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Abstract

Deep learning has shown to be effective for depth inference
in multi-view stereo (MVS). However, the scalability and ac-
curacy still remain an open problem in this domain. This can
be attributed to the memory-consuming cost volume repre-
sentation and inappropriate depth inference. Inspired by the
group-wise correlation in stereo matching, we propose an av-
erage group-wise correlation similarity measure to construct
a lightweight cost volume. This can not only reduce the mem-
ory consumption but also reduce the computational burden in
the cost volume filtering. Based on our effective cost volume
representation, we propose a cascade 3D U-Net module to
regularize the cost volume to further boost the performance.
Unlike the previous methods that treat multi-view depth in-
ference as a depth regression problem or an inverse depth
classification problem, we recast multi-view depth inference
as an inverse depth regression task. This allows our network
to achieve sub-pixel estimation and be applicable to large-
scale scenes. Through extensive experiments on DTU dataset
and Tanks and Temples dataset, we show that our proposed
network with Correlation cost volume and Inverse DEpth Re-
gression (CIDER1), achieves state-of-the-art results, demon-
strating its superior performance on scalability and accuracy.

Introduction

Multi-view stereo (MVS) has attracted great interest in the
past few years for its wide applications in autonomous driv-
ing, virtual/augmented reality, 3D printing etc. The goal of
MVS is to establish the 3D model of a scene from a collec-
tion of 2D images with known camera parameters. Recently,
this task always follows a two-stage pipeline: depth map es-
timation and fusion. Of these two stages, depth map estima-
tion plays an important role in the whole pipeline and many
MVS methods (Zheng et al. 2014; Galliani, Lasinger, and
Schindler 2015; Schönberger et al. 2016; Xu and Tao 2019;
Huang et al. 2018; Yao et al. 2018; 2019) have put effort into
accurate depth sensing.

The core of depth map estimation is to compute the cor-
respondence of each pixel across different images by mea-
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1Code will be available at https://github.com/GhiXu/CIDER.

suring the similarity between these pixels. Traditional meth-
ods (Galliani, Lasinger, and Schindler 2015; Schönberger et
al. 2016; Xu and Tao 2019) depend on hand-crafted similar-
ity metrics, e.g., sum of absolute differences (SAD) and nor-
malized cross correlation (NCC), and thus these metrics are
sensitive to textureless areas, reflective surfaces and repeti-
tive patterns. To deal with the above challenges, some meth-
ods (Kolmogorov and Zabih 2002; Hosni et al. 2013) resort
to regularization technologies, such as graph-cuts and cost
filtering. However, these engineered regularization methods
still struggle in the above challenging areas.

To overcome the above difficulties, recent works (Yao et
al. 2018; 2019; Huang et al. 2018) leverage deep convolu-
tional neural networks (DCNN) to learn multi-view depth
inference. Thanks to their powerful cost volume representa-
tion and filtering, these works achieve comparable results to
the traditional state-of-the-arts. However, because the cost
volume representation is proportional to the model resolu-
tion, it always requires taking up a lot of memory (Huang et
al. 2018; Yao et al. 2018). This greatly limits the use of these
methods in large-scale and high-resolution scenarios. To al-
leviate this problem, R-MVSNet (Yao et al. 2019) utilizes
the gated recurrent unit (GRU) to sequentially regularize 2D
cost maps along the depth direction. Although this dramat-
ically reduces the memory consumption, it cannot incorpo-
rate enough context information over the cost volume like
the 3D U-Net in MVSNet (Yao et al. 2018). As a result, the
performance of the network self degrades and a traditional
variational refinement is required.

Inspired by the group-wise correlation in stereo match-
ing (Guo et al. 2019), we propose an average group-wise
correlation similarity measure to construct a lightweight cost
volume representation. Specifically, we first extract the deep
features for the reference image and source images. With a
differential warping module, we compute compact similarity
scores between every source image and the reference image
using the group-wise correlation. To aggregate an arbitrary
number of neighboring image information, we average the
similarity scores of all source images to produce a unified
cost feature in the cost volume. In this way, our network can
greatly reduce the memory consumption and simultaneously
fit in an arbitrary number of neighboring images. Based on
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Figure 1: Depth sample and regression. Depth hypotheses
are uniformly sampled in depth space. When these uni-
formly distributed depth hypotheses are projected to a source
image, their corresponding 2D points are not distributed uni-
formly along the epipolar line.

this effective cost volume representation, we present a cas-
cade 3D U-Net to learn more context information. This fur-
ther boosts the performance of our network.

Additionally, existing multi-view depth inference net-
works (Huang et al. 2018; Yao et al. 2018; 2019) usually cast
this task as a depth regression problem or an inverse depth
classification problem. It is obvious that the inverse depth
classification always introduce stair effects. Thus, Deep-
MVS (Huang et al. 2018) applies the Fully-Connected Con-
ditional Random Field (DenseCRF) (Krähenbühl and Koltun
2011) and R-MVSNet (Yao et al. 2019) utilizes variational
refinement to refine their raw predictions. As for the depth
regression, this strategy uniformly samples depth hypothe-
ses in depth space and achieves sub-pixel estimation. How-
ever, it is not robust. As shown in Figure 1, although the
sampled depth hypotheses are uniformly distributed in depth
space, their projected 2D points in a source image are not
distributed uniformly along the epipolar line. Consequently,
the true depth hypothesis near the camera center may not
be captured by the deep features in a source image. On the
other hand, when the true depth hypothesis is far away from
the camera center, some depth hypotheses around it will cor-
respond to multiple similar deep features in a source image
because these deep features may be sampled from almost the
same position. This confuses the true depth hypothesis.

To achieve robust sub-pixel estimation, we cast the multi-
view depth inference as an inverse depth regression prob-
lem. We sample depth hypotheses in inverse depth space and
record their corresponding ordinals. The inverse depth hy-
potheses are used to obtain the cost map slice in the cost vol-
ume while the ordinals are employed to regress the sub-pixel
ordinal. The obtained sub-pixel ordinal is further converted
to the final depth value, which is utilized to guide the train-
ing of our network. The inverse depth regression enables our
network to be applied in large-scale scenes.

With the above proposed strategies, our network achieves
promising reconstruction results on DTU dataset (Aanæs et
al. 2016) and Tanks and Temples dataset (Knapitsch et al.
2017). Our contributions are three-fold.

• We propose an average group-wise correlation similar-
ity measure to construct a lightweight cost volume. This
greatly eases the memory burden of our network.

• We present a cascade 3D U-Net to incorporate more con-
text information to boost the performance of our network.

• We treat the multi-view depth inference problem as an in-
verse depth regression task and demonstrate that the in-
verse depth regression can reach more robust and accurate
results in large-scale scenes.

Related Work

Our proposed method is closely related to some learning-
based works in stereo matching and multi-view stereo. We
briefly review these works in the following.

Learning-based Stereo Matching Stereo matching aims
to estimate disparity for a pair of rectified images with small
baselines. It can be deemed as a special case of multi-view
stereo. With the development of DCNN, many learning-
based stereo matching methods have been proposed. Žbontar
and LeCun (Žbontar and LeCun 2015) first introduce a
Siamese network to compute matching costs between two
image patches. After getting unary features for left and right
image patches, these features are concatenated and passed
through fully connection layers to predict matching scores.
Instead of concatenating unary features, Luo et al. (Luo,
Schwing, and Urtasun 2016) propose a inner product layer to
directly correlate unary features. This accelerates the com-
putation of matching cost prediction. In order to achieve
end-to-end disparity estimation, DispNet (Mayer et al. 2016)
is proposed with an encoder-decoder architecture. Kendall
et al. (Kendall et al. 2017) leverage geometry knowledge
to form a cost volume by concatenating left and right im-
age features and utilize multi-scale 3D convolutions to reg-
ularize the cost volume. Chang and Chen (Chang and Chen
2018) employ a spatial pyramid pooling module to incorpo-
rate global context information and use a staked hourglass
architecture to learn more context information. Tulyakov et
al. (Tulyakov, Ivanov, and Fleuret 2018) compress the con-
catenated left-right image descriptors into compact match-
ing signatures to decrease the memory footprint. Guo et
al. (Guo et al. 2019) propose a group-wise correlation to
measure feature similarities, which will not lose too much
information like full correlation but reduce the memory con-
sumption and network parameters.

Learning-based Multi-View Stereo Hartmann et
al. (Hartmann et al. 2017) utilize an n-way Siamese
network architecture and the mean operation to learn a
multi-patch similarity metric. (Ji et al. 2017) proposes to
encode camera parameters together with images in a 3D
voxel representation to learn the 3D model of a scene in
an end-to-end manner. Kar et al. (Kar, Häne, and Malik
2017) leverage perspective geometry to construct feature
grids for each image and fuse these feature grids into a
single grid with a grid recurrent fusion module. Through
the 3D grid reasoning, a voxel in the 3D grid can be judged
whether it belongs to the surface. DeepMVS (Huang et al.
2018) adopts plane-sweeping to sample image patches and
constructs a cost volume for one source image. Then an
intra-volume feature aggregation is utilized to perceive non-
local information. To tackle an arbitrary number of input
images, max-pooling is used to gather the information from
neighboring images. DeepMVS poses depth estimation as a
multi-label classification problem and thus the DenseCRF
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Figure 2: Network architecture of our proposed CIDER. Feature maps are extracted via a weigh-sharing deep feature extraction
module for a reference image and source images. The feature maps of source images are warped into the coordinate of the refer-
ence image by differential warping. All features are fed to an average group-wise correlation module to construct a lightweight
cost volume. The predicted depth maps are obtained by imposing cost volume filtering and regression on the cost volume.

is needed to refine the raw predictions. MVSNet (Yao et al.
2018) employs a differentiable homography warping to ex-
plicitly encode camera geometries in the network and builds
the cost volume upon the reference camera frustum. The
predictions are regressed from the depth cost volume. To
resolve the scalability issue in MVSNet, R-MVSNet (Yao
et al. 2019) leverages a gated recurrent unit to sequentially
regularize the cost volume. As R-MVSNet also casts the
problem as an inverse depth classification task, a variational
refinement is applied to gain more accurate estimation.

Method

Our proposed network takes as input a reference image
Iref = I0 and source images Isrc = {Ii|i = 1 . . . N − 1}
with their camera parameters to predict the depth map for the
reference image, where N is the total number of input im-
ages. As shown in Figure 2, our proposed network, CIDER,
consists of four modules: deep feature extraction, cost vol-
ume construction, cost volume filtering and regression. The
detailed parameters of each module are listed in Table 1.

Deep Feature Extraction

In traditional methods, the original image representations
are directly used to construct the cost volume. This may
result in the lack of context information in some ambigu-
ous regions, making the depth estimation in these regions
failed. Instead, we adopt the multi-scale deep feature extrac-
tion network used in MVSNet (Yao et al. 2018) to incorpo-
rate context information. In this way, for each input image
3×H ×W , a multi-scale deep feature 32× H

4 × W
4 can

be obtained, where H and W are the input image height and
width.

Correlation Cost Volume Construction

After getting the deep features for all input images, we
hope to encode these features together with the camera pa-

rameters into the network to enable its geometry aware-
ness. Inspired by the traditional plane sweep stereo (Collins
1996), recent learning-based MVS methods, e.g., MVSNet,
DeepMVS and R-MVSNet, sample depth hypotheses in 3D
space. Based on the sampled depth hypotheses, the feature
representations of source images can be warped into the co-
ordinate of the reference camera to construct a cost volume.
Our network also leverages this idea to construct our cost
volume. For a pixel p in the reference images Iref, given the
j-th sampled depth value dj (j = 0 . . . D − 1), its corre-
sponding pixel pi,j in the source image Ii is computed as

pi,j = Ki(Rref,i(K
−1
ref pdj) + tref,i), (1)

where D is the total sample number of depth values, Kref
and Ki are the intrinsic parameters for the reference image
Iref and the source image Ii, Rref,i is the relative rotation
and tref,i is the relative translation. With the above trans-
formation, the deep features of all source images F src =
{Fi|i = 1 . . . N − 1} can be warped into the coordinate
of the deep feature of the reference image Fref. The warped
deep features of all source images at depth dj are denoted as
F̃ src,j = {F̃i,j |i = 1 . . . N − 1}.

In order to measure the multi-view feature similarity,
MVSNet (Yao et al. 2018) employs a variance-based met-
ric to generate a raw 32-channel cost volume. As the cost
volume representation is proportional to the model resolu-
tion, it always makes the network have a huge memory foot-
print. As pointed out in (Yao et al. 2018), before feeding
the cost volume into the subsequent cost volume regulariza-
tion module, MVSNet first reduces the 32-channel cost vol-
ume to an 8-channel one. Also, the authors of (Tulyakov,
Ivanov, and Fleuret 2018) demonstrate that feeding an 8-
channel cost volume which is compressed from a 32-channel
cost volume into the regularization module can reach a sim-
ilar accuracy. This makes us believe that the raw 32-channel
cost volume representation may be redundant. Although the
above works take the 8-channel cost volume as the input of
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the cost volume regularization module, they require an extra
module to compress the raw 32-channel. This not only in-
creases the computational requirement but also the memory
consumption. Thus, we intend to construct a raw 8-channel
cost volume to simultaneously reduce the computational re-
quirement and the memory consumption.

Inspired by the group-wise correlation in (Guo et al.
2019), we propose an average group-wise correlation sim-
ilarity measure to construct a lightweight cost volume.
Specifically, for the deep reference image feature Fref and
the i-th warped deep source image feature at depth dj , F̃i,j ,
their feature channels are evenly divided into G groups along
the channel dimension. Then, the g-th group similarity be-
tween Fref and F̃i,j is computed as

Sg
i,j =

1

32/G

〈
Fg

ref, F̃g
i,j

〉
, (2)

where g = 0 . . . G−1, Fg
ref is the g-th feature of Fref, F̃g

i,j is
the g-th feature of F̃i,j and 〈·, ·〉 is the inner product. When
the feature similarities of all G groups are computed for Fref

and F̃i,j , they are packed into a G-channel feature similar-
ity map Si,j . As there are D sampled depth values, the D
feature similarity maps between the reference image and the
i-th source image are further packed into the cost volume Vi

of size G×H
4 ×W

4 ×D. In order to adapt an arbitrary number
of input source images, the individual cost volumes for dif-
ferent source images are averaged to compute the following
final multi-view cost volume:

V =
1

N − 1

N−1∑
i=1

Vi. (3)

Note that, the size of this multi-view cost volume is also
G × H

4 × W
4 × D. As aforementioned, a lightweight raw

8-channel cost volume can be obtained by setting G = 8.
This can greatly reduce the memory consumption. Also, this
cost volume representation can ease the computation burden
of the subsequent cost volume filtering module.

Cost Volume Filtering

As pointed out in (Kendall et al. 2017), in order to regress the
final sub-pixel estimation, it is import to keep the probability
distribution along the depth dimension at each pixel location
uni-model. To this end, many works (Chang and Chen 2018;
Guo et al. 2019; Zhang et al. 2019) repeat the same cost vol-
ume regularization module to filter cost volumes. Inspired
by this idea, we design a cascade 3D U-Net to regularize the
above raw 8-channel cost volume.

Before the cascade 3D U-Net, we set up a residual mod-
ule and a regression module to let our network learn a bet-
ter feature representation as (Guo et al. 2019) does. Then,
to handle the depth estimation in some ambiguous regions,
two 3D U-Nets are cascaded to filter the cost volume. Due to
the repeated top-down/bottom-up processing structure, our
network can learn more context information. The detailed
structure of our cost volume filtering module is shown in
Figure 2 and Table 1. Note that, the previous MVS networks

Table 1: The detailed parameters of the proposed
CIDER network. If not specified, each 2D/3D convolu-
tion/deconvolution layer is followed by a batch normaliza-
tion (BN) and a rectified linear unit(ReLU). S1/2 denotes the
convolution stride. ∗ denotes no BN and ReLU. � denotes no
ReLU.

Index Layer Description Output Size
Input Images H×W×3
Deep Feature Extraction

1 Conv2D, 3×3, S1, 8 H×W×8
2 Conv2D, 3×3, S1, 8 H×W×8
3 Conv2D, 5×5, S2, 16 1⁄2H×1⁄2W×16
4 Conv2D, 3×3, S1, 16 1⁄2H×1⁄2W×16
5 Conv2D, 3×3, S1, 16 1⁄2H×1⁄2W×16
6 Conv2D, 5×5, S2, 32 1⁄4H×1⁄4W×32
7 Conv2D, 3×3, S1, 32 1⁄4H×1⁄4W×32
8 Conv2D∗, 3×3, S1, 32 1⁄4H×1⁄4W×32

Correlation Cost Volume Construction

Differential Warping and D×1⁄4H×1⁄4W×8Average Group-wise Correlation
Cost Volume Filtering

9 Conv3D 3×3×3, S1, 8 D×1⁄4H×1⁄4W×8
10 Conv3D 3×3×3, S1, 8 D×1⁄4H×1⁄4W×8
11 Conv3D 3×3×3, S1, 8 D×1⁄4H×1⁄4W×8

12 Conv3D� 3×3×3, S1, 8 D×1⁄4H×1⁄4W×8Add the output of 10
13 Conv3D 3×3×3, S2, 16 1⁄2D×1⁄8H×1⁄8W×16
14 Conv3D 3×3×3, S2, 32 1⁄4D×1⁄16H×1⁄16W×32
15 Conv3D 3×3×3, S2, 64 1⁄8D×1⁄32H×1⁄32W×64

16 Deconv3D 3×3×3, S2, 32 1⁄4D×1⁄16H×1⁄16W×32Add the output of 14

17 Deconv3D 3×3×3, S2, 16 1⁄2D×1⁄8H×1⁄8W×16Add the output of 13

18 Deconv3D 3×3×3, S2, 8 D×1⁄4H×1⁄4W×8Add the output of 12
19-24 Repeat 13-18 D×1⁄4H×1⁄4W×8

Regression

25 From the output of 12 D×1⁄4H×1⁄4W×1Conv3D∗ 3×3×3, S1, 1
Regression 1⁄4H×1⁄4W

26 From the output of 18 D×1⁄4H×1⁄4W×1Conv3D∗ 3×3×3, S1, 1
Regression 1⁄4H×1⁄4W

27 From the output of 24 D×1⁄4H×1⁄4W×1Conv3D∗ 3×3×3, S1, 1
Regression 1⁄4H×1⁄4W

never employ this structure due to their large memory con-
sumption caused by the huge cost volume representation,
e.g., MVSNet (Yao et al. 2018) and R-MVSNet (Yao et al.
2019). This makes their incorporated context information
limited. Thanks to our lightweight cost volume representa-
tion, a progressive cost volume filtering can be conducted in
our network.

Inverse Depth Regression

In order to achieve the sub-pixel estimation, (Kendall et al.
2017) first uses disparity regression to estimate the continu-
ous disparity map in stereo matching. As the images are rec-
tified in stereo matching, the uniform disparity sampling in
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the disparity space results in a uniformly distributed 1D cor-
respondence search problem. Differently, as the images in
the multi-view setup are not rectified, the direct depth sam-
pling in the depth space will not lead to the similar distribu-
tion in the epipolar line of neighboring images (Figure 1).

As described in the Correlation Cost Volume Construc-
tion, the sampled depth hypotheses will be projected to
neighboring images to obtain a series of 2D points. To make
these 2D points that lie in the same epipolar line distribute
as uniformly as possible, discrete depth hypotheses are uni-
formly sampled in inverse depth space as follows,

dj = ((
1

dmin
− 1

dmax
)

j

D − 1
+

1

dmax
)−1, j = 0 . . . D−1,

(4)
where dmin and dmax are the minimal depth value and the
maximal depth value of the reference image. With the above
depth value sampling scheme, we can construct a more dis-
criminative cost volume to be sent to the subsequent cost
volume filtering module.

As shown in Figure 2, there are three output branches in
our network. In each branch, the filtered cost volume is con-
verted to a 1-channel cost volume via a 3D convolution op-
eration. To obtain the final continuous depth map, we first
regress the sub-pixel ordinal k from the cost volume as fol-
lows,

k =
D−1∑
j=0

j × pj , (5)

where pj is the probability at depth value dj , which is com-
puted from the predicted cost volume via the softmax func-
tion. The final predicted depth value for each pixel is com-
puted as

d̂ = ((
1

dmin
− 1

dmax
)

k

D − 1
+

1

dmax
)−1. (6)

To train our network, we use the ground truth depth map as
our supervised signal. We denote the ground truth depth map
as d and the three predicted depth maps as d̂0, d̂1 and d̂2.
Our final loss function is defined as

L =

2∑
q=0

λql(d, d̂q), (7)

where λq denotes the weight for the q-th predicted depth
map and l(·, ·) is the mean absolute difference.

Experiments

In this section, we evaluate our proposed network on
DTU dataset (Aanæs et al. 2016) and Tanks and Tem-
ples dataset (Knapitsch et al. 2017). First, we describe the
datasets and evaluation metrics followed by implementation
details. Then, we perform ablation studies using Tanks and
Temple dataset. Last, we show the benchmarking results on
the above datasets.

Datasets and Evaluation Metrics

DTU Dataset (Aanæs et al. 2016) This dataset contains
more than 100 object-centric scenes. The ground truth point

clouds are scanned in the indoor controlled environments.
Thus, The viewpoints and lighting conditions are all delib-
erately designed. The ground truth camera poses and ground
truth point clouds are all publicly available. The image res-
olution is 1600× 1200.
Tanks and Temples Dataset (Knapitsch et al. 2017) This
dataset provides both indoor and outdoor scenes. The dataset
is further divided into Intermediate datasets and Advanced
datasets. Compared to the Intermediate datasets, the Ad-
vanced datasets contain larger scale and more complex
scenes. Their ground truth camera poses and ground truth
point clouds are withheld by the evaluation website. Addi-
tionally, this dataset also provides training datasets with their
ground truth 3D models available.
Evaluation Metrics As suggested in different datasets, the
accuracy and the completeness of the distance metric are
used for DTU dataset while the accuracy and the complete-
ness of the percentage metric for Tanks and Temple dataset.
In order to obtain a summary measure for the accuracy and
the completeness, the mean value of them is employed for
the distance metric and the F1 score is utilized for the per-
centage metric.

Implementation Details

Training Following (Ji et al. 2017), we divide the DTU
dataset into training set, validation set and test set. We train
our network on DTU training set. As DTU dataset does not
provide ground truth depth maps, we follow the idea in (Yao
et al. 2018) to generate the depth maps at a resolution of
160 × 128 by leveraging the screened Poisson surface re-
construction (Kazhdan and Hoppe 2013). During the train-
ing, the image size is scaled and cropped to 640 × 512 and
the total number of input image is set to N = 3. dmin and
dmax are fixed to 425mm and 935mm respectively. The to-
tal sample number of depth values is set to D = 192. The
weights for three outputs are set to λ0 = 0.5, λ1 = 0.5 and
λ2 = 0.7. We implement our network by using PyTorch.
The network is trained for 10 epoch in total on a TITAN
X GPU. We use RMSprop as the optimizer and the initial
learning rate is set to 0.001. The learning rate is decayed
every 10, 000 iterations with a base of 0.9.
Filtering and Fusion In order to generate the final single
3D point cloud, we filter and fuse depth maps like other
depth map based MVS methods (Galliani, Lasinger, and
Schindler 2015; Schönberger et al. 2016; Yao et al. 2018;
Xu and Tao 2019). Specifically, a probability volume is gen-
erated in the regression part of our network. After obtain-
ing the regressed sub-pixel ordinal for each pixel, we locate
its corresponding 4-neighboring ordinals and accumulate the
probabilities of these ordinals to obtain the final probability
representation. This measures the reliability of the depth es-
timation for each pixel. Then, we filter out the pixels with
probability lower than a threshold of 0.8 to produce a cleaner
depth map. In our fusion step, we treat each input image as
the reference image in turn. For each pixel in the reference
image, we calculate its projected depth and coordinate in
neighboring views according to its depth in the reference im-
age. Further, we know the estimated depth in the projected
coordinate. Then, we compute the relative depth difference
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Table 2: Ablation study results of proposed networks on Tanks and Temples training datasets (Knapitsch et al. 2017) using
the percentage metric (%). Due to the GPU memory limitation, image resolution is resized to 1536 × 832 for MVSNet. R-
MVSNet\Ref. means R-MVSNet without variational refinement.

Model Barn Caterp. Church Court. Ignatius Meeting. Truck Mean GPU Mem. Time
Base 24.82 6.34 39.03 37.26 11.92 22.90 12.85 22.16 11.1 GB 2.44 s
AGC 23.76 5.98 41.20 35.45 13.98 24.76 13.57 22.67 6.5 GB 1.90 s

AGC-IDR 54.00 48.39 37.48 35.25 64.26 27.89 61.48 46.96 6.5 GB 2.29 s
CIDER 56.44 49.38 40.53 36.28 64.95 29.94 63.09 48.66 7.4 GB 3.11 s

CIDER (D=256) 56.97 52.62 39.47 37.38 67.71 28.52 64.56 49.60 9.6 GB 4.24 s
MVSNet 24.87 6.97 37.69 35.50 11.36 21.75 17.12 22.18 11.7 GB 2.59 s

R-MVSNet\Ref. 51.42 53.55 45.03 40.65 67.26 23.06 62.13 49.01 6.5 GB 8.57 s

Image Base AGC AGC-IDR CIDER MVSNet R-MVSNet

Figure 3: Depth map reconstructions of Barn, Ignatius and Meetingroom, Tanks and Temples training datasets (Knapitsch et al.
2017) using different settings of the proposed networks.

between the projected depth and the estimated depth. With
the corresponding depth in neighboring views known, we
can compute the reprojected coordinate in the reference im-
age in the same way. We define the distance between the re-
projected coordinate and the original coordinate in the refer-
ence image as the reprojection error. A pixel will be deemed
two-view consistent if its relative depth difference is lower
than 0.01 and its reprojection error is smaller than 1 pixel.
In our experiments, all pixels should be at least three-view
consistent and their corresponding 3D points are averaged to
produce the final point cloud.

Ablation Studies

In this section, we explore the effectiveness of our pro-
posed strategies, including average group-wise correlation
similarity, cascade 3D U-Net filtering and inverse depth re-
gression. To this end, we define a Base model to prove
the effectiveness of the above strategies. This Base model
replaces the above strategies with variance-based similar-
ity, 3D U-Net filtering and depth regression that are em-
ployed in MVSNet (Yao et al. 2018). In order to simulta-
neously show the generalization of different models on un-
seen datasets, we use Tanks and Temples training datasets
here to conduct experiments. The camera poses are obtained
by COLMAP (Schönberger and Frahm 2016). The image
resolution is resized to 1920 × 1056 as (Yao et al. 2018;
2019) does. The depth sampling number is set to D = 192
and the input view number is N = 52 for all models.

2The discussion of N is shown in supplementary materials.

Average Group-wise Correlation Similarity In order to
validate the effectiveness of average group-wise correlation
similarity, we replace the variance-based similarity in the
Base model with the average group-wise correlation similar-
ity and denote this model as AGC. This makes the cost vol-
ume size be reduced from 32×H

4 ×W
4 ×D to 8×H

4 ×W
4 ×D.

The results are shown in Table 2 and Figure 3. We see that
the total memory consumption is reduced by nearly half.
Moreover, the reconstruction results of the AGC model re-
main almost the same as the Base model. This is because
our proposed metric also explicitly measures the multi-view
feature difference as the variance-based similarity does. As a
result, the proposed average group-wise correlation similar-
ity can not only aggregate the multi-view information well
but also achieve a compact cost volume representation.

Inverse Depth Regression It can be seen from Table 2 that
the Base model and the AGC model do not generalize well
on Tanks and Temples training datasets. As mentioned be-
fore, we think that these two models do not carefully con-
sider the epipolar geometry. To prove this, we replace the re-
gression in the AGC model with the inverse depth regression
and name this model as AGC-IDR. As shown in Table 2, this
model outperforms the previous two models with a signifi-
cant margin. Moreover, according to the visualization of the
reconstructed depth maps in Figure 3, the network with in-
verse depth regression can estimate depth maps more accu-
rately than the networks with depth regression. This demon-
strates that the inverse depth regression can better depict the
distribution of the depth hypotheses in the epipolar line of
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Table 3: Quantitative results on the DTU evaluation
test (Aanæs et al. 2016) using the distance metric (mm).
R-MVSNet\Ref. means R-MVSNet without variational re-
finement.

Method Mean Acc. Mean Comp. Overall
SurfaceNet 0.450 1.04 0.745
MVSNet 0.396 0.527 0.462

R-MVSNet\Ref. 0.444 0.486 0.465
CIDER 0.417 0.437 0.427

R-MVSNet 0.385 0.459 0.422

neighboring images. Therefore, the network can accurately
capture the true depth hypothesis.
Cascade 3D U-Net Filtering In our proposed overall net-
work, CIDER, cascade 3D U-Net filtering is utilized to reg-
ularize the cost volume. In Figure 3, the depth maps recon-
structed by AGC-IDR still contain much noise in some am-
biguous areas. We suppose that this can be attributed to its
limited 3D U-Net regularization and further improve it with
cascade 3D U-Net filtering. As shown in Figure 3, CIDER
can better suppress the noise in ambiguous areas than AGC-
IDR. Therefore, it achieves better 3D reconstruction results
than AGC-IDR, which can be seen from Table 2. It is note-
worthy that although two 3D U-Nets are cascaded, the mem-
ory consumption is only slightly increased.

In addition, we increase the total depth sampling number
from 192 to 256 over the same depth range. As illustrated in
Table 2, the F1 score on Tanks and Temples training datasets
is increased from 48.66% to 49.60% and the memory con-
sumption is still acceptable. Thus, we will fix the total depth
sampling number to be 256 when comparing our network
with other state of the art learning-based MVS methods on
different benchmarks.
Comparison with Existing Methods We also compare our
method with MVSNet (Yao et al. 2018) and R-MVSNet
without variational refinement (R-MVSNet\Ref.) (Yao et
al. 2019). Table 2 shows that our method is much better
than MVSNet due to our proposed strategies. Although R-
MVSNet\Ref. employs the gated recurrent unit to reduce the
memory consumption, it cannot incorporate enough context
information to tackle the depth estimation in edges and am-
biguous regions, e.g., white boxes shown in Figure 3. Thus,
our method is also better than R-MVSNet\Ref. As for the
running time, due to our proposed lightweight cost volume,
the methods with correlation cost volume are faster than R-
MVSNet, which acquires larger depth sampling number.

Benchmarking

For the benchmark evaluations, we use our model trained on
the DTU training set without fine-tuning. We compare our
method with other state of the art learning-based MVS meth-
ods, including SurfaceNet (Ji et al. 2017), MVSNet (Yao et
al. 2018) and R-MVSNet (Yao et al. 2019).
DTU Dataset (Aanæs et al. 2016) As illustrated in Table 3,
our method produces the best mean completeness and over-
all score among all methods without post-processing. Fig-
ure 4 shows the qualitative results of our reconstructions.

Sc
an

13
Sc

an
23

CIDER Ground Truth

Figure 4: Our reconstructed point clouds and ground truth
on scan 13 and scan 23 of DTU evaluation set (Aanæs et al.
2016).

Table 4: Quantitative results on the Tanks and Temples In-
termediate dataset and Advanced dataset (Aanæs et al. 2016)
using the percentage metric (%).

Dataset Method Acc. Comp. F1

Intermediate
MVSNet 40.23 49.70 43.48

R-MVSNet 43.74 57.60 48.40
CIDER 42.79 55.21 46.76

Advanced
MVSNet - - -

R-MVSNet 31.47 22.05 24.91
CIDER 26.64 21.27 23.12

Note that, the performance of R-MVSNet gains a lot with
variational refinement.
Tanks and Temple Dataset (Knapitsch et al. 2017) In In-
termediate dataset, our method surpasses MVSNet by 3.28%
and can be applied to large-scale scenes, Advanced datasets
while MVSNet cannot. Although R-MVSNet is a little bet-
ter than our method, we think that its performance advantage
comes from its variation refinement post-processing instead
of the network self, which can be seen from the evaluation
of DTU dataset. See supplementary materials for reconstruc-
tion results.

Conclusion

In this paper, we propose a learning-based multi-view stereo
method with correlation cost volume. The correlation cost
volume is lightweight due to our proposed average group-
wise correlation similarity measure. This reduces the mem-
ory consumption and makes our method be scalable on
high-resolution images. Moreover, we treat the multi-view
depth inference as an inverse depth regression problem.
This greatly enhances the generation of our method on un-
seen large-scale scenarios. We also present a cascade 3D U-
Net filtering to improve the accuracy on ambiguous areas.
Combined with the above strategies, extensive experiments
demonstrate the good applicability of our method, CIDER,
on different datasets.
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