (d), respectively

Deep convolutional neural network (CNN) based Face SR
methods have received significant attentions in recent years.
Dong et al. (Dong et al. 2015) proposed SRCNN by firstly
introducing CNN to image SR, which established a nonlin-
ear mapping from LR to HR image. Considering the fea-
ture extraction ability of deep learning, Zhou et.al (Zhou et
al. 2015) reconstructed HR face images by combining input
face images with their depth features. Face hallucination is a
domain specific super-resolution problem, the prior knowl-
edge in face images could be pivotal for face image super-
resolution. Tuzel et al.(Tuzel, Taguchi, and Hershey 2016)
proposed GLN to extract the global and local information
from face images. Yu et al. (Yu and Porikli 2016) investi-
gated GAN (Goodfellow et al. 2014) to create perceptually
realistic HR face images. Zhu et al. (Zhu et al. 2016) pro-
posed CBN to overcome the different face spatial configu-
ration by dense correspondence field estimation. Tai et al.
(Chen et al. 2018) employed facial landmarks and parsing
maps to train the network. However, all of the above meth-
ods are based on image pixel level representation to super-
resolve face images. Their performance degrades drastically
if the input image is contaminated by noise.

Rather than learning the deep model from the holistic ap-
pearance, the face hallucination methods, i.e.,face encoding
and facial attributes, which is based on the facial seman-
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tic level representation, have been proposed. Yu et al. (Yu
et al. 2018) introduced an encode-decode network with at-
tribute embedding structure into face image SR problem,
and proved the superiority of automEncoder in face image
super resolution. The face representation feature produced
by this encoding method is only a single vector, and the rep-
resentation accuracy of this vector is easily reduced when
the input image contaminated by noise. Thus, how to over-
come the interference of noise to image reconstruction is still
a problem to be solved.

In this paper, we focus on the the problem of noise face SR
and propose a Facial Attribute Capsules Network (FACN)
for efficient face SR reconstruction. The image reconstruc-
tion method of FACN can be divided into two stages: At
first stage, generation a group of Facial Attribute Capsules
(FAC) from the input image, the second stage is the HR im-
age reconstruction process. Each FAC could be divided into
two parts: Semantic Capsule (SC) and Probability Capsule
(PC). SC is a vector, where its direction represents a kind
of face attribute and its norm represents the probability of
the attribute exists. PC models an image as a composition of
attributes in a probabilistic manner. It uses the divergence
of each capsule with a prior distribution to represent the
probability that an attribute exists, which maps the existing
attributes into the posterior that matches the prior approxi-
mately.

The main contributions of this work are threefold.
(1) For face super-resolution task, we used a capsule

based representation model to reconstruct HR face. Com-
pared with the existing vector-based representation method,
capsule based representation model could effectively reduce
the ambiguity caused by the inherent nature of this task, es-
pecially when the target is blur and noisy.

(2) In order to effectively reduce the interference of fuzzi-
ness and noise to the coding process, we use the integrated
learning strategy for reference, and carry out the facial fea-
ture coding process through semantic representation, proba-
bility distribution and attribute analysis respectively.

(3) We proposed a new capsule-based facial representa-
tion model, named FAC. Which combines the semantic rep-
resentation of image and probability distribution with the
rule of facial attributes. Therefore, FAC not only has strong
facial representation ability of capsule based method, but
also has strong noise robustness of probability distribution
based method.

Related Work

Face hallucination has been widely studied in recent years
(Wang et al. 2014; Yang, Liu, and Yang 2013). The classical
method is mainly based on the geometric structure of the
face to hallucinate HR face image. These methods can be
grouped into two categories: holistic methods and part-based
methods.

Holistic methods mainly use global face models learned
by PCA to recover entire HR faces. Tang et.al (Wang and
Tang 2005) proposed a novel approach to reconstruct HR
face images by establishing a linear mapping process from
LR to HR in facial subspace. Similarly, Liu (Liu, Shum,

and Freeman 2007) introduced a combination global appear-
ance model with a local non-parametric model to enhance
the facial details and achieved better performance. Kolouri
et.al (Kolouri and Rohde 2015) provided an efficient method
to morph an HR output by optimal transport and subspace
learning techniques. Due to the fact that the holistic meth-
ods are less robust to face pose variations, the input image is
required to be precisely aligned. To more effectively handle
various poses and expressions, a number of methods utiliz-
ing facial parts rather than entire faces have been proposed.
Baker et.al (Baker and Kanade 2002) suggested searching
the best mapping between LR and HR patches can boost the
capability to reconstruct high-frequency details of aligned
LR face images effectively. Following this idea, (Yang et
al. 2010; Li et al. 2014) blend position patches extracted
from multiple aligned HR images to super-resolve aligned
LR face images. Wang et. al (Yang, Liu, and Yang 2013)
first adopted the domain knowledge of facial components
in LR images and then transfers the most similar compo-
nents from HR dataset to the inputs LR image. However,
part-based methods are very sensitive to the local informa-
tion in the input LR face image, the performance will decline
sharply when noise exists.

Benefit from the learning ability of deep learning, con-
volutional neural network (CNN) based methods achieved
state-of-the-art performance. Tuzel et al. (Tuzel, Taguchi,
and Hershey 2016) transformed the input image into global
and local feature maps by convolution and full connection.
Zhu et al. (Zhou et al. 2015) presented an unified framework
for face super-resolution and dense correspondence field es-
timation to recover textural details. They achieve state-of-
the-art results for very low resolution inputs but fail on faces
with various poses and occlusions due to the difficulty of ac-
curate spatial prediction. Yu et al. (Yu and Porikli 2016) used
the discriminant network with strong facial prior informa-
tion to generate perceptually realistic HR face images. They
further proposed transformative discriminative autoencoder
to super-resolve unaligned, noisy and tiny LR face images
(Yu and Porikli 2017). Cao et al. (Cao et al. 2017) proposed
an attention-aware face hallucination framework, which re-
sorts to deep reinforcement learning for sequentially discov-
ering attended patches and then performs the facial part en-
hancement by fully exploiting the global image interdepen-
dency. Huang et al. (Huang et al. 2017) proposed a Wavelet-
based CNN method, which learns to predict the LR’s cor-
responding series of HR’s wavelet coefficients, and utilizes
them to reconstructing HR images. Chen et al. (Chen et al.
2018) introduced facial landmarks and parsing maps to train
the network by multi-supervision. Yu et al. (Yu et al. 2018)
proposed an attribute embedding based coding and decod-
ing network, which first encodes LR images with facial at-
tributes and then super-resolves the encoded features to hal-
lucinate LR face images.

Hinton et al. (Hinton, Krizhevsky, and Wang 2011) in-
troduced capsules to represent properties of an image. They
proposed to transform auto-encoder to learn and manipulate
an image with capsules. Sabour et al. (Sabour, Frosst, and
Hinton 2017) use the length of a capsule’s activity vector
to represent the probability of an entity and design an iter-
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Figure 2: Pipeline of our proposed FACN model. The network consists of two parts: an Encode model to map an input image x into the deep
features, a Capsule Generation Block converts the features to a group of facial attribute capsules, and a Decode model to produce the output
image ŷ from the facial attribute capsules.

ative routing-by-agreement mechanism to improve the per-
formance of capsule networks. Hinton et al. (Hinton, Sabour,
and Frosst 2018) proposed a matrix version of capsules with
EM routing. The proposed FAC can be seen as a new ver-
sion of capsules which focus on the face image. This ex-
tends the classical capsule network to a more stable and
efficient model for image generation. VAE (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014) is
one of the most promising generative models for its theory
elegancy, stable training and nice manifold representations.
VAE consists of two models: an inference model to map the
visible data to the latent which matches to a prior, and a gen-
erative model to synthesize the visible data from the latent
code.

Proposed Method: FACN

Overview of FACN

The pipeline of our proposed FCAN model is shown in
Fig.2. It consists of three parts: face SR encoder, capsule
generation block and face SR decoder. Let x denote the LR
input image and y as the final recovered HR face image.
Considering the noise in the input low-resolution image may
seriously interfere with the generation of facial attribute cap-
sule, face SR encoder could be divide into two steps:,

yp = P (x), F = E(yp), (1)
where P denotes the nonlinear mapping from LR image x
to a coarse SR image yp, aiming to provide more sufficient
facial information to the followed coding process. E is the
coding function and F is the facial features extracted from
yp by coding. Then the capsule generation block G is uti-
lized to generate the face attribute capsules:

Caps = G(F ), (2)
where Caps is the face attribute capsules and G is the func-
tion of capsule generation block. Then these capsules are fed
into the face SR decoder to recover the final SR face image.

ŷ = D(Caps). (3)

Given a training set (x(i), y(i), a(i))Ni=1, where N is the
number of training images, y(i) is the ground-truth high res-
olution image corresponding to the low resolution image

x(i), and a(i) is the corresponding ground-truth facial at-
tribute. The loss function of the proposed FCAN is:

LG(θ) =
1

M

M∑
i=1

{
∥∥∥y(i) − ŷ(i)

∥∥∥+
∥∥∥y(i) − y(i)p

∥∥∥

+DKL + λ

N∑
n=1

∥∥∥a(i)(n) − â
(i)
(n)

∥∥∥},
(4)

where θ denotes the network parameters, λ is the trade-off
between the prior information and the prediction loss, ŷ(i)

and â
(i)
(n) are the recovered HR image and the estimated prior

attributes for the ith image. In addition, DKL is the KL-
divergence which we used to train the Probability Capsule
(PC). The details are described in section 3.2.2.

Details on FACN

We now present the details of our FACN. Where capsule
generation block first generates the input facial features as
representation capsules, probabilistic capsules and facial at-
tributes. Then they are combined into the final facial at-
tribute capsules. The structures are as shown in Fig.3.

Semantic capsules and facial attributes The classical
capsules are used to model the multiple types of objects
with large differences. The shallow features extracted from
the network are insufficient for the representation of multi-
ple types of targets. Therefore, it needs the following weight
matrix and dynamic routing process with huge numbers of
parameters and computational complexity to obtain a group
of capsules with strong feature representation ability. How-
ever, in this work, our target is to recover the HR image from
the LR near-frontal face images. It is easier to capture the
differences between the input images through a simple net-
work structure, and the weight matrix and dynamic routing
process are avoidable.

Firstly, we convert the encoded features into a set of Pri-
mary Semantic Capsules (PSC) by the Semantic Extrac-
tion Network (SEN). It has three convolution layers and a
fully connected layer. PSC is a vector which represent an
attribute, and the length of vector represent the probability
of existing attribute. The number and dimension of PSC is
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Figure 3: Structure of Capsule Generation Block. The probabilistic capsules are sampled from the posterior using the reparameterization trick
with a mask to indicate the present entities. Semantic capsules also be selected and activated by adding masks.

k and d. The structures are shown in Fig.3. Then, for each
PSC, we need to select and activate it to the SC by an at-
tribute mask. The facial attribute is obtained by the Attribute
Analysis Network (AAN), whose structure is consistent with
SEN. For the features obtained by the Encoder, we have:

Cpr
s = S(Df ), att = A(Df ), (5)

where Df is the output of the encoder, A and S are the func-
tion of AAN and SEN. Cpr

s and att are the PSC and facial at-
tribute. Then, the task of capsule selection and activate pro-
cess is finished by adding attribute mask.

Cs = att
Cpr

s

‖Cpr
s ‖ , (6)

where Cs is the final Semantic Capsules. The latter part
of the formula represents the unit vector of the Cs. These
attributes are used to select capsules and update the their
length. The facial attribute att is a vector with k dimensions.
The value of each dimension ranges from 0 to 1. It is inef-
ficient to extract high frequency information from noise and
low resolution image by consuming more computing and
storage resources. For efficiency, we set the capsules number
k = 64 and dimension d = 4 in all our experiments.

Probabilistic capsules The semantic representation abil-
ity of capsules will be precipitous decline when the task is an
ill-posed problem (for example, image super resolution, de-
noise and deblur). This is also an unavoidable phenomenon
in the low-level task. As we all know, the variational model
based methods have strong noise robustness, which could
efficiently realize the nonlinear mapping between the differ-
ent probability distributions. In this work, we also construct
a Probabilistic Inference Network (PIN) and design a prob-
abilistic capsules. Which follows a known prior distribution
to reconstruct the image.

μ, σ2 = P (Df ), (7)

where μ and σ2 are mean and variance. These two variables
are the output vectors of the encoder. P is the function of

PIN. Following VAEs (Kingma and Welling 2013), we select
the KL-divergence as the metric to indicate the degree how
two distributions match to each other. The KL-divergence of
each capsule with the prior distribution represents the prob-
ability that a capsule’s entity exists, i.e., the capsule corre-
sponding to the existing entity has a small KL-divergence
with the prior while those corresponding to the non-existing
entities have large KL-divergences with the prior distribu-
tion. Let the prior be the centred isotropic multivariate Gaus-
sian N(0; 1) and the probabilistic capsules N(μ;σ2). Then
the KL-divergence term, given N data samples, can be com-
puted as:

DKL =
1

2

k∑
i=1

(1 + log(σ2
i )− μ2

i − σ2
i ), (8)

More approximate probability distribution can make the
nonlinear mapping process of features more efficient and
more convenient. We further utilize the facial attributes to
apdate the probability distributions of PC and prior informa-
tion.

μ̂ = μ+ att, (9)
We utilize the facial attributes to adjust the mean value μ in
PC. Here PC has the same dimensions as SC, i.e., the mean
and variance of PC has k dimensions. Then, the capsules are
sampled using the reparameterization trick:

Cp = μ̂+ ε� σ, (10)

where ε ∼ N(0, 1) is a random vector and � means the
element-wise multiplication.

Encoder and decoder Our encoder could be divide into
two parts: a pre-SR part and an encoding part. Firstly, we
used a pre-SR network to roughly recover a coarse HR im-
age and then code the coarse HR image, which has two 3×3
convolutional layers and three 3 residual blocks. The ratio-
nale behind this is that it is non-trivial to estimate facial
attribute capsules from the input image. Using the coarse
SR network could provide more useful imformation for the
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followed capsule generation process. The pre-SR part starts
with a 3× 3 convolution followed by 3 residual blocks. An-
other 3 × 3 convolutional layer is used to reconstruct the
coarse HR image. Then, let k3 denote that the convolution
kernel size is 3 and s1 denotes that the stride is 1. The en-
coding part architecture is: k3s2, k3s1, k3s2, k3s1, k3s2,
k3s1, k3s2, k3s1, k3s2, k3s2, k3s1. For the decoder, it re-
covers the high-resolution face image directly from the FAC.
The decoding part architecture is start with a fully connected
layer followed by six up-sampling convolution layers. Fi-
nally, a 3×3 convolution layer is used to reconstruct the HR
face image. All convolution channels is set to 64.

Discrimination module GAN-based methods (Goodfel-
low et al. 2014), formulated as a two-player game between a
generator and a discriminator, have been widely used for im-
age generation (Ledig et al. 2017). Because of its prominent
features (such as symmetry of contour, similarity of compo-
nents), we propose to incorporate GAN into our framework.
The key idea is to use a discriminant network to distinguish
the super-resolved images and the real high-resolution im-
ages and use a generative network to train the SR network to
deceive the discriminator.

Our discriminant network consists of eight convolution
layers and two full connection layers. The objective function
of the adversarial network D is expressed as

LD(G,D) = E[logD(ŷ, x)]

+E[log(1−D(G(x), x))],
(11)

where E is the expectation of the log probability distribu-
tion and D is the generative model. Apart from the ad-
versarial loss LD, we further introduce a perceptual loss
(Ledig et al. 2017) using high-level feature maps (i.e., fea-
tures from ‘relu5-3’ layer) of the pre-trained VGG-16 net-
work (Simonyan and Zisserman 2014) to help assess per-
ceptually relevant characteristics,

LP = ‖φ(y)− φ(ŷ)‖2, (12)
where φ denotes the fixed pre-trained VGG model, and maps
the images y/ŷ to the feature space. In this way, the loss
function of our generative model could be formulated as

argmin
G

max
D

LG(θ) + γDLD(G,D) + γPLP , (13)

where γ is the trade-off between the discriminant loss and
the aforementioned FACN loss.

Figure 4: Training examples of CelebA.

Experiments

Implementation

Dataset We conduct experiments on celebA dataset (Liu et
al. 2015). We use the first 36000 images for training, and
the following 1000 images for testing. We coarsely crop the
training images according to their face regions and resize
to 128 × 128 without any pre-alignment operation. Exam-
ples from the training data set are shown in Fig.4. Here we
use color images for training as SRGAN does (Ledig et al.
2017). In addition, each image has 40 attribute annotations.
We exclude some attributes which are not necessary such as
hair or skin colors. As a result, we choose 18 attributes, such
as gender, age, and beard information from 40 attributes, and
use these attributes to supervise the top 18 elements of the
output of AAN. Other attributes are regarded as potential
facial attributes and let them learn freely in an unrestricted
state.

Degradation models In order to fully demonstrate the ef-
fectiveness of our proposed FACN for noise and blurring, we
use three degradation models to simulate LR images. The
first one is bicubic downsampling by adopting the Matlab
function imresize with the option bicubic (denote as Bic for
short). We use Bic model to simulate LR images with scal-
ing factor 8. The second one is to downsample with scaling
factor 8, and then add Gaussian noise with noise level 10
(Zhang et al. 2018) (denote as BicN for short), where the
noise level n means a standard deviation n in a pixel inten-
sity range of [0, 255]. We further produce LR image in a
more challenging way. We first blur HR image by Gaussian
kernel of size 7 × 7 with standard deviation 1.6, and bicu-
bic downsample HR image with scaling factor 8, then add
Gaussian noise with noise level 30 (denote as BBicN for
short).

Training setting We initialize the convolutional layers as
the same as He et al. (He et al. 2015). All convolutional
layers are followed by LeakyReLU (Maas, Hannun, and Ng
2013) with a negative slope of 0.2. We implement our model
using the pytorch environment, and optimize our network by
Adam with back propagation. The momentum parameter is
set to 0.5, weight decay is set to 1 × 10−4, and the initial
learning rate is set to 3× 10−4 and being divided a half ev-
ery 20 epochs.The batch size is set to 16. We empirically
set λ = 1, γP = 0.01 and γD = 0.01. Training a basic
FACN on celebA dataset generally takes 10 hours with one
Titan X Pascal GPU. For assessing the quality of SR results,
we employ two objective image quality assessment metrics:
Peak Signal to Noise Ratio (PSNR) and structural similarity
(SSIM) (Wang et al. 2004). All metrics are performed on the
Y-channel (YCbCr color space) of super-resolved images.

Comparisons with State-of-the-Art Methods

We compare our proposed FCAN with state-of-the-art
SR methods, including BCCNN (Zhou et al. 2015),
GLN (Tuzel, Taguchi, and Hershey 2016), Wavelet-SRNet
(Huang et al. 2017), TDAE (Yu and Porikli 2017) and
AEUN (Yu et al. 2018). For fair comparison, we train all
models with the same training set. In order to achieve higher
performance, we only train the image generation model for
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Target Input BCCNN URDGN Wavelet-SRNet AEUN FACN(Ours)TDAEGLN

Figure 5: Visual evaluation with BicN degradation model.

Methods Bic BicN BBicN
PSRN SSIM IFC PSRN SSIM IFC PSRN SSIM IFC

Bicubic 23.98 0.6505 0.6588 23.13 0.6088 0.4497 21.09 0.5329 0.3457
BCCNN 25.29 0.7135 0.9524 23.94 0.6615 0.6677 22.21 0.6154 0.5453
GLN 26.04 0.7427 1.0783 24.01 0.6718 0.7179 22.45 0.6365 0.5758
URDGN 24.54 0.6785 0.6981 23.80 0.6444 0.5502 21.01 0.5482 0.3650
Wavelet-SRNet 24.43 0.6891 0.7835 23.95 0.6768 0.7270 22.48 0.6428 0.6035
TDAE 26.29 0.7411 1.1523 24.16 0.6778 0.7321 22.81 0.6511 0.6211
AEUN 26.37 0.7477 1.1605 24.24 0.6801 0.7535 22.83 0.6514 0.6254

FCAN (Ours) 26.79 0.7684 1.2515 24.61 0.7009 0.8060 23.14 0.6714 0.6775

Table 1: Benchmark results with different degradation model.

the GAN-based methods, but the entire GAN network for
qualitative comparisons.

Tab.1 summarizes quantitative results on the Celeba
datasets. Our FACN significantly outperforms state-of-the-
arts in both PSNR and SSIM. We follow the same experi-
mental setting on handling occlued face as Wavelet-SRNet
(Huang et al. 2017) and directly import the 16× 16 test ex-
amples for super-resolving 128×128 HR images. Benefiting
from a more efficient integrated representation approach of
facial information, our method produces relatively sharper
edges and shapes, while other methods may give more blurry
results.

Then, we compared our FACN with state-of-the-art meth-
ods in a noise environment. As shown in Fig.5 and Fig.6.
Under the effect of noise, the performance of all methods
has been reduced, but our method can still have a more clear
face, especially the eyes and nose. AEUN can be seen as an
improvement version by introducing the face attribute infor-
mation to TADE. Thus the individual components of face
image are generated more clearly. In addition, our method
has very strong noise robustness in qualitative results. As
shown in fig.1, the visual quality of our reconstructed face
image does not changed significantly with the increase of
noise level.

In order to corroborate the real benefit of the proposal,
we further perform the face verification experiments via the
Arcface (Deng et al. 2019). We constructed 1000 positive
sample pairs and 9000 negative sample pairs based on the
SR results (BBicN) from each method. Results are shown
in Tab. 2. It can be seen that our reconstruction results have
better identity retention property.

Methods Performance Methods Performance

Bicubic 0.8058 BCCNN 0.8570
URDGN 0.8212 GLN 0.8580
Wavelet-
SRNet

0.8820 TDAE 0.8680

AEUN 0.8694 FACN(Ours) 0.8922

Table 2: Face recognition evaluation on the BBicN degradation
SR results from each method.

Ablation Study

Effect of FAC We conduct ablation study on the effects of
our facial attribute capsules. Since our network has the simi-
lar network structure as classical capsule based autoencoder
(Sabour, Frosst, and Hinton 2017), we clearly show how the
performance improves with semantic capsules, probabilistic
capsules and classical capsules. We conduct 4 experiments
to estimate the semantic capsules, probabilistic capsules, and
FAC, respectively. Specifically, by removing the probabilis-
tic capsules from our basic FACN, the remaining parts con-
stitute the first network, named ‘BasicNet v1’. The second
network, named ‘BasicNet v2’, has the same structure as
‘BasicNet v1’ except that the removing part is the seman-
tic capsules. The third network ‘BasicNet v3’ repalce the
Capsule Generation Block (CGB) by the method of (Sabour,
Frosst, and Hinton 2017), which generates the capsules by a
weight matrix and dynamic routing process. In this part, we
only analyze the quality of different types of capsules. For
fairly comparison, the differences among the four networks
are only limited to the part of CGB, the encoders and de-
coders have same structure.

Fig.7 shows the results of different network structures. It
can be seen that: (1) Compared to the other capsules, classic
capsules (BasicNet v3) are not suitable for face image super
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Target Input BCCNN URDGN Wavelet-SRNet AEUN FACN(Ours)TDAEGLN

Figure 6: Visual evaluation with BBicN degradation model
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Figure 7: Ablation study on effects of facial attribute capsules with
BicN degradation model.

resolution. (2) Semantic capsules (BasicNet v1) are qualified
for face image super-resolution, and the probabilistic cap-
sules (BasicNet v2) worked alone has inferior performance
and blur results. (3) The model using both capsules (seman-
tic and probabilistic) achieves the best performance, which
indicates richer prior information brings more improvement.

Actually, the phenomenon of gradient explosion always
exist in the training of classic capsule network. We think this
is caused by the shallow features of the network are difficult
to fully represent the input image. When the classic capsule
network adopted our encoder and decoder, this phenomenon
has been significantly alleviated. In spite of this, from the re-
sults after network convergence, it can be seen that there is
still a big gap between the classical capsules and our seman-
tic capsules. This also indicates that the ambiguity is signif-
icantly reduced by imposing explicit semantic information
into the capsules.

Effect of capsules numbers and dimensions In this part,
we conduct ablation study on the effects of the number and
dimension of FAC. We first study the effect of the capsules
numbers k in the capsules generation block. Specifically, we
test k = 18/32/64/128, and the PSNR results are shown
in the Tab.3, respectively. Due to the number of supervised
attributes is 18, the minimum of the number of capsules is
18. We can find that during the increase in the number of
capsules from 18 to 64, performance improves faster. But
when the number increased from 64 to 128, the performance
improved slowly.

k 18 32 64 128

PSNR 24.25 24.49 24.61 24.68

d 2 4 8 16

PSNR 24.45 24.61 24.69 24.75

Table 3: Ablation study on effects of capsules numbers and dimen-
sions with BicN degradation model.

We also study the effect of the capsules dimension d and
the results shown in the Tab.3. Since using more dimen-
sions leads to a wider structure, the representation ability
of the FAC grows, and hence better performance. Finally,
for a compromise between network performance and com-
putational complexity, we choose k = 64 and d = 4 in this
work.

Conclusion

In this paper, we propose a novel image super resolution
network which is named Facial Attribute Capsule Network
(FACN). FACN could provide a more comprehensive face
representation mode (the Facial Attribute Capsule), and
show the obvious advantages in the super-resolution recon-
struction of noise face images. In order to improve the ro-
bustness of face representation model to noise and blur,
FACN encodes the face images by combining semantic rep-
resentation and probability distribution. Extensive bench-
mark experiments show that FACN significantly outper-
forms the state-of-the-arts. This compact object representa-
tion mode could be widely applicabled in practice of other
machine vision problems such as inpainting, compression
artifact removal and even recognition.
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