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Abstract

The dominant object detection approaches treat each dataset
separately and fit towards a specific domain, which cannot
adapt to other domains without extensive retraining. In this
paper, we address the problem of designing a universal ob-
ject detection model that exploits diverse category granular-
ity from multiple domains and predict all kinds of categories
in one system. Existing works treat this problem by integrat-
ing multiple detection branches upon one shared backbone
network. However, this paradigm overlooks the crucial se-
mantic correlations between multiple domains, such as cat-
egories hierarchy, visual similarity, and linguistic relation-
ship. To address these drawbacks, we present a novel uni-
versal object detector called Universal-RCNN that incorpo-
rates graph transfer learning for propagating relevant seman-
tic information across multiple datasets to reach semantic
coherency. Specifically, we first generate a global semantic
pool by integrating all high-level semantic representation of
all the categories. Then an Intra-Domain Reasoning Module
learns and propagates the sparse graph representation within
one dataset guided by a spatial-aware GCN. Finally, an Inter-
Domain Transfer Module is proposed to exploit diverse trans-
fer dependencies across all domains and enhance the regional
feature representation by attending and transferring semantic
contexts globally. Extensive experiments demonstrate that the
proposed method significantly outperforms multiple-branch
models and achieves the state-of-the-art results on multiple
object detection benchmarks (mAP: 49.1% on COCO).

Introduction

Object detection is a fundamental vision task that recognizes
object’s location and category in an image. Modern object
detectors widely benefits autonomous vehicles, surveillance
camera, mobile phone, to name a few. According to the in-
dividual application, datasets annotated with different cat-
egories were created to train a highly-specific and distinct
detector e.g. PASCAL VOC (Everingham et al. 2010) (20
categories), MSCOCO (Lin et al. 2014) (80 categories) , Vi-
sual Genome (VG) (Krishna et al. 2016) (more than 33K
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Figure 1: To identify objects in the upper image from
COCO, we could use graph transfer and reasoning across
COCO and Visual Genome (VG) (bottom): 1) Objects like
“TV”, and “keyboard” in the upper image could help to iden-
tify “mouse” and “person”, which requires reasoning and
this inspires our Intra-Domain Reasoning Module (blue). 2)
Although “table”, “hand”, and “cord” are not annotated in
the COCO image but present in VG, recognition of them
could help to recognize “mouse”, “keyboard”, which moti-
vates us the Inter-Domain Transfer Module (green to blue).

categories) and BDD (Yu et al. 2018) (10 categories). Those
highly-tuned networks have sacrificed the generalization ca-
pability and only fit towards each dataset domain. It is im-
possible to directly adapt the model trained on one dataset to
another related task, and thus requires new data annotations
and additional computation to train each specific model. In
contrast, human is capable of identifying all kinds of objects
precisely under complex circumstances and reaches a holis-
tic recognition across different domains. This may be due
to the remarkable reasoning and transferring ability about
the relationship, visual similarity and categories hierarchy
across scenes. This inspires us to explore how to endow
the current detection system the ability of incorporating and
transferring relevant semantic information across multiple
domains in an effective way, in order to mimic human recog-
nition procedure.

With different categories and granularity across domains,
transferring relevant information and reasoning among ob-
jects can help to make a correct identification. An example
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of the necessity of transferring relevant information between
mutliple datasets and domains can be found in Figure 1.

The most widely-used and straightforward solutions to
universal detection would be to consider it as a multi-task
learning problem, and integrate multiple branches upon one
shared backbone network (He et al.; Gong et al.; Li et
al.; Liang et al.; Dai, He, and Sun 2017; 2017; 2016; 2015;
2016). However, they overlook the crucial semantic corre-
lations between multiple domains and regions, such as cat-
egories hierarchy, visual similarity, and linguistic relation-
ship since feature-level information sharing can only help
to extract a more robust feature. Recently, some works ex-
plore visual reasoning and try to combine different infor-
mation or interactions between objects in one image (Hu et
al.; Chen and Gupta; Wang et al.; Liu et al. 2018a; 2017;
2018; 2018b). For example, Jiang et al. recently try to incor-
porate semantic relation reasoning in large-scale detection
by different kinds of knowledge forms. Hu et al. introduced
the Relation Networks which use an adapted attention mod-
ule to allow interaction between the object’s visual features.
However, they did not consider inter-domain relationship
and their fully-connected relation is inefficient and noisy by
incorporating redundant and distracted relationships from ir-
relevant objects and backgrounds.

With the advancement of geometric deep learning (Bron-
stein et al.; Monti et al.; Velickovic et al. 2017; 2017; 2017),
using graph seems to be the most appropriate way to
model relation and interaction with its flexible structure. In
this paper, we present a novel universal detection system
Universal-RCNN that incorporates graph learning for propa-
gating and transferring relevant semantic information across
multiple datasets to reach semantic coherency. The proposed
framework first generates a global semantic pool for all do-
mains to integrate all high-level semantic representation of
categories by distilling the weights of the object classifiers.
Then an Intra-Domain Reasoning Module learns a sparse re-
gional graph to encode the regional interaction and propa-
gates the high-level semantic graph representation from the
global pool within one dataset guided by a spatial-aware
Graph Convolutional Neural Network (GCN). Furthermore,
an Inter-Domain Transfer Module is proposed to exploit di-
verse transfer dependencies across all domains and enhance
the regional feature representation by attentively transfer-
ring related semantic contexts from the semantic pool in
one domain to another, which bridges the gap between do-
mains, and effectively utilize the annotations of multiple
datasets. In this work, we exploit various graph transfer de-
pendencies such as attribute/relationship knowledge, and vi-
sual/linguistic similarity. Our Universal-RCNN thus enables
adaptive global reasoning and transfers over regions in mul-
tiple domains. The regional feature is greatly enhanced by
abundant relevant contextual Intra/Inter-domain information
and the performance on each domain is then boosted by shar-
ing and distilling essential characteristics across domains.

Extensive experiments demonstrate the effectiveness of
the proposed method and achieve the state-of-the-art re-
sults on multiple object detection benchmarks. We observe
a consistent gain over multiple-branch models. In particular,
Universal-RCNN achieves around 16% of mAP improve-

ment on MSCOCO, 26% on VG, and 36% on ADE. The
Universal-RCNN obtains 49.1% mAP on COCO test-dev
with single-model result.

Related Work

Object Detection. Object detection is a core problem in
computer vision. Most of the previous progress focus on
developing new structures such as better feature fusion
(Lin et al.; Liu et al.; Zhu, He, and Savvides; Xu et al.
2017; 2018a; 2019; 2019a) and better receptive field to im-
prove feature representation (Luo et al.; Wang et al.; Li et al.
2017; 2018; 2018). However, their trained model cannot be
applied directly to another related task without heavy fine-
tuning.

Transfer Learning. Transfer learning (Zamir et al.; Peng
et al.; Cui et al.; Xu et al. 2018; 2018; 2018; 2019b) tries to
bridge the gap between different domains or tasks to reuse
the information and mitigate the burden of manual labeling.
Early work (Hoffman et al. 2014) tries to learn to transfer
from the ImageNet’s classification network into object de-
tection network with fewer categories. In Misra, Gupta, and
Hebert, the classifier weights are constructed by regression
or a small neural network from few-shot examples or differ-
ent concepts.

Multi-task Learning. Multi-task learning aims at de-
velopingRCNN can sufficiently mining the semantic cor-
relati systems that can provide multiple outputs simultane-
ously for an input (Tsai, Huang, and Salakhutdinov; He et
al.; Kirillov et al.; Xiong et al.; Kendall, Gal, and Cipolla
2017; 2017; 2018; 2019; 2018). For example, Mask-RCNN
solves the instance segmentation problem by considering
two branches: one bounding box and classification head and
another dense image prediction head. Xiao et al. introduced
a multi-task network to handle heterogeneous annotations
for unified perceptual scene parsing. However, these ap-
proaches simply create several branches separately for dif-
ferent tasks.

The Proposed Approach

Overview

In this paper, we introduce a unified detection framework to
unify all kinds of detection annotations from different do-
mains and tackle different detection tasks in one system,
that is, detecting and predicting all kinds of categories de-
fined from multiple domains using a single network while
improving the detection performance of the individual do-
main. This framework can be implemented on any modern
dominant detection system to further improve their perfor-
mance by enhancing its original image features via graph
transfer learning. An overview of our model can be found
in Figure 2. Specifically, we first learn and propagate com-
pact high-level semantic representation within one domain
via Intra-Domain Graph Reasoning module, and then trans-
fer and fuse the semantic information across multiple do-
mains to enhance the feature representation via Inter-Graph
Transfer module driven by learned transfer graph or human
defined hierarchical categorical structures.
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Figure 2: An overview of our Universal-RCNN. Built on the classification layer of base detection network, global semantic
pools for each domain integrate all high-level semantic representation for each category by the weights of previous classifiers.
Then an Intra-Domain Reasoning Module learns a sparse regional graph to encode the regional interaction and propagates
the high-level semantic graph representation from the semantic pool within one domain. Furthermore, Inter-Domain Transfer
Module exploits diverse transfer dependencies across domains and enhances the regional feature representation by attentively
transferring related semantic contexts from source semantic pool to the target domain, which bridges the gap between domains
and utilizes the annotations of multiple datasets. Finally, the outputs of modules concatenated with region proposal features
are fed into the bounding-box regression layer and classification layer to obtain better detection results. Note that this figure
only illustrates how the model works within a specific pair of domains. In the whole model, we have multiple pairs of the
source/target domain for the inter-domain transfer modules.

Intra-Domain Reasoning Module

Given the extracted proposal visual features from the back-
bone, we introduce Intra-Domain Reasoning module to en-
hance local features for the domain T , by leveraging graph
reasoning with key semantic and spatial relationships. More
specifically, we first create a global semantic pool to inte-
grate high-level semantic representation for each category
by collecting the weights of the original classification layer.
Then a region-to-region undirected graph G : GT→T =<
N , E > for domain T is defined, where each node in N
corresponds to a region proposals and each edge ei,j ∈ E
encodes relationship between two nodes. An interpretable
sparse adjacency matrix is learned from the visual feature
which only retains the most relevant connections for recog-
nition of the objects. Then semantic representations over the
global semantic pool are mapped to each region and prop-
agated with a learned structure of GT→T . Finally, the pro-
posal features are enhanced and concatenated with the orig-
inal features to obtain better detection results.

Learning Graph GT→T We seek to learn the ET ∈
R

Nr×Nr in GT→T thus the proposal node neighborhoods
can be determined. We aim to produce a graphical repre-
sentation of the relationship (e.g. attribute similarities and
interactions) between proposal regions which is relevant
to the object detection. Given the regional visual features
f = {f i}Nr

i=1, fi ∈ R
D of D dimension extracted from the

backbone network, we first transform f to a latent space Z by
linear transformation denoted by zi = φ(f), i = 1, 2, ..., Nr,
where zi ∈ R

L, L is the dimension of the latent space and
φ(.) is a linear function. Let Z ∈ R

Nr×L be the collection
of normalized {zi}Nr

i=1, zi ∈ R
L, the adjacency matrix for

GT→T with self loops can be calculated as E = ZZT , so

that ei,j =
ziz

T
j

‖zizT
j ‖ , where ‖.‖ is the L2-norm.

To determine the neighborhoods of each node, using a
fully connected E directly will establish relationship be-
tween backgrounds(negative) samples which will lead to re-
dundant edges and greater computation cost. In this paper,
we consider a sparse graph. For each region proposal i, we
only retain the top t largest values of each row of E , that
is: Neighbour(Node i) = Top-tj=1,..,Nr

(ei,j). This sparsity
constraint ensures a spare graph structure focusing on the
most relevant relationship for recognition of the objects.

Feature Enhanced via Intra-Domain Graph Reasoning.
Most recent existing works (Gong et al.; Chen et al.; Jiang
et al. 2018; 2018; 2018) propagate visual features locally
among regions in the image and the information is only from
those categories appearing in the image. This limits the per-
formance of graph reasoning because of poor or distracted
feature representations. Instead, we create a global semantic
pool PT to store high-level semantic representations for all
categories. In some works (Wang, Ye, and Gupta; Gong et
al.; Gidaris and Komodakis 2018; 2018; 2018) in zero/few-
shot problem, they try to train a model to fit the weights
of the classifier of an unseen/unfamiliar category and the
weights of the classifier for each category can be regarded
as containing high-level semantic information. Formally, let
PT ∈ R

CT×(D+1) denote the weights and the bias of the
previous classifier for all the CT categories in the domain
T . The global semantic pool PT is extracted from the pre-
vious classification layer in the bbox head of the detection
network and can be updated in each iteration during train-
ing.

Since our graph G is a region-to-region graph, we first
need to map the category semantic embedding pT ∈ PT to
the regional representations of nodes xi ∈ X . In this paper,
we use a soft-mapping which computes the mapping weights
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mpT→xi ∈ MT as mpT→xi =
exp(sij)∑
j exp(sij)

, where sij is
the classification score for the region i towards category j
from the previous classification layer of the detector. Thus
the regional representations of the nodes X ∈ R

Nr×(D+1)

can be computed as a matrix multiplication: X = MTPT,
where MT ∈ R

Nr×CT is the soft-mapping matrix.
Given the node representation xj ∈ X and the learned

graph GT→T , it is natural to use a GCN for modeling the
relation and interaction. We thus define a patch operator for
the GCN as follows:

f ′k(i) =
∑

j∈Neighbour(i)

wk(gij)xjeij , (1)

where Neighbour(i) denotes the neighborhood of node i and
eij is the normalized adjacency element of E . To capture
the pairwise spatial information between proposals, we fur-
ther add K spatial weight terms wk(gij) which are calcu-
lated by a nonlinear transformation function wk(.) encoding
the spatial information of regions. gij is a four dimensional
relative geometry feature between proposal i and proposal
j: (log |xi−xj |

wi
, log

|xi−xj |
hi

, log wi

wj
, log hi

hj
), where wi and hi

denotes the width and height of the region. We consider K
set of wk(.) to encode different kinds of spatial interactions.
Flowchart of the graph reasoning can be found in Figure 3.

Then f ′k(i) for each node goes through a linear transfor-
mation L ∈ R

E×(D+1)and is concatenated together: f ′ =
[L(f ′k(i))], and KE is the dimension of the output enhanced
feature for each region. Finally, the f ′ for each region is con-
catenated to the original region features f to improve both
classification and localization. Note that the f ′ is a distilled
information across the categories with connected edges such
as similar attributes or relations. Thus, sharing the common
features between categories can help to improve the feature
representation by adding and discovering adaptive contexts
from the global semantic pool.

Inter-Domain Transfer Module

To effectively distill relevant information from datasets with
different annotations, we introduce Inter-Domain Transfer
Module to bridge the gap between different domains. This
module can be applied for multiple source domains as long
as they have semantic correlation. More specifically, for
each pair of domains, we implement an inter-domain trans-
fer module from source domain S to target domain T . Given
an image, the RPN head proposes a set of region proposals,
some of which may contain objects defined in other source
domains that have some relationships with objects defined
in target domain T . We will first extract region proposals
semantic features of a certain source domain S according to
the global semantic PS pool of S. Then these semantic fea-
tures are transferred to the target domain T by the GCN with
the predefined transfer graph GS→T between the domain S
and T . Finally, the proposal features are concatenated by the
information of the source domain for better prediction.

Construct GS→T For different detection task with di-
verse categories, the attribute similarities, relationships or
hierarchical correlations among them can be exploited. For
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Figure 3: Flowchart of our graph reasoning and transfer in
Equation (1). The global semantic pool PT is soft-mapped
to the regional nodes by X = MTPT. The graph edge E
and spatial weight terms wk(gij) are calculated from f and
spatial information between proposal i and proposal j. Then
graph conv GCNk(.) is performed on the nodes X accord-
ing to the graph edge E and wk. Final enhanced feature f ′
is a concatenation of all the GCN outputs. For inter-domain
transfer module, the idea is similar except the input graph
edge: ES→T and the nodes: Y = MSPS which are trans-
ferred from source semantic pool.

example, person label in a COCO dataset contains head,
arm, and leg in VG domain, and the person label can also
be composed of more fine-grained categories (e.g., man,
woman, boy and girl) in ADE dataset. Also, there may
further exists some location and co-occurrence relationship
such as “road & car”, “street & truck” and “handbag &
arm”. Thus, to transfer information from source domain to
target domain, we define a transfer graph GS→T , where
tcicj ∈GS→T and ci, cj denote the categories in source do-
main and target domain respectively.

In this paper we further try different methods to construct
graph to explore various graph transfer dependencies be-
tween different label sets. Thus we consider and compare
four schemes for GS→T including learning the graph from
feature, handcrafted attribute/relationship, and word embed-
ding similarity.

Handcrafted Attribute. Following Jiang et al., we con-
sider a similar way to construct a handcrafted attribute
GS→T . Let us consider K attributes such as colors, size,
materials, and status, we obtain a (CS +CT )×K frequency
distribution table for each class-attribute pair. Then the pair-
wise Jensen–Shannon (JS) divergence between probability
distributions Pci and Pcj of two categories i and j from
source/target domain can be measured as the edge weights
of two classes: tcicj = JS(Pci ||Pcj ), where JS divergence
measures the similarity between two distributions.

Handcrafted Relationship. We may consider the pair-
wise relationship between classes, such as location relation-
ship (e.g. along, on), the “subject-verb-object” relationship
(e.g. eat, wear) or co-occurrence relationship. We can cal-
culate frequent statistics fij from the occurrence among all
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% Method AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

M
SC

O
C

O FPN (Lin et al. 2017) 38.6 60.4 41.8 22.3 43.2 49.8 31.8 50.5 53.2 33.9 58.0 67.1
Multi Branches 39.9 61.5 43.4 23.5 44.9 51.4 32.7 52.4 55.2 36.3 60.3 68.3

Universal-RCNN 44.7+6.1 65.1+4.7 49.1+7.3 26.6+4.3 49.1+5.9 58.6+8.8 35.6+3.8 56.6+6.1 59.5+6.3 39.+5.5 64.3+6.3 75.1+8.0

V
G

FPN (Lin et al. 2017) 7.0 12.3 7.0 3.9 7.6 10.2 14.0 19.1 19.3 10.5 19.4 22.5
Multi Branches 7.1 12.3 7.2 4.1 7.6 10.3 13.8 19.0 19.2 10.9 19.0 22.2

Universal-RCNN 8.8+1.8 14.2+1.9 9.3+2.3 5.0+1.1 9.4+1.8 13.3+3.1 17.5+3.5 23.7+4.6 24.0+4.7 13.4+2.9 23.3+3.9 28.8+6.3

A
D

E FPN (Lin et al. 2017) 11.3 19.6 11.7 6.9 11.8 17.6 12.8 19.5 20.1 12.6 21.4 28.1
Multi Branches 12.2 19.9 12.8 7.2 12.0 19.6 13.3 20.2 20.8 13.3 22.2 29.4

Universal-RCNN 15.4+4.1 24.2+4.6 16.7+5.0 9.4+2.5 15.5+3.7 24.3+6.7 17.4+4.6 26.1+6.6 26.7+6.6 17.3+4.7 28.3+6.9 37.1+9.0

Table 1: Main results on MSCOCO(minival), VG, and ADE. “Universal-RCNN” is our full model trained on all the three
domains via graph transfer and reasoning. The backbones of all the models are ResNet-101.

source-target categories pairs from additional linguistic in-
formation or through counting from images. The symmet-
ric transformation and row normalization are performed on
edge weights: tcicj =

fij√
diidjj

, where dii =
∑

j fij .

Word Embedding Similarity. We further explore the lin-
guistic knowledge to construct the GS→T besides the vi-
sual information. We use the word2vec model Almazán et
al. to map the semantic word of categories to a word em-
bedding vector. Then we compute the similarity between the
names of the categories in source domain and target domain:
tcicj =

exp(cos(wi,wj))∑
j exp(cos(wi,wj))

, where cos(wi, wj) is the cosine
similarity between the word embedding vectors of the ith
source category and jth target category.

Learning the Graph from Features. This scheme is al-
most the same as the one used in the Intra-Domain Reason-
ing Module. The visual feature is transformed to the latent
space z. Edge ES→T between the source and target domain

can be calculated by
ziz

T
j

‖zizT
j ‖ .

Feature Enhanced via Inter-Domain Transfer After
creating a global semantic pool PS for all the CS categories,
it is then natural to transfer high level semantic informa-
tion from the source domain PS ∈ R

CS×(D+1) to the tar-
get domain by the transfer graph GS→T∈ R

CS×CT . Since
the nodes are proposal regions, a Nr × Nr adjacent matrix
ES→T between regions can be obtained by a matrix multi-
plication: ES→T = MSGS→TMT

T where MS∈ R
Nr×CS

which is created similar to the soft-mapping by the classifi-
cation score for the region towards the source categories in
Section . Then we can also obtain regional representations
of nodes yi ∈ Y from the relevant information from source
domain by Y = MSPS.

Finally, given the node representation yi ∈ Y and the ad-
jacent matrix ES→T∈ R

Nr×Nr , we can also use weighted
GCN as to propagate the semantic representations from the
source domain to the target region nodes. Finally, the output
of the GCN f ′s is concatenated to the original visual features
f for better classification and bounding box regression. Note
that f ′s serves as supplementary information since the rele-
vant prediction in the source domain is transferred to each
region to help better recognize the item.

Eval Methods Train with mAP Eval Methods Train with mAP

M
SC

O
C

O

FPN - 38.6

V
G

FPN - 7.0
Multi-Branches VG 39.8 Multi-Branches COCO 7.0

Fine-tuning VG 39.2 Fine-tuning COCO 7.4
Overlap Labels VG 38.7 Universal-RCNN COCO 8.2
Pseudo Labels VG 38.7 FPN - 7.0

Universal-RCNN VG 43.5 Multi-Branches ADE 7.0
Multi-Branches ADE 38.8 Fine-tuning ADE 7.3

Fine-tuning ADE 38.6 Universal-RCNN ADE 8.0
Universal-RCNN ADE 41.5

A
D

E

FPN - 11.3

A
D

E Multi-Branches VG 12.3 Multi-Branches COCO 11.4
Fine-tuning VG 12.8 Fine-tuning COCO 11.9

Universal-RCNN VG 14.6 Universal-RCNN COCO 12.9

Table 2: Results of mAP with models trained based on two
domains. “Universal-RCNN” is our full model trained on
two domains via graph transfer and reasoning. The back-
bones are ResNet-101.

Experiments

Intra-Domain Inter-Domain Trasfer AP AP50 AP75 APS APM APLReasoning Attribute Relation Embed Learn
38.6 60.4 41.8 22.3 43.2 49.8� 41.4 60.9 46.0 22.9 46.1 55.2� � 43.0 62.8 47.3 25.0 47.6 56.3� � 43.2 63.0 47.3 25.4 47.5 56.8� � 42.7 62.7 47.4 24.9 47.4 56.3� 41.9 60.9 46.1 23.5 46.2 55.8� � 43.5 63.5 47.7 25.8 47.8 57.0

Table 3: Ablation study on MSCOCO(minival) with mod-
els trained based on VG and MSCOCO domains. We con-
sider four schemes to construct the transfer dependen-
cies including handcrafted attribute(“Attribute”), relation-
ship(“Relation”), word embedding similarity(“Embed”) and
learning the graph from features(“Learn”). The backbones
of all the models are ResNet-101.

Datasets and Evaluations. We evaluate the performance
of our Universal-RCNN on three object detection domains
with different annotations of categories: MSCOCO 2017
(Lin et al. 2014), Visual Genome(VG) (Krishna et al. 2016),
and ADE (Zhou et al. 2017). MSCOCO is a common ob-
ject detection dataset with 80 object classes, which con-
tains 118K training images, 5K validation images (denoted
as minival) and 20K unannotated testing images (denoted as
test-dev) as common practice. VG and ADE are two large-
scale object detection benchmarks with thousands of object
classes. For VG, we use the synsets (Russakovsky et al.
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2015) instead of the raw names of the categories due to in-
consistent label annotations. We use 88K images for training
and 5K images for testing with 1000 most frequent classes,
following Chen et al.; Jiang et al.. For ADE, we consider
445 classes and use 20K images for training and 1K images
for testing, following Chen et al.; Jiang et al.. Since ADE
is a segmentation dataset, we convert segmentation masks
to bounding boxes for all instances. For all the evaluation,
we use the standard COCO metrics including mean Average
Precision (mAP) and Average Recall (AR).

Implementation Details. The proposed Universal-
RCNN is a single network and trained in an end-to-end style.
All tasks for multiple domains share a backbone for interme-
diate image feature extraction while having separated heads
and transfer modules for multi-domain object feature learn-
ing. We use the popular FPN as our baseline detector and
implement Universal-RCNN based on it. ResNet-101 (He
et al. 2016) pretrained on ImageNet is used as the shared
backbone network. The hyper-parameters in training mostly
follow Lin et al.. During both training and testing, we resize
the input image such that the shorter side has 800 pixels.
RPN and bbox-head are applied to all levels in the feature
pyramid. The total number of proposed regions after NMS
is Nr = 512. In the bbox-head, 2 shared FC layer is used for
proposal visual feature extraction and the output is a 1024-d
vector feed into the bbox regression and class-agnostic clas-
sification layer following FPN.

For the Intra-Domain graph reasoning and Inter-Domain
transfer module, we use the previous 2 shared FC layer for
re-extracting visual features f of region proposals. In the
graph learner module, we use a linear transformation layer
of size 256 to learns the latent representation Z (L = 256)
and most t = 32 relevant nodes are retained. The global
semantic pools are created for each domain by copying the
weights of the classification layers of different domains. For
the spatial-aware GCN, we use two weighted graph convo-
lutional layers with dimensions of 256 and 128 respectively
so that the output size of the module for each region is 128.
Each GCN consists of K = 8 spatial weight terms forming
a multi-head graph attention layer (Monti et al. 2017). All
experiments are conducted on a single server with 8 Tesla
V100 GPUs by using the Pytorch framework. For training,
SGD with weight decay of 0.0001 and momentum of 0.9 is
adopted to optimize all models. The batch size is set to be 16
with 2 images on each GPU. The initial learning rate is 0.02,
reduce twice (x0.1) during the training process. We train 12
epochs for all models in an end-to-end manner. We follow
Jiang et al. to prepare handcrafted Attribute/Relationship
matrix with the help of the annotations in the VG dataset.

Comparison with state-of-the-art domain transfer
baselines. To show the effecitveness of our method in trans-
fering relevant information across multiple domains, we
compare the overall performance of Universal-RCNN with
several state-of-the-art domain transfer baselines including
a) training an unified model on all datasets with separate
RPN and bbox heads for each domain stacked on a shared
backbone (Multiple Branches); b) pretraining on source
dataset, fine-tuning on target dataset (Fine-tuning); c) train-
ing based on the overlap labels (Overlap Labels); d) us-

# training Method AP AP50 AP75 APS APM APL

50% FPN w Finetune 36.3 57.3 39.3 20.6 40.3 47.4
MSCOCO Multi Branches 37.6 59.0 40.8 21.8 42.6 48.4

Data Universal-RCNN 42.0 62.1 46.3 24.4 46.3 56.4

80% FPN w Finetune 38.3 59.4 41.8 21.8 42.6 50.0
MSCOCO Multi Branches 39.2 60.5 42.7 23.5 44.0 50.7

Data Universal-RCNN 42.9 63.1 46.8 25.1 47.0 56.5

100% FPN w Finetune 39.2 60.5 42.5 22.8 43.8 50.7
MSCOCO Multi Branches 39.8 61.2 43.2 23.1 44.3 51.1

Data Universal-RCNN 43.5 63.5 47.7 25.8 47.8 57.0

Table 4: Training with less data on MSCOCO(minival) with
models trained based on VG and MSCOCO domains. We
only use a portion of MSCOCO data to train the models.
“FPN w Finetune” is the FPN model first trained on VG,
then fintuned on MSCOCO. “FPN w Multi Branches” is the
method FPN with two branches.

ing a fully trained model from target dataset and generate
pseudo-labels on source images and train again (Pseudo-
labels). The comparison results are reported on MSCOCO,
VG and ADE in Table 1 and Table 2.

Table 1 shows the results of our Universal R-CNN that
exploits the semantic correlations between all three datasets.
We only compare our Universal R-CNN with Multiple
Branches method under this setting since b), c), d) can only
be used on two datasets. As can be seen, the Universal-
RCNN significantly outperforms Multiple Branches method
in terms of precision (1.7% to 4.8%) and recall (4.7% to
6.6%), which indicates the superiority of explicitely ex-
tracting the semantic correlatons across domains within our
Universal-RCNN than implicitly learning feature-level in-
teractions between domains within multi-task learning.

Table 2 shows the experiment results of training on each
pair of domains. It can be found that our method consistently
surpasses the above-mentioned domain transfer methods by
a large margin through graph reasoning and transfer. Both
Multiple Branches method and Fine-tuning method cannot
improve detection performance much, which demonstrates
the implicit way to utilize semantic information across mul-
tiple domains is ineffective. Since VG domain nearly con-
tains all class annotations of COCO domain (79 classes out
of total 80 classes), we test Overlap Labels method and
Pseudo Labels method on COCO, the results show that both
of them only obtain negligible 0.1% AP improvement. The
reason is that the classes of VG domain have many fine-
grained objects while the classes of COCO domain only
have some specific objects. Table 2 also shows that trans-
ferring information from VG to COCO or ADE can achieve
better detection performance, this is because that VG an-
notations contains a huge number of classes and many of
them overlap with that of COCO and ADE. Overall, our
Universal-RCNN can sufficiently mining the semantic cor-
relations across all three domains and significantly boost the
detection performance on each target domain.

Ablative Analysis. Table 3 shows the ablative analysis
of our method trained based on VG and MSCOCO do-
mains. Our Intra-domain reasoning is effective and acquires
2.8% improvements compared with the basic network on
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% Method AP AP50 AP75

M
SC

O
C

O SIN (Liu et al. 2018b) 23.2 44.5 22.0
Relation Network (Hu et al. 2018b) 38.9 60.5 43.3

HKRM (Jiang et al. 2018) 37.8 58.0 41.3
Ours w Intra-Domain 41.4 60.9 46.0

V
G HKRM (Jiang et al. 2018) 7.8 13.4 8.1

Ours w Intra-Domain 7.9 13.7 8.3

A
D

E HKRM (Jiang et al. 2018) 10.3 18.0 10.4
Ours w Intra-Domain 14.0 23.1 14.9

Table 5: Comparison between intra-domain semantic corre-
lation methods. The backbone are ResNet-101.

MSCOCO. For the Inter-domain transfer module, it can be
found that adding the transfer module alone can boost the
performance by 3.3% which demonstrates the importance of
graph transfer across domains. Combining these two mod-
ules can further improve the performance by 1.6%, which
demonstrates the effectiveness of the proposed Universal-
RCNN in fully exploiting semantic correlations across mul-
tiple domains. We further compare four schemes to con-
struct the transfer dependencies including handcrafted at-
tribute, relationship, word embedding similarity and learn-
ing the graph from feature. Learning the graph from features
performs better than other methods. Thus, we choose learn-
ing the graph from feature for the final model.

Training with Less Data. Since bounding box annotation
is expensive, we are curious about how our Universal-RCNN
performs with less training data. Table 4 shows the perfor-
mance on MSCOCO with models trained based on VG and
MSCOCO(less data). “FPN w Finetune” is the FPN model
first trained on VG, then fintunedg on MSCOCO with less
data. The Universal-RCNN is better than baseline methods
with a large margin in all scenarios. Moreover, it can be
found that Universal-RCNN trained on half of the data (42%
mAP) outperforms FPN trained on full data (39.2% mAP).
This superior performance confirms the effectiveness of our
method that seamlessly bridges the gap between domains
and fully utilizes data annotations. Thus, our method can be
quickly adapted to new dataset with less annotation by bor-
rowing information from other domains.

Comparison with semantic correlation works within
one domain. There have been many works that use graph
based models for additional reasoning over bounding boxes,
we compare our intra-domain graph reasoning method with
those intra-domain semantic correlation works in this sec-
tion. We train FPN with our intra-domain module using one
dataset and report the results in Table 5. It can be found
that our Intra-Domain graph reasoning module is superior
to multiple competing methods. It should be noted that pre-
vious works (Hu et al.; Jiang et al.; Liu et al. 2018a; 2018;
2018b) use fully connected graphs to build object-object re-
lationships, our method instead learn a sparse spatial-aware
graph structure to perform graph inference, which can re-
duce lots of redundant relationships and improve the detec-
tion performance significantly. Furthermore, compare to the
implicit knowledge module in Jiang et al., our method uses

% Method backbone test-val
AP AP50 AP75 APS APM APL

M
SC

O
C

O

DetNet DetNet-59 35.1 57.3 37.2 22.3 40.8 39.9
DetNet w MB DetNet-59 36.8 59.0 39.3 22.6 42.3 42.3
DetNet w ours DetNet-59 40.1 61.8 43.2 24.7 46.5 46.5

HKRM ResNet-101 40.1 61.2 44.8 23.8 43.7 51.2
HKRM w MB ResNet-101 41.6 62.9 45.5 24.3 45.2 52.8
HKRM w ours ResNet-101 43.7 63.5 47.3 24.8 46.5 55.4
Mask-RCNN ResNet-101 39.7 61.6 43.3 23.1 43.3 49.7

Mask-RCNN w MB ResNet-101 41.0 62.2 45.0 24.2 44.9 51.0
Mask-RCNN w ours ResNet-101 45.1 65.2 49.3 26.1 48.6 57.3

FPN ResNet-101 38.9 61.0 42.3 22.3 42.3 48.5
FPN w MB ResNet-101 40.1 61.7 43.6 23.2 43.8 49.7
FPN w ours ResNet-101 44.4 64.9 48.5 25.3 47.8 56.7

FPN w ours * ResNext-101 49.1 69.3 54.2 30.4 52.7 61.7

Table 6: Methods trained on multiple datasets(COCO, VG,
ADE) and eval on COCO. “MB” is model with Multi
Branches. * is the model adding multi-scale training and
testing with Soft-NMS

global semantic pool to construct bbox features and use a
GCN to aggregate information.

Generalization Capacity. To validate the generalization
capability of the Universal-RCNN, we further implement
our method upon more recent detection methods such as
DetNet (Li et al. 2018), HKRM (Jiang et al. 2018) amd
Mask-RCNN (He et al. 2017) and compair. The results are
reported on COCO in Table 6. Table 6 shows that Universal-
RCNN consistently boost the performance by 4˜6 points
in terms of AP, which suggestes that the Universal-RCNN
is widely applicable across different detection baselines.
We futher add some bells and whistles to test the upper
limit of the Universal-RCNN (Li et al. 2018). Specifically,
we utilize ResNext-101 as the backbone and apply multi-
scale training, multi-scale testing and Soft-NMS. Finally, the
Universal-RCNN obtains 49.1 mAP on COCO test-dev with
single-model result.

Conclusion

In this work, we proposed a new universal object detector
(Universal-RCNN) to alleviate the categories discrepancy
and fully utilize the data annotation. Our method can be eas-
ily plugged into any existing detection pipeline via Trans-
ferable Graph R-CNN with multiple domains for endowing
its ability to global reasoning and transferring. Extensive
experiments demonstrate the effectiveness of the proposed
method and achieve the state-of-the-art results on multiple
object detection benchmarks.
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