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Abstract

Photorealistic multi-view face synthesis from a single image
is an important but challenging problem. Existing methods
mainly learn a texture mapping model from the source face
to the target face. However, they fail to consider the internal
deformation caused by the change of poses, leading to the
unsatisfactory synthesized results for large pose variations.
In this paper, we propose a Gated Deformable Face Synthe-
sis Network to model the deformation of faces that aids the
synthesis of the target face image. Specifically, we propose
a dual network that consists of two modules. The first mod-
ule estimates the deformation of two views in the form of
convolution offsets according to the input and target poses.
The second one, on the other hand, leverages the predicted
deformation offsets to create the target face image. In this
way, pose changes are explicitly modeled in the face gen-
erator to cope with geometric transformation, by adaptively
focusing on pertinent regions of the source image. To com-
pensate offset estimation errors, we introduce a soft-gating
mechanism that enables adaptive fusion between deformable
features and primitive features. Extensive experimental re-
sults on five widely-used benchmarks show that our approach
performs favorably against the state-of-the-arts on multi-view
face synthesis, especially for large pose changes.

Introduction

Synthesizing face images with different views has many
practical applications, e.g., surveillance, virtual reality, and
image editing/enhancement. It is ill-posed to synthesize a
face with a different view while keeping its identity well-
preserved. Conventional methods resolve this problem by
fitting a 3D face model from a single-view 2D face im-
age (Hassner et al. 2015; Zhu et al. 2015). Although ac-
curate face structure can be captured, these methods can-
not “generate” occluded face regions, and therefore can
only rotate the face in a small range. Deep networks, es-
pecially GAN (Goodfellow et al. 2014), show great per-
formance in creating multi-view faces (Tran, Yin, and Liu
2017; Huang et al. 2017; Hu et al. 2018; Tian et al. 2018;
Yin et al. 2017). These methods mostly adopt an encoder-
decoder structure to learn the texture mapping from the in-
put image to the target image, usually conditioned by the
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Figure 1: Existing methods fail to handle large pose varia-
tions. We tailor a dual network to cope with face deforma-
tion and synthesis simultaneously, leading to photorealistic
face synthesis.

pose information (e.g., a pose vector or two face landmark
masks).

Notwithstanding the demonstrated success, large pose
variation is still the main barrier. GAN-based methods learn
a direct mapping between the source image and the tar-
get image but ignore the geometric transformations of faces
across different views. The involved generator applies con-
volution operations over fixed geometric structures, making
it difficult to model complex deformations of faces (e.g., ex-
amples shown in Fig. 1). But indeed, modeling face defor-
mation plays an important role in face synthesis. We observe
that the rotation of faces from different identities share a
similar geometric structure changes. This is a strong prior
knowledge that can be incorporated as a guidance to model
face deformation and benefits the synthesis of multi-view
faces.

Based on the above observation, we aim to incorporate
face deformation into multi-view face image synthesis. To
this end, we propose a dual network that consists of two
modules, each of which copes with deformation modeling
and face synthesis, respectively. Given a source landmark
and a target landmark, the proposed face deformation mod-
ule learns to estimate the inherent transformation between
two poses in the form of deformable convolution offset. It
serves as the deformation prior for the face synthesis mod-
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ule, which is composed by several gated deformable convo-
lution blocks. These blocks perform deformable convolution
operations on the source image, which enables free-form de-
formations of the sampling grid according to the face trans-
formation. Although the learned deformation offset can cap-
ture large pose variations, it may increase the learning ambi-
guity. As a consequence, we introduce a soft-gating mecha-
nism in our gated deformable convolution blocks, which al-
lows a dynamic sampling between deformable features and
primitive features. This strategy further enhances the capa-
bility of our model for modeling both large and small face
variations. Extensive experiments demonstrate that the pro-
posed model outperforms existing state-of-the-art methods
in five widely-used datasets. To summarize, our contribu-
tions are threefold:
• We delve into the problem of large pose variations of face

synthesis. We tailor a dual network, in which the first
branch models face deformation in the form of convolu-
tion offset using two face landmarks, and the other lever-
ages this strong prior for face synthesis.

• We propose to inject diverse and rich features represen-
tations to the network by presenting a soft-gating mech-
anism. It enables our model to adapt to different angles
of face rotations by integrating deformable and primitive
features.

• We outperform state-of-the-art methods on five widely-
used benchmarks by a large margin, especially for the sce-
narios with large pose variations.

Related Work
Multi-view Face Synthesis. Traditional methods mostly
tackle the problem of multi-view face synthesis by adopt-
ing 2D/3D local texture warping (Ferrari et al. 2016; Has-
sner et al. 2015; Zhu et al. 2015). For example, Hassner et
al. (Hassner et al. 2015) employ a simple 3D approxima-
tion of faces to produce frontal-view face image. However,
this kind of methods suffer from severe texture loss due to
occlusion. Recently, there are many deep learning methods
focusing on face frontalization and multi-view face synthe-
sis (Huang et al. 2017; Hu et al. 2018; Zhao et al. 2018a;
Tran, Yin, and Liu 2017; Yin et al. 2017; Tian et al. 2018;
Zhao et al. 2018b). TP-GAN (Huang et al. 2017) proposes a
two-pathway network to take both local details and global
face structure into consideration. CAPG-GAN (Hu et al.
2018) employs the landmark mask to guide the rotation of
faces, achieving multi-view face synthesis. CR-GAN (Tian
et al. 2018) introduce a generation sideway to enhance gen-
eralization capacity of the network. Existing deep learning
based methods can produce better results than traditional
methods, but they suffer from large pose variations, which
is mainly addressed in this paper.

Pose-invariant Face Recognition. Large pose variations
lead to significant influences on face recognition perfor-
mance. Ensuring the recognition accuracy under a large rota-
tion angle of faces is a challenging problem. Part of existing
methods aim to generate profiles for data augmentation or
directly learn the pose-invariant features to eliminate the in-
fluences caused by poses (Zhu et al. 2014; Masi et al. 2016;

Zhao et al. 2019). The others propose to synthesize a frontal-
view face from a profile face so that face recognition can
be performed in a constrained way (Huang et al. 2017;
Hu et al. 2018; Zhao et al. 2018a; Tran, Yin, and Liu 2017).
These generative methods are shown to be effective in many
datasets. Our approach also belongs to this category, and
face recognition accuracy is the major metric to evaluate the
synthesized results.

Generative Adversarial Network. Generative Adversar-
ial Network (GAN) (Goodfellow et al. 2014) is a power-
ful generative model which can generate samples similar to
the specific data distribution through a min-max game be-
tween the generator and the discriminator. It has been ex-
tended to various applications. For example, Deep Convolu-
tional GAN (DCGAN) (Radford, Metz, and Chintala 2015)
first shows the huge potential of GAN in the task of image
generation. Conditional GAN (cGAN) (Mirza and Osindero
2014) is proposed to incorporate condition constraints on
the random noise, which guides the generative network to
synthesize images of better quality. To help the GAN learn
the interpretable representation, InfoGAN (Chen et al. 2016)
proposes a mutual information regularizer for optimization.
Pixel2Pixel (Isola et al. 2017) improves cGAN to deal with
the image translation problem. To enable the usability of
the unpair training data, CycleGAN (Zhu et al. 2017a) is
proposed as an effective unsupervised learning model. All
state-of-the-art face synthesis methods apply the discrimi-
nator to ensure the identity of the generated faces. To in-
corporate pose prior to guide the multi-view synthesis, our
model adapt the design of the conditional generative adver-
sarial network (Mirza and Osindero 2014).

Approach
In this section, we first present the architecture of the pro-
posed network, then we discuss the proposed gated de-
formable block and soft-gating mechanism in detail.

Architecture

We aim to synthesize face images with multiple views, by
learning the deformable face mapping between the source
face and the target face given pose landmarks as guidance.
To achieve this goal, we present a Gated Deformation Face
Synthesis Network (see Fig. 2), which has a dual structure
composed of a generator and two discriminators. The gen-
erator consists of a series of deformable convolution blocks,
each integrates a gating mechanism. Specifically, the gen-
erator has two branches. The first branch takes the source
face as input, and the second branch is fed with pose con-
ditions (concatenated landmarks of the source face and the
target face). Both the inputs of the two branches are encoded
by the down-sampling convolution layers. Then the encoded
features of the two branches are sent into the face syn-
thesis module, which consists of several gated deformable
convolution blocks. Each block aims to transform the pose
of the input features progressively to the target pose under
the guidance of the face deformation module. A soft-gating
mechanism is introduced to control the weight of face de-
formation. Meanwhile, the entire network is trained end-to-
end, and therefore both two branches can mutually update
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Figure 2: Overview of generator of the proposed dual network. The green region is to estimate the deformation in the form of
convolution offsets from the source and target poses. The blue region takes the estimated offsets into account for deformable
convolutions and generates the target face.

for producing optimized face features. The final output fea-
tures in the face synthesis module are sent to a decoder for
producing a face image with the target pose. Two discrimi-
nators in our model aim to provide two kinds of discriminat-
ing supervisions to ensure the consistencies of appearance
(identity) and pose of the target face.

Gated Deformable Convolution

To model the face deformation caused by pose change, we
introduce a Gated Deformable Convolution Block inspired
by (Dai et al. 2017). As shown in Fig. 2, each block is
fed with the image features F t

i and the pose features F t
p

(t denotes the index of a block) via two branches. The im-
age features F t

i pass through the deformable convolution
layers Convd, with the deformation offsets to get the de-
formable image features F t

d . The offsets are predicted by a
common convolution layer Convc fed with the pose feature
map F t

p . For the standard 2D convolution sampling, there
is a fixed grid K and corresponding weights for comput-
ing the summation of weighted sampled values. We assume
K = {(x, y)|x, y ∈ {−1, 0, 1}}, which has a size of 3 × 3
and dilation of 1 for simplicity. We let N denote the size of
K, i.e., N = |K|. To sample a deformable feature map, we
first predict the offset field P (P ∈ R

H×W×2N ) by passing
the pose features through Convc

P = Convc
(
F t
p

)
. (1)

In the deformable convolution, the sampling grid K is aug-
mented with the offsets in the grid {Δpn|n = 1, ..., N},
which is reshaped from the vector v(v ∈ R

1×1×2N ) of P
in the sampling grid center. For each location x in the de-
formable image feature map F t

d , we could sample its value
by computing

F t
d (x) =

∑

pn∈K

w (pn) · F t
i (x+ pn +Δpn) , (2)

where w denotes the weight of convolution kernel. Since the
offset Δpn is usually fractional, we employ a bilinear inter-

polation kernel to compute the value of a fractional location
as follows:

F t
i (p) =

∑

q∈L

H (q, p) · F t
i (q) , (3)

where p denotes a fractional location and L denotes the set
of all integral neighbor locations of p. The bilinear interpo-
lation kernel H can be formulated as

H (q, p) = max (0, 1− |qx − px|)·max (0, 1− |qy − py|) .
(4)

Once H is computed, we can get the weight of each integral
neighbor location value for location p, with which we can
obtain the final deformable sampling value using Eq. (3).

Our introduced gated deformable convolution block is
able to conduct free-form sampling. Therefore it can not
only achieve common affine transformation, but also has a
strong capability to model complex face deformation caused
by pose change, by sampling from the most pertinent irregu-
lar area. We give an example to demonstrate the face defor-
mation capability of deformable convolution for multi-view
face synthesis. In Fig. 3, we visualize the heat maps of off-
sets in each deformable convolution block. Note that, each
pixel in the heat map represents the mean value of the 9 x-
coordinates of the offsets in a 3 × 3 sampling grid since we
only consider a yaw face rotation where the x-coordinates
have a notable change. As shown in Fig. 3, the predicted off-
sets indicate the sampling direction which helps the model
to “rotate” the face step by step. For the first 5 heat maps,
the input profile is rotated to the frontal face, and the pixels
of face are sampled towards the center of the image. For the
last 6 heat maps, the face and the background are progres-
sively sampled to the target positions. These visualization
results show that the proposed gated deformable convolu-
tion can learn to model face deformation caused by large
pose change. Quantitative evaluations are conducted in the
experiment section.
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Figure 3: Deformable offsets visualization. The offset heat
maps from the eleven gated deformable convolution blocks
are all shown (from left to right, top to bottom). We can see
that our model indeed ”rotates” the source face to the target
face step by step via deformable sampling.

Soft-Gating Mechanism

Although the proposed gated deformable convolution can
model complex face deformation caused by pose changes,
the predicted offsets inevitably introduce some estimation
errors into the deformable features. In case of small pose
changes, features that produced by a fixed grid structure are
easy to learn, and thus may contain optimum representa-
tions. To adaptively control the weight of face deformation
according to different pose changes and compensate the es-
timation errors introduced by offset prediction, we employ a
soft-gating mechanism in the fusion of the deformable face
features F t

d of block t and the primitive face features F t
i to

get updated image features F t+1
i , which will be fed into the

(t+1)-th block. In particular, we pass the pose feature F t
p in

the pose feature branch through a convolution layer denoted
by Convm, followed by a sigmoid operation over each loca-
tion on the feature map. The whole process is formulated as
follows:

M t
σ = Sigmoid(Convm(F t

p)), (5)

where M t
σ is a soft-gating map with each element ranges in

[0, 1]. Then we can get weighted-fusion features F t+1
i of the

primitive features and the deformable features as follows:

F t+1
i = F t

i +M t
σ � F t

d. (6)

By adjusting the values of M t
σ , we could dynamically bal-

ance the effects of deformable features and primitive fea-
tures according to their importance. In other words, the soft-
gating mechanism enhances the robustness of our model to
different pose variations and estimation errors, which further
improves the quality of the synthesized target face.

Training Objective

To synthesize photorealistic and identity-preserved multi-
view faces, we apply five different losses, including ad-
versarial loss, pixel-wise loss, identity preserving loss, 3D
shape loss , and total variation loss, to govern the training in
an end-to-end manner.

Adversarial Loss. We employ two discriminators for two
different objectives. Both the discriminators have two down-
sampling convolution layers and several residual blocks.
Discriminator DI is responsible for keeping the identity of
the generated face xg consistent with the source face xs. DI

takes the source face xs and the generated face xg as a fake
pair, while the source face and the ground truth target face xt

as a real pair. Discriminator DP has a similar structure with
DI , which aims to measure the pose consistency of xg and
the target pose pt. DP takes the target pose landmark pt and
the generated face xg as a fake pair, while pt and the target
ground truth image xt as a real pair. Under the adversar-
ial supervision of the coupled discriminators, the generator
can produce photorealistic and identity-preserved faces with
specific poses. The adversarial loss is defined as follows:

Ladv = Exg∼Pz,xs,xt∼Pdata
[logDI (xt, xs)

+ log [1−DI (xg, xs)]]

+ Exg∼Pz,xs∼Pdata,pt∼Ppt
[logDP (pt, xt)

+ log [1−DP (pt, xg)]] , (7)

where Pz , Pdata, and Ppt
denote the distribution of gener-

ated faces, ground truth target faces and ground truth target
landmark pose, respectively.

Pixel-wise Loss. To maintain the content consistency, we
employ a pixel-wise loss:

Lpixel =

W∑

i=1

H∑

j=1

∣∣∣xi,j
g − xi,j

t

∣∣∣ , (8)

where W and H denote the width and height of the image.
Identity-preserving Loss. We define the identity preserv-

ing loss as follows:

Lidt =
1

W ×H

W∑

i=1

H∑

j=1

∣∣∣F (xg)i,j − F (xt)i,j

∣∣∣ , (9)

where F denotes the feature map of the last pooling layer
in a pretrained Light-CNN. The identity preserving loss
forces the synthesized face to share a small distance with the
ground truth image in the feature space, which enables the
identity preservation when synthesizing a target-pose face.

3D Shape Loss. To further improve the quality of the syn-
thesized face, we add a constraint that we should be able to
fit a 3D face from the synthesized face which is close to the
ground truth 3D face. To this end, we introduce the UV posi-
tion map (Feng et al. 2018), which is a 2D image that records
the 3D positions of all points in UV space to provide L1-like
supervision L3D on the shape and pose of face. By adding
a UV position map prediction task on top of the decoder in
the generator, this 3D shape guidance can improve the shape
and pose consistency between the ground truth and the syn-
thesized face. All the ground truth UV position maps are
obtained by an off-the-shelf 3D face reconstruction model.
We compute the 3D shape loss as follows:

L3D =

W∑

i=1

H∑

j=1

∣∣∣UV i,j
g − UV i,j

t

∣∣∣ , (10)

where W and H denote the width and height of the UV posi-
tion maps. UVg and UVt denote the predicted and the ground
truth UV position map, respectively.

Total Variation Loss. To alleviate the artifacts and obtain
a smooth face image, we employ the total variation loss Ltv

as used in (Huang et al. 2017).
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Figure 4: Multi-view face synthesis results on Multi-PIE. The first row are 13 target landmarks from 90° to −90° with 15°
intervals. The others are the corresponding synthesized results (inputs are marked in red).

Final Objective. The final loss of the proposed model is
a weighted sum of the above losses, the generator G and
two discriminators DI and DP are trained to alternatively
optimize the min-max problem as follows:

min
G

max
DI ,DP

Ltotal = λ1Ladv + λ2Lpixel

+ λ3Lidt + λ4L3D + λ5Ltv, (11)

where λ1, λ2, λ3, λ4, λ5 are weighted parameters to balance
the above five loss items.

Experiment

In this section, we conduct extensive experiments on five
widely-used datasets to demonstrate the effectiveness of our
proposed model.

Datasets and Settings

Multi-PIE (Gross et al. 2010) is the largest multi-view
face recognition benchmark in the constrained setting. It
contains 754,204 images of 337 identities in 15 poses and
20 illumination conditions. We follow (Hu et al. 2018;
Tran, Yin, and Liu 2017) to use the images from 13 poses
between −90° and 90° and 20 illuminations with the neu-
tral expression for experiments on two different settings. The
first setting only uses faces of the first 150 subjects for train-
ing and the rest 100 subjects for testing. For testing, the face
with neutral expression and illumination of each subject is
selected to be the gallery and all the rest faces are probes.
In the second setting, all the images from 337 subjects are
included. The first 200 subjects are used for training and the
rest 137 subjects for testing. Each subject for testing has one
gallery image with the neutral expression and illumination
from its first appearance.

CelebA (Liu et al. 2015) is a large-scale face dataset in
the wild, including 202,599 face images of 10,177 identities
with various poses, expressions, and occlusions. We use it

to demonstrate the face synthesis capability of our model on
unconstrained faces.

IJB-A (Klare et al. 2015) is a challenging face dataset for
face detection and recognition in the wild, it contains 5712
images and 2085 videos from 500 subjects with large vari-
ations in expressions, poses and image quality. We leverage
IJB-A to evaluate the performance of our model on the un-
constrained data.

CFP (Sengupta et al. 2016) is a widely-used dataset for
large-pose face recognition, it contains 7000 images of 500
subjects, where each subject has 10 frontal and 4 profile face
images with large pose variations. We use CFP for evaluat-
ing our model in large-pose face verification.

LFW (Huang et al. 2008) is the most commonly used
databases for face recognition in the unconstrained envi-
ronment. It contains 13223 from 5729 subjects with huge
variations of expressions, poses, and occlusions, etc. We use
LFW to evaluate the performance of our model trained with
Multi-PIE in the unconstrained scenario. Furthermore, we
also add the CelebA into our training set and employ the
same testing protocols as in (Hu et al. 2018). Since CelebA
has no pair data, we follow the method in (Zhu et al. 2017b)
to generate profiles with different views from frontal faces.
We use the PRNet (Feng et al. 2018) to generate ground truth
UV position maps of images for training.

We compare to several state-of-the-art methods, includ-
ing 3D-PIM (Zhao et al. 2018b), PIM (Zhao et al. 2018a),
CAPG-GAN (Hu et al. 2018), CR-GAN (Tian et al. 2018),
TP-GAN (Huang et al. 2017), and DR-GAN (Tran, Yin, and
Liu 2017), both qualitatively and quantitatively.

Implementation Details

The training requires image pairs {xs, xt} and pose pairs
{ps, pt}. We enumerate all images in the datasets as source
images xs, and target pose is randomly chosen from 13
poses ranging from −90° to 90°. Once the target pose is
determined, we pair xs with its corresponding target image
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Figure 5: Multi-view synthesis results on CelebA. For each case, we show the results of ours, CAPG-GAN, and CR-GAN (top
to bottom) respectively. The proposed method produces accurate and artifacts-free faces.

Input

Ours

CAPG-
GAN

CR-
GAN

DR-
GAN

Figure 6: Visual comparison of face frontalization on the
LFW (left part) and IJB-A (right part) dataset.

Input 60◦ 52.5◦ 45◦ 37.5◦ 30◦ 22.5◦ 15◦ 7.5◦ 0◦

Figure 7: Synthesized faces with interpolated views on
Multi-PIE.

xt. The image size of source and target images for training
is 128 × 128. Our network is implemented using Pytorch,
the batch size is set to 16 and learning rate is 0.0001. We
empirically set λ1 = 5, λ2 = 10, λ3 = 0.01, λ4 = 10,
λ5 = 0.0001. The feature extractor for identity-preserving
loss is a pretrained Light CNN (Wu et al. 2018). To balance
the performance and computing costs, we set the number of
gated deformable convolution blocks Nb = 11.

We adopt 5-point facial landmarks as pose conditions,
where the 5 points annotate the left eye, right eye, nose, left
mouth corner, and right mouth corner, respectively. Com-
pared with the 68-point landmark, our setting is easy to get
and sufficient as a pose indicator. During training or testing,

Figure 8: Visual results of high resolution (256×256) on
Multi-PIE. The first row are input faces and the second row
are synthesized faces.

we first generate the landmark heatmap by plotting a Gaus-
sian distribution centered at each keypoint on each channel,
then the source and the target landmark heatmaps are sent
to the model as input. During the testing phase, we use an
off-the-shelf landmark detector (Zhang et al. 2016) for pro-
ducing input.

Qualitative Evaluation

For face synthesis, visual effect of the synthesized image is
an important metric to assess synthesizing capability of the
model. We conduct experiments on Multi-PIE and CelebA
to verify the superiority of our model to synthesize photo-
realistic faces with multiple views. In Fig. 4, we present the
multi-view synthesis results on Multi-PIE with faces from
90° to −90° using four input faces with different poses (i.e.,
0°, −45°, 60°, −90°). It shows that our model can recover
the occluded face regions even for a large pose variation and
produce a photorealistic target face with a clear global struc-
ture and fine details. This attributes to the gated deformable
face sampling which enables our model to learn free-from
face deformation.

Meanwhile, we show the multi-view synthesis results be-
tween 60° and −60° on CelebA in Fig. 5. The state-of-
the-art methods are also presented for comparison. These
synthesized faces are visual-pleasing with the identity well-
preserved, which demonstrates a good generalization ability
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Input w/o Lidt w/o Ladv w/o L3D w/o Ltv Resnet w/o gating GDFace GT

Figure 9: Visual comparison of different variants on Multi-PIE.

Methods ±90° ±75° ±60° ±45° ±30° ±15°
CPF - - - 71.65 81.05 89.45
Hassner - - 44.81 74.68 89.59 96.78
HPN 29.82 47.57 61.24 72.77 78.26 84.23
FIP 40 31.37 49.10 69.75 85.54 92.98 96.30
c-CNN 47.26 60.66 74.38 89.02 94.05 96.97
Light CNN 9.00 32.35 73.30 97.45 99.80 99.78
TP-GAN 64.03 84.10 92.93 98.58 99.85 99.78
PIM 75.00 91.20 97.70 98.30 99.40 99.80
3D-PIM 76.12 94.34 98.84 99.34 99.47 99.83
CAPG-GAN 77.10 87.40 93.74 98.28 99.37 99.95
Ours 87.93 93.74 98.28 99.87 99.97 100

Table 1: Rank-1 recognition rates (%) across views and illu-
minations under Setting 1.

of our model for the unconstrained data. On the contrary, we
can see that CAPG-GAN and CR-GAN produces faces with
artifacts especially on the occluded regions.

To further compare with the state-of-the-art methods, we
conduct a visualization experiment on LFW and IJB-A to
generate the frontal face given a profile. As shown in Fig. 6,
the frontal faces generated by the competing methods fail
to produce a clear global structure and recover the details
which are important for identity-preserving. Besides, they
contain more artifacts. By contrast, our approach can pro-
duce photorealistic face with identity well-preserved.

We also conduct experiments to demonstrate the superior
synthesizing capability of our model. Fig. 7 and Fig. 8 show
the synthesized faces with interpolated views and faces in
high resolution, respectively. These results are visually plau-
sible and indicate our potential for practical applications.

Quantitative Evaluation

In addition to the visual effects, we also conduct face recog-
nition and verification experiments on four datasets to evalu-
ate the identity-preserving capability of our model. For face
recognition and verification, we leverage Light CNN (Wu et
al. 2018) to extract the features of input faces and then com-
pute the cosine similarity of the feature vectors extracted
from the two faces. We evaluate the face recognition per-

Methods ±90° ±75° ±60° ±45° ±30° ±15°
FIP - - 45.90 64.10 80.70 90.70
CPF - - 61.90 79.90 88.50 95.00
DR-GAN - - 83.20 86.20 90.10 94.00
Light CNN 5.51 24.18 62.09 92.13 97.38 98.59
FF-GAN 61.20 77.20 85.20 89.70 92.50 94.60
TP-GAN 64.64 77.43 87.72 95.38 98.06 98.68
CAPG-GAN 66.05 83.05 90.63 97.33 99.56 99.82
PIM 86.50 95.00 98.10 98.50 99.00 99.30
3D-PIM 86.73 95.21 98.37 98.81 99.48 99.64
Ours 90.32 95.28 98.68 99.68 99.94 99.97

Table 2: Rank-1 recognition rates (%) across views and illu-
minations under Setting 2.

Methods ACC(%) AUC(%)
FF-GAN 96.42 99.45
CAPG-GAN 99.37 99.90
Ours 99.40 99.90

Table 3: Face verification accuracy (ACC) and area-under-
curve (AUC) results on the LFW dataset.

formance on Multi-PIE under two experimental settings, the
numerical scores are shown in Table 1 and Table 2, respec-
tively. For setting 1, our approach outperforms the other
methods for large pose change by a large margin. For setting
2, our approach also consistently surpasses the competitors
for all views. These quantitative results demonstrate that our
method can preserve better identity with face rotation.

To evaluate the identity-preserving performance of our
model on the unconstrained data, we further conduct face
verification on LFW, CFP, and the identity similarity exper-
iments on IJB-A following (Tian et al. 2018). In Table 3,
4, and 5, our model shows a superior performance over the
other methods, which demonstrates that our model is robust
to faces in the wild with various expressions, poses, and
occlusions. Overall, the quantitative results prove that our
model can synthesize photorealistic and identity-preserved
faces in both constrained and unconstrained settings.
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Methods Similarity
DR-GAN 1.295±0.008
CR-GAN 1.217±0.010
Ours 1.089±0.040

Table 4: Identity similarities between real and synthesized
images on the IJB-A dataset. (the lower, the better)

Method Frontal-Profile

ACC EER AUC

Light CNN-29 92.47±1.44 8.71±1.80 97.77±0.76
PIM 93.10±1.01 7.69±1.29 97.65±0.62
Ours 94.43±1.26 6.71±1.92 96.59±0.91

Table 5: Face recognition performance (%) comparison on
CFP. The results are averaged over 10 testing splits.

Ablation Study

Here we analyze the importance of our optimization objec-
tives and efficacy of the main components of our model. We
implement different variants of our model to analyze their
performances on face recognition under setting 2 of Multi-
PIE. To demonstrate the gated face deformation indeed ben-
efits the face deformation modeling for the multi-view syn-
thesis, we replace all the gated deformable blocks with regu-
lar residual-blocks (He et al. 2016). Meanwhile, to verify the
introduced soft-gating mechanism, we remove it from our
model for comparison. Table 6 reports the face recognition
performance with respect to different versions of our model.
The results show that each loss item we use indeed boosts
the performance of our model, and our deformable convolu-
tion module significantly outperforms the regular residual-
block for large pose changes. Also, with the introduced gat-
ing mechanism, our final model performs better for most
angles than the other variants. This is mainly because the
introduced gating mechanism injects diverse face represen-
tations to the network. The advantages brought by these two
modules become larger for large pose changes, as they can
control the face deformation and improve the quality of the
synthesized faces. We also show the visual performance of
different variants of our model in Fig. 9. When removing
Lidt, the synthesized faces are smooth and thus lack impor-
tant discriminative details. Faces become blurry when Ladv

is dropped. L3D is important for preserving the global struc-
ture of face and the texture will be smoother when adopt-
ing Ltv . Finally, gated deformable convolution enables our
model to generate photorealistic faces with higher quality.

Furthermore, we conduct an experiment to explore the re-
lationship between our gated deformable convolution and
rotation degrees. We plot the mean value Mmean

σ of the soft-
gating map Mσ when rotating faces with different poses to
the frontal face to see how Mmean

σ changes. As shown in
Fig. 10, both in the setting 1 and setting 2 on Multi-PIE, the
value of Mmean

σ increases along with the rotation degrees. It
confirms our conjecture that the network relies more on the
deformable blocks for large pose variations. This also in-
dicates the importance of the proposed deformable module,

Figure 10: Tendency of the mean value of Mσ with re-
spect to face rotation degrees. Mσ increases along with ro-
tation degree, which demonstrates the effectiveness of our
deformable module on large pose variations.

Model ±90° ±75° ±60° ±45° ±30° ±15°
w/o Lidt 15.14 33.07 46.20 69.08 87.45 97.34
w/o Ladv 86.76 94.10 98.30 99.80 99.94 99.98
w/o L3D 88.15 93.74 97.35 99.18 99.94 100
w/o Ltv 89.00 94.56 98.01 99.55 99.89 99.96
Resnet 87.43 93.99 97.98 99.55 99.97 99.99
w/o gating 89.24 94.34 98.30 99.58 99.97 99.99

Ours 90.32 95.28 98.68 99.68 99.94 99.97

Table 6: Rank-1 recognition rates (%) of our model and its
variants with different training objectives under Setting 2.

and the proposed gating mechanism provides a good balance
between primitive features and deformable features.

Conclusion

In this paper, we propose a Gated Deformable Face Synthe-
sis Network for multi-view face synthesis. It captures face
deformation of two poses in the form of convolution off-
sets. This information serves as a strong prior for face syn-
thesis via gated deformable blocks, which enables learning
a complex face deformation. Furthermore, we introduce a
soft-gating mechanism in each block to adaptively alleviate
the estimation errors of predicted offsets and inject diver-
sity to the feature representations. Extensive quantitative and
qualitative experiments on five widely-used datasets demon-
strate that the proposed method can synthesize photorealistic
multi-view faces while preserving identity under both con-
strained and unconstrained settings, especially for large pose
changes.
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