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Abstract

The completeness of 3D models is still a challenging prob-
lem in multi-view stereo (MVS) due to the unreliable photo-
metric consistency in low-textured areas. Since low-textured
areas usually exhibit strong planarity, planar models are ad-
vantageous to the depth estimation of low-textured areas. On
the other hand, PatchMatch multi-view stereo is very efficient
for its sampling and propagation scheme. By taking advan-
tage of planar models and PatchMatch multi-view stereo, we
propose a planar prior assisted PatchMatch multi-view stereo
framework in this paper. In detail, we utilize a probabilistic
graphical model to embed planar models into PatchMatch
multi-view stereo and contribute a novel multi-view aggre-
gated matching cost. This novel cost takes both photomet-
ric consistency and planar compatibility into consideration,
making it suited for the depth estimation of both non-planar
and planar regions. Experimental results demonstrate that our
method can efficiently recover the depth information of ex-
tremely low-textured areas, thus obtaining high complete 3D
models and achieving state-of-the-art performance.

Introduction

Multi-view stereo (MVS) aims to estimate the dense 3D
model of the scene from a given set of calibrated images.
Due to its wide applications in virtual/augmented reality and
3D printing and so on, much progress has been made in this
domain (Furukawa and Ponce 2010; Strecha, Fransens, and
Van Gool 2006; Merrell et al. 2007; Goesele et al. 2007;
Liu et al. 2009; Schönberger et al. 2016) in the last few
years. However, recovering a dense and realist 3D model
is still a challenging problem since the depth estimation in
low-textured areas always fails.

The failure of depth estimation in low-textured areas
mainly comes from the unreliable photometric consistency
measure in these areas. As low-textured areas always appear
in smooth homogeneous surfaces (Figure 1), many meth-
ods (Woodford et al. 2009; Gallup, Frahm, and Pollefeys
2010) assume that these surfaces are piecewise planar. Then,
they formulate this prior as a regularization term in a global
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(a) Reference image (b) Ground truth

(c) Triangulation (d) ACMP (Ours)

Figure 1: Illustration of discrimination and depth maps
obtained by our method. The piecewise planar priors (c)
through triangulation can adaptively gain discrimination for
different low-textured areas. This helps to obtain better
depth estimation for large low-textured areas (d).

energy framework to recover the depth estimation in low-
textured areas. Due to the difficulty in solving such opti-
mization problems, the efficiency of these methods is low
and they are easy to be trapped in local optima. Recently,
PatchMatch multi-view stereo methods (Zheng et al. 2014;
Galliani, Lasinger, and Schindler 2015; Schönberger et al.
2016; Xu and Tao 2019) become popular as their used
PatchMatch-based optimization (Barnes et al. 2009) makes
depth map estimation efficient and accurate. As these meth-
ods do not explicitly model the planar priors, these methods
still encounter the failure in low-textured areas. Based on
the individual advantages of planar prior models and Patch-
Match multi-view stereo, we expect to construct a planar
prior assisted PatchMatch multi-view stereo framework to
efficiently recover the depth estimation in low-textured ar-
eas.

To embed the planar prior models into PatchMatch multi-
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view stereo, in this work we rethink the right way to build the
multi-view aggregated matching cost and propose a planar
prior assisted PatchMatch multi-view stereo framework to
help the depth estimation in low-textured areas. In conven-
tional PatchMatch multi-view stereo methods, sparse cred-
ible correspondences can be distinguished in discrimina-
tive regions, such as edges and corners. As these corre-
spondences always coincide with the vertices in the mesh
representation of 3D models, this means the sparse credi-
ble correspondences almost constitute the skeleton of a 3D
model. Therefore, we first triangulate these correspondences
to produce planar models. Note that, the planar priors are
also suited for non-planar regions as credible correspon-
dences are very dense in these regions and can adaptively
form triangular primitives of different sizes. To derive the
planar prior assisted multi-view aggregated matching cost,
we leverage a probabilistic graphical model to simultane-
ously model photometric consistency and planar compati-
bility. The planar compatibility constrains predicted depth
estimates to fall within an appropriate depth range while the
photometric consistency can better reflect the depth changes
in well-textured areas. At last, to alleviate the influence of
unreliable planar priors, multi-view geometric consistency
is enforced to rectify erroneous depth estimates.

In a nutshell, our contributions are as follows: 1) We pro-
pose a novel planar prior assisted PatchMatch multi-view
stereo framework for multi-view depth map estimation. This
framework not only inherits the high efficiency of Patch-
Match multi-view stereo but also leverages planar priors to
help the depth estimation in low-textured areas. 2) We adopt
a probabilistic graphical model to induce a novel multi-
view aggregated matching cost. This novel cost function
takes both photometric consistency and planar compatibil-
ity into consideration. We demonstrate the effectiveness of
our method by yielding state-of-the-art dense 3D reconstruc-
tions on ETH3D benchmark (Schöps et al. 2017). Our code
will be available at https://github.com/GhiXu/ACMP.

Related Work
Our work is relevant to both PatchMatch multi-view stereo
and planar priors, therefore we will review relevant literature
in these areas.
PatchMatch Multi-View Stereo PatchMatch multi-view
stereo methods exploit the core idea of PatchMatch (Barnes
et al. 2009), sampling and propagation , to effectively esti-
mate depth maps for each image. Focusing on different prob-
lems, many PatchMatch multi-view stereo methods have
been proposed. (Zheng et al. 2014; Schönberger et al. 2016)
jointly estimate depth maps and pixelwise view selection
by a probabilistic graphical model. (Galliani, Lasinger, and
Schindler 2015) utilizes a diffusion-like propagation scheme
to make better use of the parallelization of GPUs. By in-
heriting the checkerboard pattern of (Galliani, Lasinger, and
Schindler 2015), ACMH (Xu and Tao 2019) designs an
adaptive checkerboard sampling strategy to propagate more
reliable hypotheses. Moreover, ACMH further exploits these
hypotheses to infer pixelwise view selection. However, as
the photometric consistency on which these methods de-
pend cannot get reliable discrimination in low-textured ar-

eas, the depth estimation of these methods always fails in
these areas. To get reliable discrimination from low-textured
areas, (Wei, Resch, and Lensch 2014) leverages multi-scale
scheme to achieve this at low resolution images. Then, it
propagates the discrimination to the original resolution im-
ages by considering the relative depth difference from all
neighboring views. On the multi-scale scheme, ACMM (Xu
and Tao 2019) further considers the influence of view se-
lection and leverages multi-scale geometric consistency to
propagate the discrimination. Additionally, (Romanoni and
Matteucci 2019) extracts superpixels at two scales and con-
strains the hypotheses in low-textured areas by the planes
fitted for each superpixel. However, the discrimination ob-
tained by the multi-scale scheme sometimes is limited by
the predefined scales especially for large low-textured ar-
eas. In contrast, we leverage piecewise planar priors built
from triangulation to adaptively acquire the discrimination
for different low-textured areas.
Planar Priors Planar prior models are popular in 3D re-
construction as many scenes can be represented by a variety
of plane primitives, especially for man-made environments.
(Gennert 1988; Woodford et al. 2009) formulate planar prior
models as second-order smoothness priors in a global energy
function framework. This leads to a triple clique represen-
tation in the global energy function, making the optimiza-
tion very difficult. To distinguish planar regions and non-
planar objects in urban scenes, (Gallup, Frahm, and Polle-
feys 2010) train a planar classifier to obtain the raw seg-
mentation results and combine these segments with multi-
view photometric consistency to define a global energy func-
tion to refine the predictions. Besides, it is worth noting that
there exist some methods (Geiger, Roser, and Urtasun 2010;
Zhang et al. 2015) employing triangulation to construct
planar priors for disparity estimation in stereo matching.
(Geiger, Roser, and Urtasun 2010) forms a triangulation
on robustly matched correspondences to build a prior over
the disparity space. This can not only reduce the dispar-
ity search space, but also recover low-textured surfaces. To
simultaneously output a disparity map and a 3D triangula-
tion mesh, (Zhang et al. 2015) first partitions stereo images
into 2D triangles with shared vertices. Then, it formulates
a two-layer Markov random field to jointly model disparity
maps and vertex splitting probabilities. This assumes that
the scene structure is piecewise planar and imposes regular-
ization in the region-based stereo. Similar to (Geiger, Roser,
and Urtasun 2010), our method also leverages the triangula-
tion to build piecewise planar priors. Differently, embedding
the priors into multi-view stereo is nontrivial as it needs to
consider the visibility and geometry constraints of different
views. To this aim, we embrace planar priors with Patch-
Match MVS to consider the visibility and geometric con-
straints of different views.

Planar Prior Assisted PatchMatch MVS
Suppose we have a set of input images I = {Im |m =
1· · ·N} with their corresponding camera parameters P =
{Pm |m = 1· · ·N}. Each image will be sequentially taken
as a reference image Iref while the other images are source
images Isrc = {Ij | Ij ∈ I ∧ Ij �= Iref}. Our work focuses
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(a) (b) (c) (d) (e) (f) (g)

Figure 2: (a) images; (b) ground truth; (c) sparse correspondences; (d) triangulation; (e) planar model directly calculated from
(d); (f) planar prior assisted PatchMatch MVS; (g) geometric consistency.

on estimating the depth map of Iref in turn.
Currently, there exist two popular PatchMatch multi-

view stereo frameworks, including sequential propagation
pattern (Bailer, Finckh, and Lensch 2012; Schönberger et
al. 2016) and checkerboard propagation pattern (Galliani,
Lasinger, and Schindler 2015; Xu and Tao 2019). As pointed
out in (Xu and Tao 2019), the latter one is more efficient and
effective than the former one, thus we will build our algo-
rithm on the checkerboard propagation pattern.

Different from the conventional PatchMatch multi-view
stereo methods, our method also takes as input the sparse
credible correspondences of the reference image . To es-
timate the depth information of low-textured areas, our
method consists of two stage. In the first stage, sparse corre-
spondences are generated by conventional PatchMatch MVS
methods and thresholding. Then, we triangulate these corre-
spondences to produce planar models. In the second stage,
we jointly consider the previous obtained planar models
and photometric consistency by constructing a probabilistic
graphical model. This derives a novel multi-view aggregated
matching cost. By embedding this novel cost to the pipeline
of PatchMatch MVS, we can obtain good depth estimation
for low-textured areas.

Planar Model Construction

To start our algorithm, we implement the method of (Xu
and Tao 2019) to obtain sparse credible correspondences.
The method follows the pipeline of PatchMatch MVS, itera-
tively performing adaptive checkerboard sampling and prop-
agation, hypothesis updating via multi-view aggregated pho-
tometric consistency cost and refinement. A depth estimate
will be considered as a credible correspondence if its final
cost is lower than 0.1 (Figure 2c).

Given the sparse credible correspondences of Iref, they
always characterize the structure of a scene. Although the
depth estimation for low-textured areas is lost, people can
imagine the whole 3D model of a scene according to these
correspondences. Based on this observation, we first triangu-
late these sparse credible correspondences to adaptively gen-
erate triangular primitives of different sizes. As can be seen
from Figure 2d, the triangular primitives in well-textured ar-
eas are relatively small so that the structures of non-planar
regions can be kept. On the other hand, the triangular prim-
itives in low-textured areas are as large as possible to incor-

porate the information of credible correspondences.
For each triangular primitive, we use its corresponding

three vertices to calculate its plane parameters in the coor-
dinate of the reference camera, including depth information
and normal information. The pixels inside the same trian-
gular primitive share the same plane parameters. Figure 2e
shows two examples of planar models. It can be observed
that the priori plane parameters can almost coincide with the
optimal estimates for low-textured areas. It is worth noting
that the structures of thin objects are also described by the
generated triangular primitives.

Planar Prior Assistance

With the priori plane hypotheses, the depth estimate for low-
textured areas can be better approximated. However, these
priori plane hypotheses also lead to many blocking artifacts
in well-textured areas, especially in boundaries, whose depth
information should be estimated well by photometric consis-
tency. To take both photometric consistency and piecewise
planar priors into consideration, we employ a probabilistic
model to achieve this.
Random Initialization As a first step, we randomly gener-
ate a plane hypothesis θl = [dl,nl] for each pixel l in the
reference image, where dl is distance from a 3D plane to the
origin and nl is normal vector. We first calculate a matching
cost for each source image via the plane hypothesis induced
homography (Hartley and Zisserman 2004). Then, the initial
multi-view aggregated matching cost for each hypothesis is
computed by averaging the top-K smallest matching costs.
Hypothesis Sampling and Propagation Following (Gal-
liani, Lasinger, and Schindler 2015; Xu and Tao 2019), we
divide all pixels in the reference image into a Red-Black pat-
tern. This allows to use the hypotheses of red pixels to up-
date those of black pixels and vice versa. Then, we use the
adaptive checkerboard sampling of (Xu and Tao 2019) to
propagate eight neighboring good hypotheses to the current
pixel to be estimated. These propagated hypotheses together
with the current hypothesis θ0 of the pixel constitute the cur-
rent candidate hypothesis set, θ = {θi | i = 0 · · · 8}.
Hypothesis Updating In conventional PatchMatch multi-
view stereo methods (Zheng et al. 2014; Schönberger et al.
2016; Xu and Tao 2019), in order to determine the best hy-
pothesis from the candidate hypothesis set, the following
multi-view aggregated matching cost is defined by photo-
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Figure 3: (a) Graphical model of planar prior assistance.
Given priori plane hypothesis θp, the observation Xsrc

i on
source images and the visibility information Zsrc, the opti-
mal hypothesis θ∗ is inferred. (b) Graphical model of view
selection. At each iteration, given candidate hypotheses θ,
the observation Xj corresponding to the hypotheses on
source image Ij , and the visibility of neighboring pixels on
source image Ij is Zj

n, the visibility of pixel l on source
image Ij , Zj , is inferred.

metric consistency to measure the multi-view similarity,

cphoto(θi) =

∑
j wj ·mi,j∑

j wj
, (1)

where mi,j is the matching cost between the reference patch
and its corresponding source patch observed on source im-
age Ij via θi and wj is the view selection weight of Ij . As
the photometric consistency is unreliable in low-textured ar-
eas, these methods always fail in these areas.

In contrast, given the planar priors as described before,
we leverage a probabilistic graphical model to derive our
novel multi-view aggregated matching cost. To construct
the graphical model, we define the patch on pixel l of Iref
as X ref. Also, the patches observed on all source images
via θi are Xsrc

i , the visibility information of all source im-
ages is assumed to be Zsrc and the planar prior at pixel l is
θp = [dp,np]. Then, the graphical model of our approach is
depicted in Figure 3a. The joint probability is

P (θi,X
src
i ,Zsrc, θp)∝P (Xsrc

i |θi,Zsrc)P (θi|θp). (2)

In this way, the maximum a-posteriori estimate of the plane
hypothesis θ∗ is given by

θ∗ = argmaxP (θi|Xsrc
i ,Zsrc, θp). (3)

The above posterior can be factorized as

P (θi|Xsrc
i ,Zsrc, θp)∝P (Xsrc

i |θi,Zsrc)P (θi|θp). (4)

Next, we define the likelihood function as follows,

P (Xsrc
i |θi,Zsrc) = e−

cphoto(θi)
2

α . (5)

This function encodes the photometric consistency, making
the low multi-view aggregated photometric consistency cost
have high probability. It encourages our whole algorithm
to choose the hypothesis with lower multi-view aggregated

photometric consistency cost, which is consistent with the
hypothesis update criteria in the conventional PatchMatch
multi-view stereo methods. However, due to the unreliability
of photometric consistency in low-textured areas, this like-
lihood function will not reflect hypothesis changes in these
areas. In this case, it is important to leverage planar priors to
reflect these changes. Thus, we define the planar prior as

P (θi|θp) = γ + e
− (di−dp)

2

2λd · e−
arccos2n�

i np
2λn , (6)

where λd is the bandwidth of depth difference and λn is the
bandwidth of normal difference. The planar prior encour-
ages the propagated hypotheses to be close to the planar
model at pixel l. We substitute Equation (4)-(6) into Equa-
tion (3) and take the negative logarithm algorithm to get
the following planar prior assisted multi-view aggregated
matching cost

cp-photo(θi) =
cphoto(θi)

2

α
−log[γ+e

− (di−dp)
2

2λd ·e−
arccos2n�

i np
2λn ]. (7)

Note that, the first term that encodes photometric consis-
tency is the main component in the above equation. This
means that the photometric consistency will change more
obviously than the planar prior in well-textured areas. More-
over, when the photometric consistency cannot reflect hy-
pothesis changes in low-textured areas, the planar prior will
play a major role in the hypothesis updating.

As mentioned above, the photometric consistency is im-
portant to determine the depth information in well-textured
areas. This can rectify the erroneous depth estimates induced
by planar models in no-planar areas. According to Equa-
tion (1), the reliability of multi-view aggregated photomet-
ric consistency depends upon the view selection weights.
To calculate these weights, we design another probabilistic
graphical model to make full use of the photometric con-
sistency of different source images and the view selection
information of neighboring pixels.

Specifically, we denote that the visibility of pixel l on
source image Ij is Zj , the visibility of neighboring pixels
of pixel l on source image Ij is Zj

n, the candidate hypothe-
ses are θ, the patch on pixel l in the reference image is X ref,
and its corresponding patches observed on source image Ij
via θ are Xj = {Xj

i |i = 0 · · · 8}. The graphical model is
depicted in Figure 3b. According to the states of neighboring
pixels, the joint probability is

P (Xj , Zj ,θ,Zj
n)∝P (Xj |Zj ,θ)P (Zj

l |Zj
n), (8)

where P (Xj |Zj ,θ) =
∑8

i=0 P (Xj
i |Zj , θi) independently

models the possible source image subset for each hypoth-
esis while P (Zj |Zj

n) =
∑

l′∈N (l) P (Zj |Zj
l′) models the

smoothness of the view selection of neighboring pixels.
Note that, N (l) stands for the four neighboring pixels of
pixel l. Specifically, we define P (Xj

i |Zj , θi) as

P (Xj
i |Zj , θi) = e−

m2
i,j

2σ2 , (9)

where σ is a constant. And, P (Zj |Zj
l′) is defined as

P (Zj |Zj
l′) =

{
η, if Zj

l = Zj
l′ ;

1− η, else.
(10)
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According to Bayesian rule, the view selection probability
of pixel l on source image Ij is

P (Zj |Xj ,θ,Zj
n)∝P (Xj |Zj ,θ)P (Zj |Zj

n). (11)

Based on the above view selection probabilities, we em-
ploy the Monte-Carlo sampling (Bishop 2006) to define the
weight for each source image Ij as wj .
Refinement After each hypothesis updating, we refine the
current selected hypothesis θc = [dc,nc] by generating ex-
tra candidate hypothesis set. Following (Schönberger et al.
2016; Xu and Tao 2019), this candidate hypothesis set is de-
fined as

{[dp,nc], [dr,nc], [dc,np], [dc,nr], [dr,nr], [dp,np]}, (12)

where dp and np are the randomly perturbed depth and nor-
mal with respect to θc, dr and nr are randomly generated
depth and normal. If the cost of a new hypothesis is less
than that of the current hypothesis, we will set it as the cur-
rent hypothesis. The above hypothesis sampling and prop-
agation, hypothesis updating and refinement are performed
iteratively to produce the depth map for the reference image.

Geometric Consistency

In the previous Section, we consider both piecewise planar
priors and photometric consistency to get better depth es-
timation in low-textured and well-textured areas. However,
there still exist some errors. This attributes to some unre-
liable planar priors caused by some intractable erroneous
sparse correspondences. To tackle these errors, we resort to
multi-view geometric consistency (Schönberger et al. 2016;
Xu and Tao 2019), which is defined as

cgeo(θi) =

∑
j wj · (mi,j + λgeo ·min(Δej(θi), τgeo))∑

j wj
,

(13)
where λgeo is a geometric consistency regularizer, Δej(θi) is
the reprojection error between Iref and Ij induced by θi, and
τgeo is a truncation threshold to robustify the reprojection
error against occlusions.

The Algorithm

The overall pipeline of our algorithm is summarized in Al-
gorithm 1. From step 1 to step 9, we generate initial depth
maps via conventional multi-view aggregated photometric
consistency cost. Then, in step 10 and step 11, we select
credible correspondences and triangulate them to gener-
ate planar models. From step 12 to step 20, we generate
plane-awareness depth maps by our proposed planar prior
assisted multi-view aggregated matching cost. Then, these
depth maps are used as additional input in step 21. We fur-
ther optimize these depth maps via geometric consistency
from step 22 to step 30. To make each PatchMatch MVS
process converge, Tphoto, Tp-photo and Tgeoo are set to 3, 3, 2,
respectively.

Fusion

The depth maps estimated for individual images always con-
tain noise and outliers. We follow the conventional Patch-
Match pipeline (Schönberger et al. 2016; Xu and Tao 2019)

Algorithm 1 Planar Prior Assisted PatchMatch MVS
Input: multi-view images with their camera parameters
Output: hypothesis maps

1: for each image do
2: set reference image and source images
3: randomly initialize a hypothesis map
4: for iteration i = 1 to Tphoto do
5: hypothesis sampling and propagation
6: update the hypothesis map via Equation (1)
7: refinement via Equation (12)
8: end for
9: end for

10: sparse credible correspondences selection
11: triangulation and generate planar models
12: for each image do
13: set reference image and source images
14: randomly initialize a hypothesis map
15: for iteration i = 1 to Tp-photo do
16: hypothesis sampling and propagation
17: update the hypothesis map via Equation (7)
18: refinement via Equation (12)
19: end for
20: end for
21: use the hypothesis maps obtained above as extra input
22: for each image do
23: set reference image and source images
24: use the previous obtained hypothesis map for the ref-

erence image as initialization
25: for iteration i = 1 to Tgeo do
26: hypothesis sampling and propagation
27: update the hypothesis map via Equation (13)
28: refinement via via Equation (12)
29: end for
30: end for

to use a fusion step to produce the final point cloud. Each
image is treated as the reference image in turn and its depth
estimates are unprojected to the world coordinate to obtain
3D points. These 3D points are further projected to neigh-
boring images to calculate their projected depths, normals
and image coordinates. According to the estimated depths
and normals in projected image coordinates, a consistent es-
timate is determined if its relative depth difference is lower
than 0.01, normal difference is lower than 10◦, and repro-
jection error is less than 2 pixels. The estimate that has two
consistent neighboring estimates are kept and their unpro-
jected 3D points are averaged to produce the final 3D point.

Experiments

Datasets We evaluate the effectiveness of our method on
high-resolution multi-view stereo dataset of ETH3D bench-
mark (Schöps et al. 2017). This dataset contains images at
a resolution of 6048 × 4032 with calibration. Following
(Schönberger et al. 2016; Xu and Tao 2019), we resize this
imagery to no more than 3200 pixels for each dimension
while keeping the original aspect ratio. The dataset is further
split into training datasets and test datasets. Besides ground
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Table 1: Percentage of pixels with absolute errors below 2cm and 10cm on the high-resolution multi-view training datasets of
ETH3D benchmark (in %). ACMP\G means ACMP without geometric consistency. The related values are from (Xu and Tao
2019). The best results are marked in bold.

error method Ave. indoor outdoor

deli. kick. offi. pipes relief relief. terrai. courty. elec. faca. mead. playgr. terrace

2cm

COLMAP 65.0 69.7 43.5 26.3 41.1 86.3 85.8 57.6 82.6 71.0 74.2 54.6 70.9 80.8
openMVS 55.2 63.9 36.9 29.3 31.8 80.1 81.5 57.9 64.3 55.6 55.4 29.8 57.9 73.6
ACMH 68.5 73.3 42.7 32.3 53.6 89.1 90.3 71.4 79.9 74.8 68.5 57.1 75.3 82.0
ACMM 80.5 77.7 66.7 51.2 76.5 96.0 95.7 85.4 84.4 86.8 74.5 77.1 84.3 89.7
ACMP\G 72.9 76.9 47.4 48.6 65.3 91.3 92.6 79.1 78.8 79.2 68.9 59.5 73.7 85.9
ACMP 81.9 81.9 62.0 65.6 78.6 94.8 95.8 88.4 84.5 88.7 76.6 76.8 80.6 90.7

10cm

COLMAP 73.7 80.6 51.4 34.2 47.8 89.6 89.3 63.5 93.4 77.4 90.9 70.1 81.0 89.1
openMVS 66.5 79.1 45.1 38.2 42.1 84.1 86.0 67.1 79.1 64.8 77.4 48.4 68.7 83.8
ACMH 79.1 84.2 51.9 41.8 61.7 92.3 94.1 77.8 93.7 83.4 90.8 78.6 86.9 91.5
ACMM 90.7 93.0 80.0 64.8 83.9 98.2 98.4 90.4 97.3 94.7 93.4 91.7 95.1 98.0
ACMP\G 85.1 90.7 61.3 66.6 74.8 94.5 96.6 86.1 93.7 88.6 90.7 80.0 86.8 95.3
ACMP 90.6 95.4 72.4 78.0 84.2 96.8 98.2 92.4 96.1 94.4 93.2 87.5 91.5 97.9

Image GT COLMAP openMVS ACMH ACMM ACMP\G ACMP

Figure 4: Qualitative depth map map comparisons of different methods on some high-resolution multi-view training datasets
(courty., offi. and terrace) of ETH3D benchmark. Black pixels in GT mean no ground truth data.

truth point clouds, ground truth depth maps are also pro-
vided for training datasets. Thus, we first evaluate the depth
estimation on training datasets. As for test datasets, we sub-
mit our reconstructed point clouds to the benchmark’s web-
site (Schöps et al. ) to evaluate them.
Evaluation Metrics In depth map evaluation, we calculate
the percentage of pixels with an absolute depth error less
than 2cm and 10cm from ground truth. For point cloud eval-
uation, we assess reconstructed point clouds in terms of ac-
curacy, completeness and F1 score.
Parameter Settings Our methods are imple-
mented in C++ with CUDA and executed on a
machine with two Intel E5-2630 CPUs and two
GTX Titan X GPUs. {ε, α, γ, λn, σ, η, λgeo, τgeo} =
{0.1, 0.18, 0.5, 5◦, 0.3, 0.9, 0.1, 5.0}. Besides, λd is adap-
tively set to one sixty-fourth of the depth interval of every
reference image. We conduct geometric consistency twice
as (Xu and Tao 2019) does.
Depth Map Evaluation We compare our method with some
state-of-the-art PatchMatch multi-view stereo methods in
depth map evaluation, including COLMAP (Schönberger et
al. 2016), openMVS (cDc Seacave ), ACMH (Xu and Tao
2019) and ACMM (Xu and Tao 2019). These methods are

directly operated on the original resolution images except
for ACMM with multi-scale scheme. We denote our method
as ACMP because our planar prior assisted model is based
on adaptive checkerboard sampling and propagation.

We list comparison results on 13 high resolution multi-
view training datasets of ETH3D benchmark in Table 1. In
order to validate the effectiveness of our novel multi-view
aggregated matching cost, we remove the geometric consis-
tency from our method and denote this method as ACMP\G.
We first compare ACMP\G with COLMAP, openMVS and
ACMH. As can be seen, ACMP\G is much better than these
methods. From the qualitative results in Figure 4, we ob-
serve that ACMP\G can estimate depth information of low-
textured areas well. Moreover, ACMP\G can also tackle the
depth estimation in non-planar regions because our planar
prior assisted multi-view aggregated matching cost simulta-
neously considers the photometric consistency.

As ACMP\G does not consider the geometric consis-
tency, its estimated depth maps contain some noise caused
by inappropriate planar models. Therefore, ACMP com-
bines ACMP\G with geometric consistency to handle this
problem. This makes our method competitive with ACMM.
Note that, ACMM uses multi-scale geometric consistency to
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Images COLMAP openMVS ACMH ACMM ACMP

Figure 5: Qualitative point cloud comparisons of different MVS methods on living room and old computer of ETH3D bench-
mark. These 3D models are reported by the ETH3D benchmark evaluation server (Schöps et al. ).

tackle the depth estimation in low-textured areas. However,
due to its limited scales and lost image information at its
coarsest scale, ACMM sometimes cannot obtain good esti-
mation for low-textured areas at the coarsest scale. This can
be reflected by the depth estimation of offi. dataset in Fig-
ure 4. Differently, as ACMP adaptively captures the discrim-
ination of different sizes according to triangular primitives,
ACMP performs much better than ACMM in offi. dataset.

Table 2: Accuracy, completeness and F1 score (in %) com-
parisons of reconstructed point clouds on the high-resolution
multi-view test datasets of ETH3D benchmark at evaluation
threshold 2cm. The related values are from (Schöps et al. ).

method Accuracy Completeness F1

indoor

COLMAP 91.95 59.65 70.41
openMVS 82.00 75.92 78.33

ACMH 91.14 64.81 73.93
ACMM 90.99 72.73 79.84
ACMP 90.60 74.23 80.57

outdoor

COLMAP 92.04 72.98 80.81
openMVS 81.93 86.41 84.09

ACMH 83.96 80.03 81.77
ACMM 89.63 79.17 83.58
ACMP 90.35 79.62 84.36

all

COLMAP 91.97 62.98 73.01
openMVS 81.98 78.54 79.77

ACMH 89.34 68.62 75.89
ACMM 90.65 74.34 80.78
ACMP 90.54 75.58 81.51

Point Cloud Evaluation The quantitative results of recon-
structed point clouds are listed in Table 2 and quantitative
results are shown in Figure 5. In the case of 2cm, ACMP
achieves the best F1 score among all methods due to our
better estimated depth maps. As for the completeness of
3D models, openMVS produces the best performance as it
employs a different fusion scheme with a relaxed number
of consistent views for a pixel, which leads to noisy point
clouds with low accuracy and high completeness. As illus-
trated in Figure 5, the 3D models of openMVS are not photo-
realistic. Differently, our method can achieve a better trade-
off between accuracy and completeness. This makes our es-

Table 3: Running time of different stages of our method for
an image of size 3200× 2130 pixels on a single GPU.

Stage Time (s) Ratio (%)

Sparse Correspondences Generation 6.40 30.9
Planar Model Construction 1.08 5.2

Planar Prior Assistance 5.43 26.2
Geometric Consistency 7.79 37.6

Total Time 20.7 -

timated 3D models be applicable in the actual environment.
Runtime Analysis We run our method on a single GPU and
record the running time of each stage in Table 3. As can be
seen, the planar model construction occupies very little run-
time. As for sparse correspondences generation, planar prior
assistance and geometric consistency, their running time is
very close. This is because these stages all employ the same
pipeline of PatchMatch multi-view stereo. Therefore, with
very little computational cost, our method without geomet-
ric consistency can achieve much better reconstruction re-
sults than other PatchMatch multi-view stereo methods that
are implemented on the original image resolution.

Conclusion

In this work, we propose a planar prior assisted PatchMatch
multi-view stereo framework to help the depth estimation in
low-textured areas. To tackle depth ambiguities caused by
unreliable photometric consistency, we leverage sparse cred-
ible correspondences to build planar models. These models
can reflect the depth ranges of low-textured areas well but
are still biased, especially for non-planar regions. Therefore,
we embed these planar models into PatchMatch multi-view
stereo by utilizing a probabilistic graphical model. This de-
rives a novel multi-view aggregated matching cost, which
jointly consists of photometric consistency and planar pri-
ors. This makes our method suited for both planar and non-
planar regions. Experiments on ETH3D benchmark demon-
strate the effectiveness of our methods by yielding state-
of-the-art performance. We note that the performance of
our method is comparable to ACMM. Since ACMM com-
bines ACMH with the multi-scale geometric consistency,
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we think its performance gain mainly comes from the multi-
scale geometric consistency framework. As a separate mod-
ule, we have demonstrated that our method is much better
than ACMH in our experiments. Thus, we may combine our
method with the multi-scale geometric consistency to im-
prove the reconstruction performance in the future work.
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